

Extended ISDN HDLC FIFO controller with two Universal ISDN Ports

Cologne Chip AG Eintrachtstrasse 113 D - 50668 Köln

Germany

Tel.: +49 (0) 221 / 91 24-0 Fax: +49 (0) 221 / 91 24-100

http://www.CologneChip.com http://www.CologneChip.de support@CologneChip.com

Copyright 1994 - 2012 Cologne Chip AG All Rights Reserved

The information presented can not be considered as assured characteristics. Data can change without notice.

Parts of the information presented may be protected by patent or other rights.

Cologne Chip products are not designed, intended, or authorized for use in any application intended to support or sustain life, or for any other application in which the failure of the Cologne Chip product could create a situation where personal injury or death may occur.

Date	Remarks
June 2012	Bitmap width of A_SL_CFG.V_CH_SNUM reduced to 4 bit.
	Description of bitmaps V_B1_TX_EN, V_B2_TX_EN (both in register A_SU_CTRL0), R_STATUS.V_MISC_IRQSTA and R_IRQ_OVIEW.V_MISC_IRQ slightly changed.
	Paragraph concerning HFC-channel processing limitation added to section 3.2.3 on page 78.
	Figure 6.5 (PCM clock synchronization) on page 229 modified concerning C2IO signal path to PCM data controller.
	Section 9.2.4 (Supply noise requirements for PLL locking) on page 294 added.
May 2010	No changes with regard to contents, only a few typographical corrections have been made.
April 2010	Sections 6.5.6, 6.5.7, 9.1.3.5, 10.3 and 13 added. Figures 9.3 and 10.2 added. Tables 2.3, 10.3, 13.1 and 13.2 added. Register R_SU_LED_CTRL added. Bit V_WD_EN in register R_BERT_WD_MD added.
	Reset groups and I/O characteristic of the pin list completely reworked. Section "Reset" also reworked.
	Register descriptions improved for e.g. A_B1_RX, A_B2_RX, A_D_RX, A_E_RX, A_FIFO_CTRL, A_SL_CFG, R_CHIP_ID, R_CIRM, R_CLK_CFG, R_FIFO_BL0_IRQR_FIFO_BL3_IRQ, R_IRQ_CTRL, R_IRQ_OVIEW, R_PCM_MD1 and R_RAM_CTRL.
	Register descriptions clarified and corrected for A_CON_HDLC, A_F1, A_F2, A_SU_CTRL0, R_IRQ_OVIEW, R_PCM_MD1, R_STATUS.
	Schematics slightly changed for processor interface (recommended capacitor added), component values of the quarz circuitry improved (see also calculation procedure in section 9.1.3).
	/WAIT signal added to parallel processor interface timing diagrams. Signals /SPICLK, SPICLK_IDLE and /SPICLK_IDLE added to timing diagram 2.20.
	Internal signal FSC renamed to FSC_RX (and as a consequence of this FSC_0 and FSC_1 renamed to FSC_TX_0 and FSC_TX_1). Internal signal FSC_TX added to figures 5.1, 5.5, 5.13, 5.15 and 5.16 and to the corresponding sections.
	Note *1 changed in NT state matrices for S/T (Table 5.4) and U_p (Table 5.9) line interfaces. Remarks added for bit scrambler configuration in sections 5.3.4 and 5.3.7. Remark added for monitoring applications in section 5.3.6. Remark concerning internal PCM loop added to section 6.2. Register bit V_FIFO_IRQMSK added to Figure 9.7. Remark concerning unused line interfaces added to section 9.4.4.1. Chapter 11 reworked and supplemented.
October 2007	Minor changes were made in this data sheet revision: Information added to Sections 5.2.6 and 9.4.4.1 concerning state machine behaviour and line interface frequency slip interrupt.
July 2007	C1 and C2 in external S/T receive circuitry moved from L_A /L_B pins to R_A /R_B pins, t_{AHD} added for bus interface write access in mode 2 (Motorola) and mode 3 (Intel), name V_CH_IRQ changed to V_STUP_IRQ in register R_IRQ_OVIEW, name V_FR_IRQSTA changed to V_FIFO_IRQSTA in register R_STATUS, description of many interrupt registers improved.
March 2007	I/O type and input/output characteristics revised in pin list, pins 6 and 7 changed from NC to GND in SPI operating mode (refer to pin list and SPI connection circuitry), SPI timing diagrams added, section "PCM clock synchronization" restructured and supplemented, application hints for expanding an existing system with ISDN ports added.

Contents

Al	bout this data sheet and Cologne Chip technical support			27
1	Gen	eral des	scription	31
	1.1	Systen	n overview	32
	1.2	Featur	es	33
	1.3	Pin de	scription	34
		1.3.1	Pinout diagram	34
		1.3.2	Pin list	36
2	Mic	roproce	ssor bus interface	41
	2.1	Mode	selection	42
	2.2	Paralle	el processor interface	43
		2.2.1	Overview	43
		2.2.2	Interface signals	43
		2.2.3	Register access	44
			2.2.3.1 Non-multiplexed / multiplexed access	44
			2.2.3.2 Read* access	45
			2.2.3.3 Register address read-back capability	45
			2.2.3.4 Problems with interrupts between address and data accesses	45
		2.2.4	Signal and timing characteristics	45
			2.2.4.1 Bus interface in mode 2 and mode 3 (non-multiplexed)	45
			2.2.4.2 Bus interface in mode 2m and mode 3m (multiplexed)	51
		2.2.5	Microprocessor connection circuitries	55
	2.3	Serial	processor interface (SPI)	57
		2.3.1	SPI control byte	57
		2.3.2	SPI transactions	58
		2.3.3	Transaction duration	59
		2.3.4	Register write access	61
		2.3.5	Register read access	63
		2.3.6	Register access duration	64

		2.3.7	Register address read-back capability 64
		2.3.8	Problems with interrupts during transaction sequences
		2.3.9	SPI timing diagrams
		2.3.10	SPI connection circuitry
	2.4	Auto-E	EEPROM mode
	2.5	Registe	er description
		2.5.1	Write only registers
		2.5.2	Read only registers
		2.5.3	Read / write register
3	УШ	7C-2SH	data flow 75
J	3.1		ow concept
	3.1	3.1.1	Overview
		3.1.2	Term definitions
	3.2		
	3.2	3.2.1	
		3.2.1	
		3.2.3	Timed sequence
		3.2.4	Transmit operation (FIFO in transmit data direction)
		3.2.5	Receive operation (FIFO in receive data direction)
	2.2	3.2.6	Connection summary
	3.3	_	ers
		3.3.1	HFC-channel assigner
		3.3.2	PCM slot assigner
		3.3.3	Line interface assigner
		3.3.4	Assigner summary
	3.4		ow modes
		3.4.1	Simple Mode (SM)
			3.4.1.1 Mode description
			3.4.1.2 Subchannel processing
			3.4.1.3 Example for SM
		3.4.2	Channel Select Mode (CSM)
			3.4.2.1 Mode description
			3.4.2.2 HFC-channel assigner
			3.4.2.3 Subchannel Processing
			3.4.2.4 Example for CSM
		3.4.3	FIFO Sequence Mode (FSM)
			3.4.3.1 Mode description

			3.4.3.2 FIF	O sequence	99
			3.4.3.3 FSN	M programming	101
			3.4.3.4 Exa	ample for FSM	102
	3.5	Subcha	nnel Processin	g	108
		3.5.1	Overview		108
		3.5.2	Subchannel re	egisters	109
		3.5.3	Details of the	FIFO oriented part of the subchannel processor (part A)	109
			3.5.3.1 FIF	O transmit operation in transparent mode	109
			3.5.3.2 FIF	O transmit operation in HDLC mode	111
			3.5.3.3 FIF	O receive operation in transparent mode	111
			3.5.3.4 FIF	O receive operation in HDLC mode	111
		3.5.4	Details of the	HFC-channel oriented part of the subchannel processor (part B)	111
			3.5.4.1 FIF	O transmit operation in SM	111
			3.5.4.2 FIF	O transmit operation in CSM and FSM	112
			3.5.4.3 FIF	O receive operation in SM	112
			3.5.4.4 FIF	O receive operation in CSM and FSM	112
		3.5.5	Subchannel ex	xample for SM	113
		3.5.6	Subchannel ex	xample for CSM	118
4	EIE/) handl	ng and HDL(Coontroller	125
7	4.1		C		
	4.1				
	4.3				
	4.4		•		
	7.7	4.4.1		nit FIFOs	
				channel frame repetition (for S/T in TE mode only)	
		4.4.3		e FIFOs	
		4.4.4		node of XHFC-2SU	
	4.5		_		
	T. 3	4.5.1	_	gisters	
		4.5.2	• •	isters	
		4.5.3		egisters	
		1.5.5	Redd / Wille I	egisters	143
5	Univ	ersal IS	DN Port		155
	5.1	Genera	l overview of t	he S/T and \boldsymbol{U}_p interfaces	156
		5.1.1	Array register	s and multiregisters	156
		5.1.2	Block diagran	n of the Universal ISDN Port module	156
	5.2	S/T into	erface descripti	ion	158
		5.2.1	Overview		158

	5.2.2	Frame Structure
	5.2.3	Multiframe structure
	5.2.4	Data transmission
	5.2.5	INFO signals
	5.2.6	State machine
	5.2.7	Clock synchronization
	5.2.8	External circuitries
		5.2.8.1 External receive circuitry
		5.2.8.2 External transmit circuitry
		5.2.8.3 Transformer and ISDN jack connection
	5.2.9	S/T transformers
5.3	U _p inte	rface description
	5.3.1	Overview
	5.3.2	Frame Structure
	5.3.3	Superframe structure
	5.3.4	Data transmission
	5.3.5	INFO signals
	5.3.6	State machine
	5.3.7	Clock synchronization
	5.3.8	External circuitry
	5.3.9	U_p transformers
5.4	Comm	on features of the S/T and U_p interfaces
	5.4.1	Direct data access for test purposes
	5.4.2	Clock synchr. with several TEs connected to different central office switches 187
	5.4.3	Combined S/T and U _p circuitry
5.5	Registe	er description
	5.5.1	Write only registers
	5.5.2	Read only registers
D. 673		
	A interfa	
6.1		nterface function
6.2		ata flow
6.3		nitialization
6.4		ming
	6.4.1	Mode selection
	6.4.2	Master mode
	6.4.3	Slave mode
6.5	PCM c	lock synchronization

6

	6.5.1	Overview	28
	6.5.2	Manual or automatic synchronization source selection	28
	6.5.3	PLL programming for F0IO generation	28
	6.5.4	Manual PLL adjustment	28
	6.5.5	C2IO signal	30
	6.5.6	SYNC_O and FSC_RX synchronization signals	30
	6.5.7	Synchronous 512 kHz output signal	30
	6.5.8	Application examples for XHFC-2SU synchronization schemes	31
		6.5.8.1 System with internal PCM bus expanded by ISDN interfaces 23	31
		6.5.8.2 Application with multiple XHFC-2SU	32
6.6	Multif	me / superframe synchronization to the PCM interface	35
	6.6.1	Overview	35
	6.6.2	Frame counter	35
	6.6.3	Synchronization input signal	35
	6.6.4	Synchronization output signal (F0IO pulse modification)	38
	6.6.5	Line interface synchronization	39
6.7	Extern	1 CODECs	40
6.8	GCI/	OM-2 mode	42
	6.8.1	Overview	42
	6.8.2	GCI frame structure	42
	6.8.3	GCI register programming	43
		6.8.3.1 Enable CGI functionality	43
		6.8.3.2 Monitor channel	44
		6.8.3.3 Command / indication bits (C/I-channel)	1 4
		6.8.3.4 Examples for GCI frame embedding in the PCM data structure 24	44
	6.8.4	GCI protocol	49
		6.8.4.1 XHFC-2SUtransmit procedure	49
		6.8.4.2 XHFC-2SUreceive procedure	50
		6.8.4.3 Receiver abort	52
6.9	Registe	description	53
	6.9.1	Write only registers	53
	6.9.2	Read only registers	71
	6.9.3	Read / write register	74
Puls	e width	modulation (PWM) outputs 27	75
7.1		w	
7.1		d PWM usage	
7.2		ive PWM usage	
			. ~

7

	7.4	Registe	er descripti	on	277
8	Bit I	Error R	ate Test (E	BERT)	279
	8.1	BERT	functionali	ty	280
	8.2	BERT	transmitter		280
	8.3	BERT	receiver .		280
	8.4	Registe	er descripti	on	284
		8.4.1	Write onl	y registers	284
		8.4.2	Read only	y registers	285
9	Cloc	k, PLL,	, reset, into	errupt, timer and watchdog	287
	9.1	Clock			288
		9.1.1	Clock out	iput	288
		9.1.2	Clock dis	tribution	288
		9.1.3	Clock osc	cillator circuitry	290
			9.1.3.1	Frequency accuracy	290
			9.1.3.2	Pierce oscillator	290
			9.1.3.3	3rd overtone oscillator	291
			9.1.3.4	Crystal oscillator circuitry	291
			9.1.3.5	Several XHFC-2SU with a single oscillator circuitry	291
	9.2	Phase 1	ocked loop	o (PLL)	293
		9.2.1	Overview	·	293
		9.2.2	PLL struc	eture	293
		9.2.3	PLL oper	ation	294
		9.2.4	Supply no	pise requirements for PLL locking	294
		9.2.5	PLL conf	iguration	295
	9.3	Reset			298
	9.4	Interruj	pt		299
		9.4.1	Common	features	299
		9.4.2	ST/U _p in	iterface interrupt	299
		9.4.3	FIFO inte	errupt	299
		9.4.4	Miscellea	nous interrupts	301
			9.4.4.1	Line interface frequency slip interrupt	301
			9.4.4.2	Timer interrupt	302
			9.4.4.3	Processing / non-processing interrupt	302
			9.4.4.4	Command / indication interrupt (GCI interface)	
			9.4.4.5	Wakeup interrupt	
			9.4.4.6	Interrupt for GCI monitor byte transmission	
			9.4.4.7	Interrupt after GCI monitor byte received	303

	9.5	Watchdog reset	 304
	9.6	Register description	 305
		9.6.1 Write only registers	 305
		9.6.2 Read only registers	 313
		9.6.3 Read / write registers	 322
10	Gene	eral purpose I/O pins (GPIO)	323
	10.1	GPIO functionality	 324
	10.2	GPIO output voltage	 324
	10.3	Activation state F7 / G3 signalling	 327
	10.4	Register description	 328
		10.4.1 Write only registers	 328
		10.4.2 Read only registers	 335
11	Elect	trical characteristics	337
12	XHF	FC-2SU package dimensions	341
13	XHF	FC-2SU address decoding erratum	343
	13.1	Fault description	 344
	13.2	Work-Around	 344
Re	feren	ces	349
Lic	t of r	ragistar and hitman abbreviations	351

List of Figures

1.1	XHFC-2SU block diagram	31
1.2	XHFC-2SU pinout in parallel processor interface mode	34
1.3	XHFC-2SU pinout in serial processor interface mode	35
2.1	Bus interface read access in mode 2 (Motorola) and mode 3 (Intel)	46
2.2	Bus interface write access in mode 2 (Motorola) and mode 3 (Intel)	49
2.3	Bus interface read access in modes 2m and 3m (multiplexed)	52
2.4	Bus interface write access in mode 2m and 3m (multiplexed)	54
2.5	8 bit Motorola processor circuitry example (mode 2)	55
2.6	8 bit Motorola processor circuitry example (mode 2m)	55
2.7	8 bit Intel processor circuitry example (mode 3)	56
2.8	8 bit Intel processor circuitry example (mode 3m)	56
2.9	16 bit SPI write transaction ($R = 0$, one data byte)	59
2.10	16 bit SPI read transaction (R = '1', one data byte)	59
2.11	40 bit SPI write transaction ($R = 0$, four data bytes)	60
2.12	40 bit SPI read transaction ($R = '1'$, four data bytes)	60
2.13	Split 40 bit SPI read transaction (R = '1')	60
2.14	Register write access (transaction sequence)	62
2.15	Multiple write accesses to the same register	62
2.16	Register write access with a 40 bit transaction	62
2.17	Register read access (transaction sequence)	63
2.18	Multiple read accesses to the same register	64
2.19	Register read access with a 40 bit transaction	64
2.20	SPI timing diagram for data write transactions	65
2.21	SPI timing diagram for data read transactions	66
2.22	SPI connection circuitry	68
3.1	Data flow block diagram	75
3.2	Areas of FIFO oriented, HFC-channel oriented and PCM time slot oriented numbering	77
3.3	The flow controller in transmit operation	79

3.4	The flow controller in receive FIFO operation	80
3.5	Overview of the assigner programming	34
3.6	SM example	88
3.7	HFC-channel assigner in CSM	3
3.8	CSM example	4
3.9	HFC-channel assigner in FSM	9
3.10	FSM list processing	0
3.11	FSM list programming	1
3.12	FSM example	12
3.13	General structure of the subchannel processor	8
3.14	Location of the subchannel parts A and B in the data flow diagram	8
3.15	Part A of the subchannel processor	0
3.16	Part B of the subchannel processor	2
3.17	SM example with subchannel processor	3
3.18	CSM example with subchannel processor	8
4 1	FIFO : .:	
4.1	FIFO organization	
4.2	FIFO data organization in HDLC mode	U
5.1	Overview of the Universal ISDN Port module	7
5.2	Frame structure at reference point S and T	8
5.3	S/T frame composition for B1-, B2-, D-channel and multiframe bits	1
5.4	S/T frame decomposition for B1-, B2-, D-, E-channel and multiframe bits 16	2
5.5	S/T clock synchronization	7
5.6	External S/T receive circuitry for TE and NT mode	8
5.7	External S/T transmit circuitry for TE and NT mode	9
5.8	Transformer and connector circuitry in TE mode	0
5.9	Transformer and connector circuitry in NT mode	0
5.10	U_p interface frame structure	5
5.11	U_p frame composition for B1-, B2-, D-channel and superframe bits	7
5.12	U_p frame decomposition for B1-, B2-, D-channel and superframe bits	8
5.13	U _p clock synchronization	3
5.14	External U_p circuitry for TE and LT mode	4
5.15	Synchronization scenario with TEs connected to several central office switches 18	7
5.16	Synchronization registers (detail of Figure 5.15)	8
5.17	Timing example of one transmit and one receive transmission	9
5.18	Data transmission with $f_{FSC_TX_1} > f_{FSC_TX_0}$	0
5.19	Data transmission with $f_{\text{FSC_TX_1}} < f_{\text{FSC_TX_0}}$	1

6.1	PCM data flow for transmit and receive time slots	221
6.2	Global setting for all PCM time slots (detail of Figure 6.1)	222
6.3	PCM timing for master mode	224
6.4	PCM timing for slave mode	226
6.5	PCM clock synchronization	229
6.6	Expanding an existing system with ISDN ports (XHFC-2SU as PCM slave)	231
6.7	Expanding an existing system with ISDN ports (XHFC-2SU as PCM master)	232
6.8	Multiple XHFC-2SU synchronized with an open loop of SYNC_O/SYNC_I	233
6.9	Multiple XHFC-2SU synchronized with an closed loop of SYNC_O/SYNC_I	234
6.10	Multiframe / superframe synchronization to the PCM interface	236
6.11	Timing specification of the SYNC_IN change detection	237
6.12	F0IO pulse modification	238
6.13	Example for two CODEC enable signal shapes	240
6.14	Single channel GCI format	243
6.15	GCI application example 1 (XHFC-2SU is PCM master and GCI master)	245
6.16	GCI application example 2 (XHFC-2SU is PCM slave and GCI master)	247
6.17	GCI application example 3 (XHFC-2SU is PCM slave and GCI slave)	247
6.18	GCI protocol for monitor bytes transmission	249
6.19	GCI protocol for monitor bytes receiving	251
8.1	BERT transmitter block diagram	281
8.2	BERT receiver block diagram	282
9.1	CLK_OUT generation and clock distribution	289
9.2	Standard XHFC-2SU quartz circuitry	290
9.3	Clock distribution with only one quartz circuitry	292
9.4	PLL block diagram	294
9.5	Interrupt output	299
9.6	$ST/U_p \ interface \ interrupt \ . \ . \ . \ . \ . \ . \ . \ . \ . \ $	300
9.7	Enable FIFO interrupt condition with V_FIFO_IRQ_EN	300
9.8	FIFO interrupt	301
9.9	Miscelleanous interrupts	302
9.10	Wakeup interrupt	303
10.1	GPIO block diagram	325
10.2	Activation state signalling exemplarily shown with GPIO0	327
12.1	XHFC-2SU package dimensions	342

List of Tables

2.1	Overview of the XHFC-2SU bus interface registers	41
2.2	Microprocessor access types	42
2.3	Overview of the parallel processor interface pins	43
2.4	Parallel processor interface mode selection	44
2.5	Pins and signal names of the parallel processor interface modes	44
2.6	Overview of accesses in parallel microprocessor interface mode	47
2.7	Timing diagrams of the parallel microprocessor interface	47
2.8	Symbols of read accesses in Figure 2.1	48
2.9	Symbols of write accesses in Figure 2.2	50
2.10	Symbols of read accesses in Figure 2.3	51
2.11	Symbols of write accesses in Figures 2.4	53
2.12	Overview of the SPI interface pins	57
2.13	SPI control byte with $A = '0'$	58
2.14	SPI control byte with $A = '1'$	58
2.15	SPI control commands for register read and write operations	58
2.16	SPI data rates	64
2.17	Symbols of write access in Figure 2.20	66
2.18	Symbols of read access in Figure 2.21	67
3.1	Flow controller connectivity	81
3.2	V_DATA_FLOW programming values for bidirectional connections	81
3.3	Line interface assigner	83
3.4	Index registers of the FIFO array registers (sorted by address)	86
3.5	List specification of the example in Figure 3.12	103
3.6	Subchannel processing according to Figure 3.17 (SM • TX, transparent mode)	115
3.7	Subchannel processing according to Figure 3.17 (SM ● RX, transparent mode)	115
3.8	Subchannel processing according to Figure 3.17 (SM 2 TX, HDLC mode)	117
3.9	Subchannel processing according to Figure 3.17 (SM 2 RX, HDLC mode)	117
3.10	Subchannel processing according to Figure 3.18 (CSM 1 TX, transparent mode)	120
3.11	Subchannel processing according to Figure 3.18 (CSM • RX, transparent mode)	121
3.12	Subchannel processing according to Figure 3.18 (CSM 2 TX, HDLC mode)	124

3.13	Subchannel processing according to Figure 3.18 (CSM 2 RX, HDLC mode)	124
4.1	Overview of the XHFC-2SU FIFO registers	125
4.2	FIFO size setup	128
5.1	Overview of the ST/U_p interface registers	155
5.2	Legend for Figure 5.2	159
5.3	Multiframe structure of the Q- and S-bits	160
5.4	S/T interface activation / deactivation layer 1 matrix for NT mode	164
5.5	S/T interface activation / deactivation layer 1 matrix for TE mode	165
5.6	S/T transformer part numbers and manufacturers	171
5.7	Legend for Figure 5.10	176
5.8	Superframe construction	176
5.9	U_p interface activation / deactivation layer 1 matrix for LT mode $\ \ \ldots \ \ \ldots \ \ \ldots$	180
5.10	U_p interface activation / deactivation layer 1 matrix for TE mode $\ \ldots \ \ldots \ \ldots$	181
5.11	Up transformer part numbers and manufacturers	185
5.12	Symbols of Figures 5.17	188
6.1	Overview of the XHFC-2SU PCM interface registers	219
6.2	PCM master mode	220
6.3	PCM data flow programming	222
6.4	Symbols of PCM timing for master mode in Figure 6.3	225
6.5	Symbols of PCM timing for slave mode in Figure 6.4	227
6.6	Symbols of the SYNC_IN change detection timing specification in Figure 6.11	238
6.7	Selection of the F0IO pulse characteristic (see also Figure 6.12)	239
6.8	Legend of figure 6.14	243
6.9	Programming procedure for application example 1 according to Figure 6.15	246
6.10	Programming procedure for application example 3 according to Figure 6.17	248
6.11	Rules for the handshake signals MX_TX and MR_TX	250
6.12	Rules for the handshake signals MX_{RX} and MR_{RX}	252
7.1	Overview of the XHFC-2SU PWM registers	275
8.1	Overview of the XHFC-2SU BERT registers	279
9.1	Overview of clock, PLL, reset, timer and watchdog registers	287
9.2	PLL setup examples (P,M,N,S) with ISDN related frequencies for \mathbf{f}_{out}	296
9.3	PLL setup examples (P,M,N,S) with ISDN related frequencies for \mathbf{f}_{in}	297
9.4	XHFC-2SU reset groups	298
10.1	Overview of the XHFC-2SU general purpose I/O registers	323

10.2	GPIO pins	326
10.3	State F7/G3 reporting	327
13.1	Involved registers of the address decoding fault	344
13.2	Detailed register list and work-around description	345

List of Registers

ad

Please note!

Register addresses are assigned independently for write and read access; i.e. in many cases there are different registers for write and read access with the same address. Only registers with the same meaning and bitmap structure in both write and read directions are declared to be read/write.

It is important to distinguish between registers, array registers and multi-registers.

Array registers have multiple instances and are indexed by a number. This index is either the FIFO number (R_FIFO with 15 indexed registers), the PCM time slot number (R_SLOT with 1 indexed register) or the ST/U_p interface number (R_SU_SEL with 21 indexed registers). <u>Array registers</u> have equal name, bitmap structure and meaning for every instance.

Multi-registers have multiple instances, too, but they are selected by a bitmap value. With this value, different registers can be selected with the same address. Multi-register addresses are 0x15 (11 instances selected by R_PCM_MD0), 0x0F (2 instances selected by R_FIFO_MD) and 0x35 (2 instances selected by A_ST_CTRL3/A_UP_CTRL3) for XHFC-2SU. Multi-registers have different names, bitmap structure and meaning for each instance.

The first letter of array register names is ' A_{\dots} ' whereas all other registers begin with ' R_{\dots} '. The index of array registers and multi-registers has to be specified in the appropriate register.

Registers sorted by name

Reset group: H = Hardware reset

0 = Global software reset

1 = HFC reset 2 = PCM reset

3 = Line interface reset

See Table 9.4 on page 298 for a detailed reset group explanation.

Please note!

See explanation of register types on page 21.

Write only registers:				Address	Name	Reset group	Page
		D 4		0x14	R_PCM_MD0	H, 0, 2	254
Address	Name	Reset group	Page	0x15	R_PCM_MD1	H, 0, 2	259
0x3C	A_B1_TX[ST/Up]	_	206	0x15	R_PCM_MD2	H, 0, 2	261
0x3D	A_B1_TX[ST/Up] A_B2_TX[ST/Up]	_	206	0x50	R_PLL_CTRL	Н	312
0x3F	A_BAC_S_TX[ST/Up]	_	208	0x1E	R_PWM_CFG	H, 0	277
0x3E	A_D_TX[ST/Up]	_	207	0x46	R_PWM_MD	H, 0	278
0x0E	A_INC_RES_FIFO[FIFO]	H 0 1 2 3	136	0x38	R_PWM0	H, 0	277
0x36	A_MS_DF[ST/Up]	H, 0, 3	204	0x39	R_PWM1	H, 0	278
0x34	A_MS_TX[ST/Up]	H, 0, 3	200	80x0	R_RAM_ADDR	H, 0	71
0x35	A_ST_CTRL3[ST/Up]	H, 0, 3	201	0x09	R_RAM_CTRL	H, 0	71
0x37	A_SU_CLK_DLY[ST/Up]	H, 0, 3	205	0x15	R_SH0H	H, 0, 2	264
0x31	A_SU_CTRL0[ST/Up]	H, 0, 3	195	0x15	R_SH0L	H, 0, 2	264
0x32	A_SU_CTRL1[ST/Up]	H, 0, 3	197	0x15	R_SH1H	H, 0, 2	265
0x33	A_SU_CTRL2[ST/Up]	H, 0, 3	198	0x15	R_SH1L	H, 0, 2	264
0x30	A_SU_WR_STA[ST/Up]	H, 0, 3	194	0x15	R_SL_SEL0	H, 0, 2	255
0x35	A_UP_CTRL3[ST/Up]	H, 0, 3	202	0x15	R_SL_SEL1	H, 0, 2	256
0x1B	R_BERT_WD_MD	Н, 0	284	0x15	R_SL_SEL7	H, 0, 2	256
0x28	R_CI_TX	H, 0, 2	267	0x10	R_SLOT	H, 0, 2	253
0x00	R_CIRM	H	305	0x12	R_SU_IRQMSK	H, 0, 3	309
0x02	R_CLK_CFG	Н	307	0x4D	R_SU_LED_CTRL	Н, 0	334
0x01	R_CTRL	Н	70	0x16	R_SU_SEL	H, 0, 3	193
0x0D	R_FIFO_MD	Н	135	0x17	R_SU_SYNC	H, 0, 3	266
0x0C	R_FIFO_THRES	H, 0, 1, 2, 3	134	0x1A	R_TI_WD	H, 0	311
0x0F	R_FIFO	H, 0, 1	137				
0x0B	R_FIRST_FIFO	H, 0, 1	133				
0x0F	R_FSM_IDX	H, 0, 1	137				
0x29	R_GCI_CFG0	H, 0, 2	268				
0x2A	R_GCI_CFG1	H, 0, 2	270				
0x4A	R_GPIO_EN0	H, 0	332				
0x42	R_GPIO_EN1	H, 0	329				
0x47	R_GPIO_EN2	H, 0	330				
0x48	R_GPIO_OUT0	H, 0	331				
0x40	R_GPIO_OUT1	H, 0	328				
0x45	R_GPIO_OUT2	H, 0	330				
0x44	R_GPIO_SEL_BL	H, 0	329				
0x4C	R_GPIO_SEL	H, 0	333				
0x13	R_IRQ_CTRL	H, 0	310				
0x11	R_MISC_IRQMSK	H	308				
0x2B	R_MON_TX	H, 0, 2	270				
0x15	R_MSS0	H, 0, 2	257				
0x15	R_MSS1	H, 0, 2	263				

Read only registers:

Read/Write registers:

Address	Name	Reset group	Page
0x3C	A_B1_RX[ST/Up]	_	215
0x3D	A_B2_RX[ST/Up]	_	216
0x3E	A_D_RX[ST/Up]	_	217
0x3F	A_E_RX[ST/Up]	_	218
0x0C	A_F1[FIFO]	H, 0, 1	138
0x0D	A_F2[FIFO]	H, 0, 1	139
0x0E	A_FIFO_STA[FIFO]	H, 0, 1	140
0x34	A_MS_RX[ST/Up]	H, 0, 3	213
0x32	A_SU_DLYH[ST/Up]	_	212
0x31	A_SU_DLYL[ST/Up]	_	211
0x30	A_SU_RD_STA[ST/Up]	H, 0, 3	210
0x35	A_SU_STA[ST/Up]	H, 0, 3	214
0x14	A_USAGE[FIFO]	H, 0, 1	141
0x04	A_Z1[FIFO]	H, 0, 1	138
0x06	A_Z2[FIFO]	H, 0, 1	138
0x13	R_AF0_OVIEW	H, 0, 3	209
0x1B	R_BERT_ECH	H, 0, 1	286
0x1A	R_BERT_ECL	H, 0, 1	285
0x17	R_BERT_STA	H, 0, 1	285
0x16	R_CHIP_ID	Н	72
0x1F	R_CHIP_RV	Н	72
0x28	R_CI_RX	_	272
0x19	R_F0_CNTH	H, 0, 1	271
0x18	R_F0_CNTL	H, 0, 1	271
0x20	R_FIFO_BL0_IRQ	H, 0, 1	318
0x21	R_FIFO_BL1_IRQ	H, 0, 1	319
0x22	R_FIFO_BL2_IRQ	H, 0, 1	320
0x23	R_FIFO_BL3_IRQ	H, 0, 1	321
0x24	R_FILL_BL0	H, 0, 1	141
0x25	R_FILL_BL1	H, 0, 1	142
0x26	R_FILL_BL2	H, 0, 1	143
0x27	R_FILL_BL3	H, 0, 1	144
0x29	R_GCI_STA	H, 0, 2	273
0x48	R_GPIO_IN0	_	336
0x40	R_GPIO_IN1	_	335
0x45	R_GPIO_IN2	_	335
0x88	R_INT_DATA	_	73
0x10	R_IRQ_OVIEW	H, 0, 1	313
0x11	R_MISC_IRQ	H, 0, 1	315
0x2A	R_MON_RX	_	273
0x50	R_PLL_STA	Н	321
0x15	R_RAM_USE	_	72
0x1D	R_SL_MAX	_	271
0x1C	R_STATUS	H, 0, 3	317
0x12	R_SU_IRQ	H, 0	316

Address	Name	Reset group	Page
0xF4	A_CH_MSK[FIFO]	H, 0, 1	146
0xFC	A_CHANNEL[FIFO]	H, 0, 1	150
0xFA	A_CON_HDLC[FIFO]	H, 0, 1	147
0xFF	A_FIFO_CTRL[FIFO]	H, 0, 1	152
0x84	A_FIFO_DATA_NOINC[F	IFO]–	145
0x80	A_FIFO_DATA[FIFO]	_	145
0xFD	A_FIFO_SEQ[FIFO]	H, 0, 1	151
0xD0	A_SL_CFG[SLOT]	H, 0, 2	274
0xFB	A_SUBCH_CFG[FIFO]	H, 0, 1	149
0x52	R_PLL_N	Н	322
0x51	R_PLL_P	Н	322
0x53	R_PLL_S	Н	322
0xC0	R_RAM_DATA	_	74

Registers sorted by address

Reset group: H = Hardware reset

0 = Global software reset

1 = HFC reset 2 = PCM reset

3 = Line interface reset

See Table 9.4 on page 298 for a detailed reset group explanation.

Please note!

See explanation of register types on page 21.

Write only registers:				Address	Name	Reset group	Page
		Dogat		0x33	A_SU_CTRL2[ST/Up]	H, 0, 3	198
Address	Name	Reset group	Page	0x34	$A_MS_TX[ST/Up]$	H, 0, 3	200
0x00	R_CIRM	Н	305	0x35	A_ST_CTRL3[ST/Up]	H, 0, 3	201
0x00	R_CTRL	H	70	0x35	A_UP_CTRL3[ST/Up]	H, 0, 3	202
0x01 0x02	R_CLK_CFG	Н	307	0x36	$A_MS_DF[ST/Up]$	H, 0, 3	204
0x02 0x08	R_RAM_ADDR	H, 0	71	0x37	A_SU_CLK_DLY[ST/Up]	H, 0, 3	205
0x09	R_RAM_CTRL	H, 0	71	0x38	R_PWM0	H, 0	277
0x0B	R_FIRST_FIFO	H, 0, 1	133	0x39	R_PWM1	H, 0	278
0x0C	R_FIFO_THRES	H, 0, 1, 2, 3	134	0x3C	A_B1_TX[ST/Up]	_	206
0x0D	R_FIFO_MD	H	135	0x3D	A_B2_TX[ST/Up]	_	206
0x0E	A_INC_RES_FIFO[FIFO]		136	0x3E	A_D_TX[ST/Up]	_	207
0x0F	R_FSM_IDX	H, 0, 1	137	0x3F	A_BAC_S_TX[ST/Up]	_	208
0x0F	R_FIFO	H, 0, 1	137	0x40	R_GPIO_OUT1	H, 0	328
0x10	R_SLOT	H, 0, 2	253	0x42	R_GPIO_EN1	H, 0	329
0x11	R_MISC_IRQMSK	Н	308	0x44	R_GPIO_SEL_BL	H, 0	329
0x12	R_SU_IRQMSK	H, 0, 3	309	0x45	R_GPIO_OUT2	H, 0	330
0x13	R_IRQ_CTRL	Н, 0	310	0x46	R_PWM_MD	H, 0	278
0x14	R_PCM_MD0	H, 0, 2	254	0x47	R_GPIO_EN2	H, 0	330
0x15	R_MSS0	H, 0, 2	257	0x48	R_GPIO_OUT0	H, 0	331
0x15	R_MSS1	H, 0, 2	263	0x4A	R_GPIO_EN0	H, 0	332
0x15	R_PCM_MD1	H, 0, 2	259	0x4C	R_GPIO_SEL	H, 0	333
0x15	R_PCM_MD2	H, 0, 2	261	0x4D	R_SU_LED_CTRL	H, 0	334
0x15	R_SH0H	H, 0, 2	264	0x50	R_PLL_CTRL	Н	312
0x15	R_SH1H	H, 0, 2	265				
0x15	R_SH0L	H, 0, 2	264				
0x15	R_SH1L	H, 0, 2	264				
0x15	R_SL_SEL0	H, 0, 2	255				
0x15	R_SL_SEL1	H, 0, 2	256				
0x15	R_SL_SEL7	H, 0, 2	256				
0x16	R_SU_SEL	H, 0, 3	193				
0x17	R_SU_SYNC	H, 0, 3	266				
0x1A	R_TI_WD	H, 0	311				
0x1B	R_BERT_WD_MD	H, 0	284				
0x1E	R_PWM_CFG	H, 0	277				
0x28	R_CI_TX	H, 0, 2	267				
0x29	R_GCI_CFG0	H, 0, 2	268				
0x2A	R_GCI_CFG1	H, 0, 2	270				
0x2B	R_MON_TX	H, 0, 2	270				
0x30	A_SU_WR_STA[ST/Up]	H, 0, 3	194				
0x31	A_SU_CTRL0[ST/Up]	H, 0, 3	195				
0x32	A_SU_CTRL1[ST/Up]	H, 0, 3	197				

Read only registers:

Read/Write registers:

Address	Name	Reset group	Page
0x04	A_Z1[FIFO]	H, 0, 1	138
0x06	A_Z2[FIFO]	H, 0, 1	138
0x0C	A_F1[FIFO]	H, 0, 1	138
0x0D	A_F2[FIFO]	H, 0, 1	139
0x0E	A_FIFO_STA[FIFO]	H, 0, 1	140
0x10	R_IRQ_OVIEW	H, 0, 1	313
0x11	R_MISC_IRQ	H, 0, 1	315
0x12	R_SU_IRQ	H, 0	316
0x13	R_AF0_OVIEW	H, 0, 3	209
0x14	A_USAGE[FIFO]	H, 0, 1	141
0x15	R_RAM_USE	_	72
0x16	R_CHIP_ID	Н	72
0x17	R_BERT_STA	H, 0, 1	285
0x18	R_F0_CNTL	H, 0, 1	271
0x19	R_F0_CNTH	H, 0, 1	271
0x1A	R_BERT_ECL	H, 0, 1	285
0x1B	R_BERT_ECH	H, 0, 1	286
0x1C	R_STATUS	H, 0, 3	317
0x1D	R_SL_MAX	_	271
0x1F	R_CHIP_RV	Н	72
0x20	R_FIFO_BL0_IRQ	H, 0, 1	318
0x21	R_FIFO_BL1_IRQ	H, 0, 1	319
0x22	R_FIFO_BL2_IRQ	H, 0, 1	320
0x23	R_FIFO_BL3_IRQ	H, 0, 1	321
0x24	R_FILL_BL0	H, 0, 1	141
0x25	R_FILL_BL1	H, 0, 1	142
0x26	R_FILL_BL2	H, 0, 1	143
0x27	R_FILL_BL3	H, 0, 1	144
0x28	R_CI_RX	_	272
0x29	R_GCI_STA	H, 0, 2	273
0x2A	R_MON_RX	_	273
0x30	A_SU_RD_STA[ST/Up]	H, 0, 3	210
0x31	A_SU_DLYL[ST/Up]	_	211
0x32	$A_SU_DLYH[ST/Up]$	_	212
0x34	$A_MS_RX[ST/Up]$	H, 0, 3	213
0x35	$A_SU_STA[ST/Up]$	H, 0, 3	214
0x3C	A_B1_RX[ST/Up]	_	215
0x3D	$A_B2_RX[ST/Up]$	_	216
0x3E	A_D_RX[ST/Up]	_	217
0x3F	A_E_RX[ST/Up]	-	218
0x40	R_GPIO_IN1	_	335
0x45	R_GPIO_IN2	-	335
0x48	R_GPIO_IN0	-	336
0x50	R_PLL_STA	Н	321
0x88	R_INT_DATA	_	73

Address	Name	Reset group	Page
0x51	R_PLL_P	Н	322
0x52	R_PLL_N	Н	322
0x53	R_PLL_S	Н	322
0x80	A_FIFO_DATA[FIFO]	_	145
0x84	A_FIFO_DATA_NOINC[F	IFO]–	145
0xC0	R_RAM_DATA	_	74
0xD0	A_SL_CFG[SLOT]	H, 0, 2	274
0xF4	A_CH_MSK[FIFO]	H, 0, 1	146
0xFA	A_CON_HDLC[FIFO]	H, 0, 1	147
0xFB	A_SUBCH_CFG[FIFO]	H, 0, 1	149
0xFC	A_CHANNEL[FIFO]	H, 0, 1	150
0xFD	A_FIFO_SEQ[FIFO]	H, 0, 1	151
0xFF	A_FIFO_CTRL[FIFO]	H, 0, 1	152

About this data sheet and Cologne Chip technical support

This data sheet covers all the features of XHFC-2SU. The reader who absorbs the information in this data sheet will gain a deep and broad understanding of XHFC-2SU microchip.

However, the hurried reader needs not to read the complete data sheet. Every chapter comprises just one topic. What's not needed in the focus of a target application can be skipped over while reading this data sheet.

Organization of this data sheet

Chapters start with a short overview. They typically contain both the electrical description and the programming features of the corresponding subject. Finally, chapters end with a register description.

Links between chapters are mentioned in the text.

Development tools

Driver software plays an important role in all ISDN projects. For this reason we offer more than the hardware:

- An evaluation board of XHFC-2SU is available. This can be connected to the target microprocessor system via a flat ribbon cable. It is planned to make the evaluation board accessible via a PCI bridge board to a standard PC environment.
- A demo layer 1 driver as source code as well as open-source (GPL) Linux drivers are available.
- There are also header files with all registers and their bitmaps available for programming language C. Please ask the Cologne Chip support team for more information and file delivery.

Visit our web site

Our web site (http://www.colognechip.com) contains a download area for all Cologne Chip data sheets. Additional information is given concerning transformers, drivers etc. on the website, too.

By having broad knowledge about ISDN applications, Cologne Chip supports any project individually. Please contact our support team.

Chapter overview

- **Chapter "General description"** (1) begins with an overview to XHFC-2SU, especially general block diagrams and a feature list. Pinout diagrams for the different microprocessor bus interfaces and a detailed list of all pins complete this chapter.
- Chapter "Microprocessor bus interface": (2) XHFC-2SU supports several processor interfaces which are explained in this chapter. This includes signal and timing characteristics as well as register access explanation and typical connection circuitries. (Separated inferface modes, read only the section which deals with the interface mode of your interest, prerequisite knowledge of the chosen interface mode is strongly recommended.)
- **Chapter "XHFC-2SU data flow"** (3) starts with the data processing explanation. This chapter deals with the data flow concept which connects all the data interfaces that are explained in the following chapters. (It is recommended to have at least a basic comprehension to this topic, as it connects several important parts of XHFC-2SU.)
- **Chapter "FIFO handling and HDLC controller"** (4) covers the host side of the data flow. This includes both the HDLC controller and the FIFOs. (Should be read because FIFOs and the HDLC controller is typically used in every application.)
- **Chapter "Universal ISDN Port":** (5) XHFC-2SU has two line interfaces which can be configured either in S/T or U_p mode. This chapter explains the data structures, clock synchronization and external circuitries. (The most important interface, should be read, prerequisite knowledge of ISDN protocol is strongly recommended.)
- **Chapter "PCM interface":** (6) The last interface which deals with the data flow described in chapter 3 is the PCM interface. Beneath other, an important topic of this chapter are synchronization features of XHFC-2SU. (Read only when used, but don't skip the overview in this chapter even if the PCM interface is not used!)
- **Chapter "Pulse width modulation (PWM) outputs":** (7) This chapter can be skipped if the PWM interface is not used.
- **Chapter "Bit Error Rate Test (BERT)":** (8) This chapter can be skipped if the BERT functionality is not used.
- **Chapter "Clock, PLL, reset, interrupt, timer and watchdog"** (9) explains clock generation and distribution, PLL programming, reset functions and interrupt capabilities. (Must be read.)
- **Chapter "Electrical characteristics":** (11) Some information about the electrical characteristics of XHFC-2SU are given in this chapter. (Information for hardware design.)
- **Chapter "XHFC-2SU package dimensions"** (12) shows the XHFC-2SU package dimensions. (Information for hardware design.)

General remarks to notations

- 1. The decimal point is written as a point (e.g. 1.23). Thousands separators are written with thin space.
- 2. Numerical values have different notations for various number systems; e.g. the hexadecimal value 0xC9 is '1100 1001' in binary and 201 in decimal notation.
- 3. The prefix 'kilo' is written k for the meaning of 1000 and it is written K for the meaning of 1024.
- 4. The first letter of register names indicates the type: 'R_ ...' is a register or multi-register, while 'A_ ...' is an array register.

Chapter 1

General description

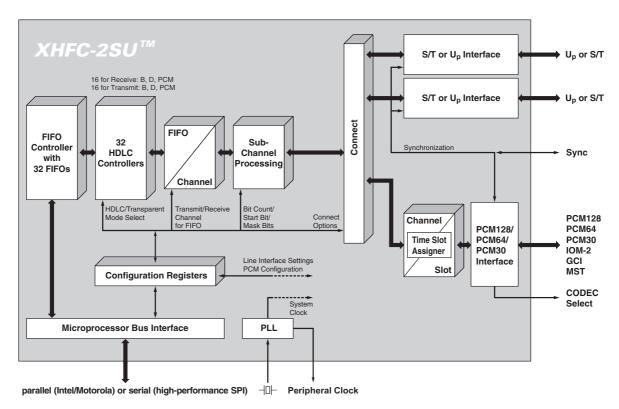


Figure 1.1: XHFC-2SU block diagram

1.1 System overview

XHFC-2SU is a ISDN transceiver chip for two ISDN S/T or U_{pN}/U_{p0}^{-1} Basic Rate Interfaces with integrated HDLC controllers for all kinds of BRI equipment, such as

- VoIP gateways / VoIP routers
- Integrated Access Devices (IAD)
- ISDN SOHO PABX
- ISDN phones / system phones
- ISDN least cost routers
- ISDN LAN routers
- ISDN test equipment
- Call recording
- S/T-to-U_p converters (private NTs)
- U_p repeaters

The integrated microprocessor bus interface of XHFC-2SU can be configured to 8 bit parallel microprocessor interface or serial processor interface (SPI). A PCM128 / PCM64 / PCM30 interface for CODEC or inter-chip connection is also integrated. The deep FIFOs of XHFC-2SU are realized with an internal SRAM.

 $^{^{1}}U_{pN}\,/\,U_{p0}$ in the following referred to as $U_{p}.$

1.2 Features

Line interfaces

- 2 ISDN interfaces, both selectable as S/T or U_{pN}/U_{p0} interfaces (Universal ISDN Ports)
- S/T ISDN interfaces in TE and NT mode conform to ITU-T I.430 and TBR 3 [9, 4]
- U_p signal range exceeding U_{pN} / U_{p0} specification [3]
- Simple external line interface circuitry

HDLC-controller and FIFO controller

- Universal HDLC controller for all B-, D- and E-channels, can also be used for PCM time slots
- Transparent mode and data rate independently selectable for all FIFOs
- Up to 16 FIFOs for transmit and receive data each, FIFO size configurable from 64 up to 256 bytes per FIFO, maximum 7 HDLC frames per FIFO
- B- and D-channels can be combined for higher data rate to 128 kBit/s (2B) or 144 kBit/s (2B+D) per line interface
- Bit Error Rate Test (BERT) with transmitter and receiver
- Programmable data flow to connect FIFOs, ST/U_p interfaces and PCM time slotswith each other

PCM interface

- PCM128 / PCM64 / PCM30 interface configurable to MST (MVIP)² or Siemens IOMTM-2 and Motorola GCI (monitor and C/I-channel support) for interchip connection or external CODECs
- Programmable PCM time slot assigner for 16 channels in transmit and receive direction each (switch matrix for PCM)
- H.100 data rate supported on PCM bus
- Flexible PCM synchronization options implemented, synchronization input and output signals available

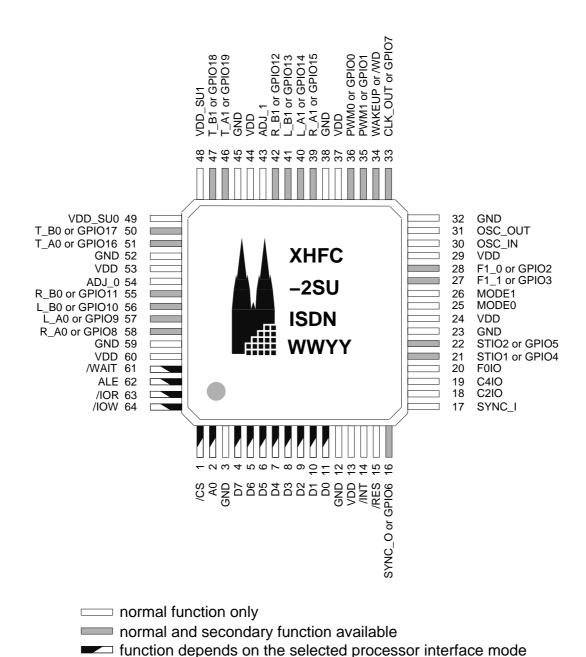
Microprocessor bus interface

- Improved 8 bit parallel microprocessor interface compatible to Motorola bus and Siemens / Intel bus, multiplexed and non-multiplexed modes supported
- High performance serial processor interface (SPI), up to 16 XHFC devices addressable with one /SPISEL signal
- Auto-configure mode for repeater applications without microcontroller (only external EEPROM needed)

Miscelleanous features

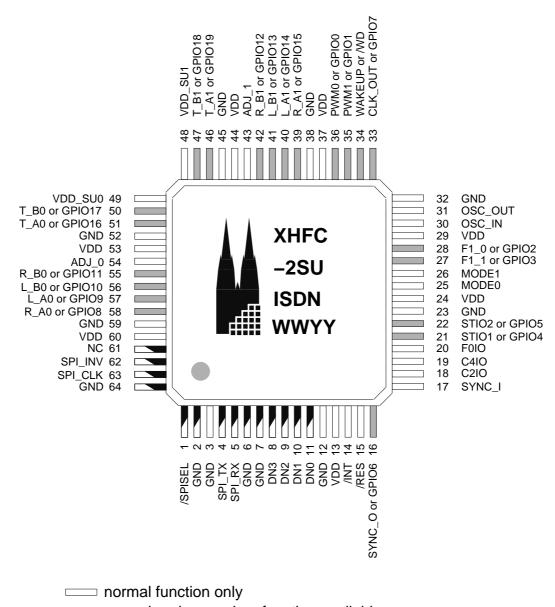
- Flexible interrupt controller, timer and watchdog with interrupt capability
- Programmable PLL with big range of clock frequencies for general purpose usage (can also be used to generate the internal system clock)
- 6 GPIO pins can be used instead of every unused line interface, further 8 GPIOs can be enabled separately as second pin function
- 2 general purpose pulse width modulators (PWM) with dedicated output pins

Technology features


- Single 3.3 V power supply, CMOS technology 3.3 V, 5 V tolerant on nearly all inputs
- LQFP 64 package, 0.5 mm pin pitch
- RoHS compliant

June 2012 Data Sheet 33 of 367

1.3 Pin description


1.3.1 Pinout diagram

NC pins must not be connected

Figure 1.2: XHFC-2SU pinout in parallel processor interface mode

- normal and secondary function available
- function depends on the selected processor interface mode

NC pins must not be connected

Figure 1.3: XHFC-2SU pinout in serial processor interface mode

1.3.2 Pin list

Pin	Function	Name	I/O (type)	Description	$\mathbf{U}_{in}/\mathbf{V}$	I_{out}/mA
1	Processor SPI	/CS /SPISEL	I (2 #) I (2 #)	Chip select, active low SPI device select, active low	TTL TTL	
2	Processor SPI	A0 GND	I (2 #)	Address Ground	TTL	
3		GND		Ground		
4	Processor SPI	D7 SPI_TX	IO (1 #) O (1)	Data bit 7 SPI transmit data output	TTL	8 mA 8 mA
5	Processor SPI	D6 SPI_RX	IO (1 #) I (1 #)	Data bit 6 SPI receive data input	TTL TTL	8 mA
6	Processor SPI	D5 GND	IO (1 #)	Data bit 5 Ground	TTL	8 mA
7	Processor SPI	D4 GND	IO (1 #)	Data bit 4 Ground	TTL	8 mA
8	Processor SPI	D3 DN3	IO (1 #) I (1 #)	Data bit 3 SPI device number, bit 3	TTL TTL	8 mA
9	Processor SPI	D2 DN2	IO (1 #) I (1 #)	Data bit 2 SPI device number, bit 2	TTL TTL	8 mA
10	Processor SPI	D1 DN1	IO (1 #) I (1 #)	Data bit 1 SPI device number, bit 1	TTL TTL	8 mA
11	Processor SPI	D0 DN0	IO (1 #) I (1 #)	Data bit 0 SPI device number, bit 0	TTL TTL	8 mA
			M	liscellaneous		
12		GND		Ground		
13		VDD		+3.3 V power supply		
14		/INT	Ood#	Interrupt request pin, active low/high programmable		8 mA
15		/RES	Isch#	Reset input pin, active low	TTL	
			PC	CM interface		
16	1st function 2nd function	SYNC_O GPIO6	IO (1 #) IO (1 #)	Synchronization output General purpose I/O pin 6	TTL TTL	8 mA 8 mA
17		SYNC_I	I (2 #)	Synchronization input	TTL	
					(continued o	on next page)

36 of 367 Data Sheet June 2012

(continued from previous page)

Pin	Function	Name	I/O (type)	Description	$\mathbf{U}_{\mathrm{in}}/\mathbf{V}$	I_{out}/mA
18		C2IO	IOpu#	PCM bit clock	TTL	8 mA
19		C4IO	IOpu#	PCM double bit clock	TTL	8 mA
20		F0IO	IOpu#	PCM frame clock (8 kHz)	TTL	8 mA
21	1st function	STIO1	IOpu#	PCM data line 1, I or O per time slot	TTL	8 mA
	2nd function	GPIO4	IOpu#	General purpose I/O pin 4	TTL	8 mA
22	1st function	STIO2	IOpu#	PCM data line 2, I or O per time slot	TTL	8 mA
	2nd function	GPIO5	IOpu#	General purpose I/O pin 5	TTL	8 mA
23		GND		Ground		
24		VDD		+3.3 V power supply		
25		MODE0	I (2 #)	Interface mode pin 0	TTL	
26		MODE1	I (2 #)	Interface mode pin 1	TTL	
27	1st function	F1_1	O (1)	Enable signal for external CODEC 1		8 mA
	2nd function	GPIO3	IO (1 #)	General purpose I/O pin 3	TTL	8 mA
28	1st function	F1_0	O (1)	Enable signal for external CODEC 0		8 mA
	2nd function	GPIO2	IO (1 #)	General purpose I/O pin 2	TTL	8 mA
				Clock		
29		VDD		+3.3 V power supply		
30		OSC_IN	I (4)	Oscillator input signal	Oscillator	
31		OSC_OUT	O (3)	Oscillator output signal		Oscillator
32		GND		Ground		
33	1st function	CLK_OUT	0 (1)	Clock output signal		8 mA
	2nd function	GPIO7	IO (1 #)	General purpose I/O pin 7	TTL	8 mA
			M	iscellaneous		
34	1st function	WAKEUP	I (1 #)	Wakeup input pin for external awake circuitry	TTL	
	2nd function	/WD	Ood#	Watchdog output signal	TTL	
35	1st function 2nd function	PWM1 GPIO1	O (1) IO (1 #)	Pulse width modulator output 1 General purpose I/O pin 1	TTL	8 mA 8 mA
36	1st function 2nd function	PWM0 GPIO0	O (1) IO (1 #)	Pulse width modulator output 0 General purpose I/O pin 0	TTL	8 mA 8 mA
-					/ · · · 1	

(continued on next page)

(continued from previous page)

Pin	Function	Name	I/O (type)	Description	$\mathbf{U}_{in}/\mathbf{V}$	I_{out}/mA
37		VDD		+3.3 V power supply		
38		GND		Ground		
			Unive	ersal ISDN Ports		
39	1st function	R_A1	I (3)	Combined ST/Up interface no. 1 receive input A	S/T / Up	
	2nd function	GPIO15	IO (3)	General purpose I/O pin 15	TTL	3 mA
40	1st function	L_A1	I (3)	Combined ST/Up interface no. 1 level detect A	S/T / Up	
	2nd function	GPIO14	IO (3)	General purpose I/O pin 14	TTL	3 mA
41	1st function	L_B1	I (3)	Combined ST/Up interface no. 1 level detect B	S/T / Up	
	2nd function	GPIO13	IO (3)	General purpose I/O pin 13	TTL	3 mA
42	1st function	R_B1	I (3)	Combined ST/Up interface no. 1 receive input B	S/T / Up	
	2nd function	GPIO12	IO (3)	General purpose I/O pin 12	TTL	3 mA
43		ADJ_1	Ood#	Combined ST/Up interface no. 1 level generator		2 mA
44		VDD		+3.3 V power supply		
45		GND		Ground		
46	1st function	T_A1	O (2)	Combined ST/Up interface no. 1 transmit output A		S/T / Up
	2nd function	GPIO19	IO (3)	General purpose I/O pin 19	TTL	16 mA
47	1st function	T_B1	O (2)	Combined ST/Up interface no. 1 transmit output B		S/T / Up
	2nd function	GPIO18	IO (3)	General purpose I/O pin 18	TTL	16 mA
48		VDD_SU1		Power supply for ST/Up interface no. 1		
49		VDD_SU0		Power supply for ST/Up interface no. 0		
50	1st function	T_B0	O (2)	Combined ST/Up interface no. 0 transmit output B		S/T / Up
	2nd function	GPIO17	IO (3)	General purpose I/O pin 17	TTL	16 mA
51	1st function	T_A0	O (2)	Combined ST/Up interface no. 0 transmit output A		S/T / Up
	2nd function	GPIO16	IO (3)	General purpose I/O pin 16	TTL	16 mA
52		GND		Ground		
53		VDD		+3.3 V power supply		

(continued on next page)

General description

(continued from previous page)

2nd 56 1st 2nd 57 1st 2nd	t function ad function t function ad function t function	ADJ_0 R_B0 GPIO11 L_B0 GPIO10	Ood # I (3) IO (3) I (3)	Combined ST/Up interface no. 0 level generator Combined ST/Up interface no. 0 receive input B General purpose I/O pin 11 Combined ST/Up interface	S/T / Up	2 mA
2nd 56 1st 2nd 57 1st 2nd	t function d function	GPIO11 L_B0	IO (3)	no. 0 receive input B General purpose I/O pin 11	TTL	3 mA
56 1st 2nd 57 1st 2nd	t function	L_B0				3 mA
2nd 57 1st 2nd	d function		I (3)	Combined ST/Up interface		
57 1st		GPIO10		no. 0 level detect B	S/T / Up	
2ne	t function		IO (3)	General purpose I/O pin 10	TTL	3 mA
-		L_A0	I (3)	Combined ST/Up interface no. 0 level detect A	S/T / Up	
58 1st	d function	GPIO9	IO (3)	General purpose I/O pin 9	TTL	3 mA
	t function	R_A0	I (3)	Combined ST/Up interface no. 0 receive input A	S/T / Up	
2ne	d function	GPIO8	IO (3)	General purpose I/O pin 8	TTL	3 mA
59		GND		Ground		
60		VDD		+3.3 V power supply		
			Micropro	cessor bus interface		
61 Pro	ocessor	/WAIT	Ood#	Wait signal for external processor, active low		8 mA
SP	PI	NC		Must not be connected		
62 Pro	ocessor	ALE	I (2 #)	Address latch enable (only in multiplexed modes)	TTL	
SP	PI	SPI_INV	I (2 #)	Invert SPI clock	TTL	
63 Pro	ocessor	/IOR	I (2 #)	Read enable	TTL	
SP	ΡΙ	SPI_CLK	I (2 #)	SPI clock input	TTL	
64 Pro	ocessor	/IOW GND	I (2 #)	Write enable Ground	TTL	

Legend:	IO (1 #)	Bidirectional pin, input 5 V tolerant, 9 pF pin capacitance
	IO (3)	Bidirectional pin
	IOpu#	Bidirectional pin with internal pull-up resistor of $110 \mathrm{k}\Omega$ typical to VDD, input 5 V tolerant, 9 pF pin capacitance
		5 * tolerand, 5 pr pm capacitance
	I (1 #)	Input pin, 5 V tolerant, 9 pF pin capacitance
	I (2 #)	Input pin, 5 V tolerant, 3 pF pin capacitance
	I (3)	Line interface input pin
	I (4)	Oscillator input pin, 12 pF pin capacitance
	Isch #	Schmitt Trigger input pin, 5 V tolerant, 9 pF pin capacitance
	O(1)	Output pin, 9 pF pin capacitance
	O(2)	Line interface output pin
	O (3)	Oscillator output pin, 10 pF pin capacitance
	Ood#	Output pin with open drain, 5 V tolerant, 9 pF pin capacitance
	NC	Must not be connected

Pins with 5 V tolerant input are marked with #.

Unused input pins should be connected to ground.

Unused I/O pins should be connected with pull-down resistor to ground. It is recommended to use a maximum of $22\,k\Omega$ for pins with internal pull-up resistor and a maximum of $100\,k\Omega$ for pins without internal pull-up resistor.

Chapter 2

Microprocessor bus interface

Table 2.1: Overview of the XHFC-2SU bus interface registers

Write only	y registers:		Read only	registers:	
Address	Name	Page	Address	Name	Page
0x01	R_CTRL	70	0x15	R_RAM_USE	72
0x08	R_RAM_ADDR	71	0x16	R_CHIP_ID	72
0x09	R_RAM_CTRL	71	0x1F	R_CHIP_RV	72
			0x88	R_INT_DATA	73
			Read/write registers:		
			Address	Name	Page
			0xC0	R_RAM_DATA	74

2.1 Mode selection

XHFC-2SU has an integrated microprocessor bus interface which can be configured as parallel 8 bit microprocessor interface and serial processor interface (SPI). Table 2.2 shows how to select these bus modes via the two pins MODE0 and MODE1.

Table 2.2: Microprocessor access types

Bus mode	MODE1	MODE0	
Serial processor interface (SPI)	0	0	
Parallel processor interface		_	
Modes 2 and 2m: Motorola	0	1	
Modes 3 and 3m: Intel	1	0	
Auto-EEPROM mode	1	1	

The Auto-EEPROM mode lets XHFC-2SU operate without an external microprocessor. The complete setup procedure can be stored in an external EEPROM. This mode is useful for applications that do not need a microprocessor intervention during operation (i.e. only static initialization required), e.g. U_p repeater applications.

The mode selection pins MODE0 and MODE1 must be stable during hardware reset. Sections 2.2 to 2.4 explain how to use XHFC-2SU in the different bus modes.

2.2 Parallel processor interface

Table 2.3: Overview of the parallel processor interface pins

Number	Name	Description
14	/INT	Interrupt request pin, active low/high programmable
15	/RES	Reset input pin, active low
25	MODE0	Interface mode pin 0
26	MODE1	Interface mode pin 1
61	/WAIT	Wait signal for external processor, active low
62	ALE	Address latch enable (only in multiplexed modes)
63	/IOR	Read enable
64	/IOW	Write enable
1	/CS	Chip select, active low
2	A0	Address
114	D0D7	

2.2.1 Overview

XHFC-2SU has four different parallel microprocessor interface modes. According to the name conventions of other Cologne Chip products (HFC series) the non-multiplexed processor interface modes are numbered 2 and 3 like shown in Table 2.4. The corresponding multiplexed modes are named 2m and 3m.¹

The interface mode is determined with power-on. For the non-multiplexed modes 2 and 3, the ALE pin must be stable after reset and should be fixed to ground.

Multiplexed modes are selected after reset with the first rising edge of ALE. XHFC-2SU then switches permanently from mode 2 into mode 2m or from mode 3 into mode 3m respectively. XHFC-2SU cannot switch to multiplexed modes before end of reset time. Rising and falling edges of ALE are ignored during reset time.

2.2.2 Interface signals

The processor interface signals have different names for Motorola and Intel microprocessors. Table 2.5 shows the mapping with the pin names of XHFC-2SU.

¹Mode 3m is formerly known as mode 4 from previous chips of the HFC series.

 Table 2.4: Parallel processor interface mode selection

Pin	Mode 2 Motorola	Mode 3 Intel	Mode 2m Motorola	Mode 3m Intel	
	Non-multiplexed		Multiplexed		
MODE0	1	0	1	0	
MODE1	0	1	0	1	
ALE	0 *1	0 *1	√ *2	」 □ *2	

^{*1:} This pin should be fixed to ground

Table 2.5: Pins and signal names of the parallel processor interface modes

XHFC-2SU pins		Signal names					
Number	Name	Mode 2 Mode 3 Motorola Intel		Mode 2m Motorola	Mode 3m Intel		
		Non-multiplexed	Non-multiplexed	Multiplexed	Multiplexed		
1	/CS	/CS	/CS	/CS	/CS		
63	/IOR	/DS	/RD	/DS	/RD		
64	/IOW	R/W	/WR	R/W	/WR		
62	ALE	'0'	'0'	ALE	ALE		
2	A0	A0	A0	'0'	'0'		
411	D7D0	D7D0	D7D0	AD7AD0	AD7 AD0		

2.2.3 Register access

2.2.3.1 Non-multiplexed/multiplexed access

Non-multiplexed modes: With this indirect addressing method, modes 2 and 3, A0 is the address input line. A0 = '0' is used for data write and read, while A0 = '1' is used for address write and read-back accesses.

Both, register address and data, are transferred through the pins D7..D0 (D0 is LSB). The address must first be written on D7..D0 with A0='1'. Then data read or write can be performed with A0='0' on the same bus D7..D0. Several data accesses can be executed to the same register address without writing the address again. Access details are shown in the timing diagrams in Figures 2.1 and 2.2.

Multiplexed modes: Direct addressing is supported with the multiplexed modes 2m and 3m. These do not use A0 and require A0 = '0' all the time.

All registers can directly be accessed in multiplexed mode. ALE latches the register address. The multiplexed address and data bus is D7..D0 (D0 is LSB). Timing diagrams are shown in Figures 2.3 and 2.4.

^{*2: 1-}pulse latches register address

2.2.3.2 Read* access

Some registers must be read with an indirect method, the so-called Read* access (written as 'r*' characteristic in register tables). This refers to all readable registers in the address range 0xC0..0xFF, here called *target register*.

The Read* access performs two consecutive read accesses to XHFC-2SU:

- 1. First, a read access to the target register must be executed. The returned value is not the value of the register and must be ignored.
- 2. Then, the target register value can be read from register R_INT_DATA.

The Read* access is practical for the target registers R_RAM_DATA, A_SL_CFG, A_CH_MSK, A_CON_HDLC, A_SUBCH_CFG, A_CHANNEL, A_FIFO_SEQ and A_FIFO_CTRL. All other registers have a direct read access.

2.2.3.3 Register address read-back capability

When the non-multiplexed modes 2 and 3 are used, the address read access can be executed to readback the address of the currently selected register.

2.2.3.4 Problems with interrupts between address write and data read/write accesses

The register address read-back capability is useful for interrupt procedures, e.g., to save and restore the previous state:

This procedure is important to avoid data read or write to an unexpected register address after a register read or write access has been split by an interrupt service routine which executes any access to XHFC-2SU.

2.2.4 Signal and timing characteristics

Table 2.6 shows the interface signals for the different microprocessor interface modes. Timing characteristics are shown in Figures 2.1 and 2.2 for non-multiplexed modes 2 and 3. Figures 2.3 and 2.4 show multiplexed modes 2m and 3m timing characteristics. Please see Table 2.7 for a quick timing and symbol list finding.

2.2.4.1 Bus interface in mode 2 and mode 3 (non-multiplexed)

Read access

8 bit processors read data like shown in Figure 2.1. Timing values are listed in Table 2.8.

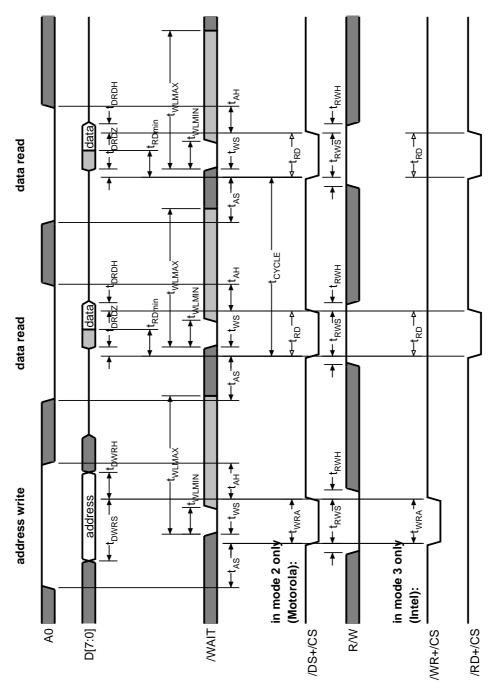


Figure 2.1: Bus interface read access in mode 2 (Motorola) and mode 3 (Intel)

Notes:

- (1) It is not necessary to use /WAIT if the processor is able to ensure the t_{CYCLE} timing constraint.
- (2) /WAIT signal is only active if the intervall of two consecutive data phases is less than t_{CYCLE} .
- (3) For faster access, it is recommended to set up a processor timing which does not require the /WAIT signal.

Table 2.6: Overview of accesses in parallel microprocessor interface mode (X = don't care)

/CS	/IOR (/DS, /RD)	/ IOW (R/W, /WR)	ALE	A0	Operation	Processor interface mode
1	X	X	X	X	no access	all
0	1	1	0	0	no access	all
0	0	1	0	1	read address	mode 2
0	0	0	0	1	write address	mode 2
0	0	1	0	0	read data	mode 2
0	0	0	0	0	write data	mode 2
0	0	1	0	1	read address	mode 3
0	1	0	0	1	write address	mode 3
0	0	1	0	0	read data	mode 3
0	1	0	0	0	write data	mode 3
0	0	1	*	0	read data	mode 2m
0	0	0	*	0	write data	mode 2m
0	0	1	*	0	read data	mode 3m
0	1	0	*	0	write data	mode 3m

^{*: 1-}pulse latches register address

Table 2.7: Timing diagrams of the parallel microprocessor interface

Mode	Access	Timing		Timin	g values
	type	Figure	on page	table	on page
2 & 3	read	2.1	46	2.8	48
2 & 3	write	2.2	49	2.9	50
2m & 3m	read	2.3	52	2.10	51
2m & 3m	write	2.4	54	2.11	53

Data can be read with ²

$$(/DS + /CS) = '0'$$
 and $R/W = '1'$.

in mode 2 (Motorola) or with

$$(/RD + /CS) = '0'$$
 and $/WR = '1'$

in mode 3 (Intel). The data bus is stable after $t_{\rm RD\,min}$ and returns into tristate after $t_{\rm DRDH}$. The address line A0 requires a setup time $t_{\rm AS}$. The hold time of this line is $t_{\rm AH}$.

 $^{^2}$ /DS + /CS means logical OR function of the two signals.

Table 2.8: Symbols of read accesses in Figure 2.1

Symbol	min / ns	max / ns	Characteristic
t_{AS}	20		
115			A0 valid to /DS+/CS (/WR+/CS) $\$ setup time
t_{AH}	0		Address hold time after /DS+/CS (/WR+/CS) \bot
$t_{ m WRA}$	20		Write time for address write
$t_{ m DWRS}$	25		Write data setup time to /DS+/CS (/WR+/CS) _
t_{DWRH}	0		Write data hold time from /DS+/CS (/WR+/CS) _
$t_{ m RD}$	25		Read time
$t_{ m CYCLE}$			/DS+/CS (/RD+/CS) $\$ to next /DS+/CS (/RD+/CS) $\$
	30		Register address range 0x000x7F
	$3.5 \cdot t_{\mathrm{SYS}}$		Register address range 0x800xFF
$t_{ m DRDZ}$	3		/DS+/CS (/RD+/CS) $\ \ \ \ \ \ \ \ \ \ \ \ $
t_{DRDH}	2	15	/DS+/CS (/RD+/CS)
t_{RWS}	2		R/W setup time to /DS+/CS \colongle (in mode 2 only)
$t_{\rm RWH}$	2		R/W hold time after /DS+/CS \(\subseteq \) (in mode 2 only)
$t_{ m WS}$		10	/WAIT turn on time to /DS+/CS or /WR+/CS $\$
$t_{ m WLMIN}$	0		Minimum /WAIT low time
$t_{ m WLMAX}$		$t_{ m CYCLE}$	Maximum /WAIT low time

The cycle time specifies the time between two consecutive data accesses. $t_{SYS} = 1/f_{SYS}$ with the system clock f_{SYS} .

Write access

8 bit processors write data like shown in Figure 2.2. Timing values are listed in Table 2.9.

Data is written with \bot of (/DS + /CS) in mode 2 (Motorola) or with \bot of (/WR + /CS) in mode 3 (Intel) respectively. XHFC-2SU requires a data setup time $t_{\rm DWRS}$ and a data hold time $t_{\rm DWRH}$.

The address line A0 requires a setup time t_{AS} which starts when the address signal is valid. The hold time is $t_{AH} \ge 0$ ns after address write access and it is $t_{AHD} \ge 0.5t_{SYS} + 9$ ns after data write access.³

³Please ask Cologne Chip's support team if the intended processor has problems with t_{AHD} (support@CologneChip.com).

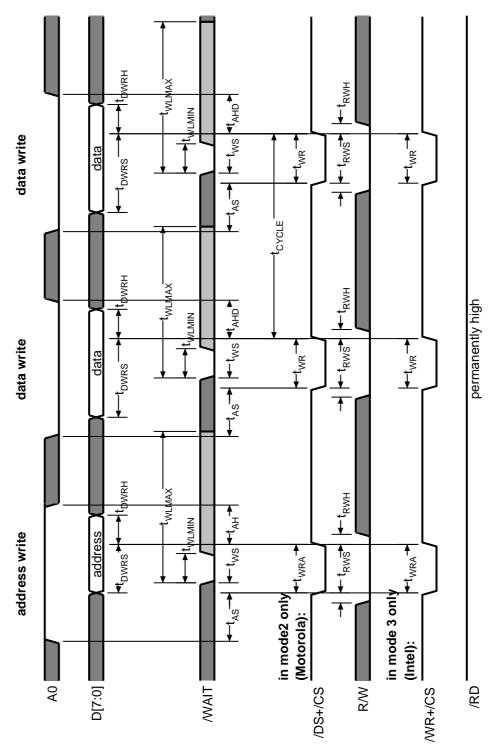


Figure 2.2: Bus interface write access in mode 2 (Motorola) and mode 3 (Intel)

Notes:

- (1) It is not necessary to use /WAIT if the processor is able to ensure the t_{CYCLE} timing constraint.
- (2) /WAIT signal is only active if the intervall of two consecutive data phases is less than t_{CYCLE} .
- (3) For faster access, it is recommended to set up a processor timing which does not require the /WAIT signal.

Table 2.9: Symbols of write accesses in Figure 2.2

Symbol	min / ns	max / ns	Characteristic
t_{AS}	20		
115			A0 valid to /DS+/CS (/WR+/CS) _ setup time
t_{AH}	0		Address hold time of address write access after /DS+/CS (/WR+/CS) \bot
$t_{ m AHD}$	$0.5 \cdot t_{\rm SYS} + 9$		Address hold time of data write access after /DS+/CS (/WR+/CS) _
$t_{ m WRA}$	20		Write time for address write
$t_{ m DWRS}$	20		Write data setup time to /DS+/CS (/WR+/CS) _
t_{DWRH}	0		Write data hold time from /DS+/CS (/WR+/CS) _
$t_{ m WR}$	20		Write time
$t_{ m CYCLE}$			/DS+/CS (/RD+/CS) \bot to next /DS+/CS (/RD+/CS) \bot
	$1.5 \cdot t_{\text{SYS}}$		Register address range 0x000x7F
	$3.5 \cdot t_{\mathrm{SYS}}$		Register address range 0x800xFF
$t_{ m RWS}$	2		R/W setup time to /DS+/CS \mathbb{L} (in mode 2 only)
t_{RWH}	2		R/W hold time after /DS+/CS _ (in mode 2 only)
$t_{ m WS}$		10	/WAIT turn on time to /DS+/CS or /WR+/CS _
$t_{ m WLMIN}$	0		Minimum /WAIT low time
$t_{\rm WLMAX}$		$t_{ m CYCLE}$	Maximum /WAIT low time

Table 2.10: Symbols of read accesses in Figure 2.3

Symbol	min / ns	max / ns	Characteristic
$t_{\rm AS}$	20		Address valid to ALE \(\setup \) setup time
t_{AH}	0		Address hold time after ALE \(
$t_{ m ALE}$	10		Address latch time
$t_{ m ALEL}$	0		
			ALE ☐ to /RD+/CS ☐
$t_{ m ALEH}$	0		/RD+/CS _ to ALE _
$t_{ m RD}$	25		Read time
$t_{ m CYCLE}$			/DS+/CS (/RD+/CS) $\$ to next /DS+/CS (/RD+/CS) $\$
	30		Register address range 0x000x7F
	$3.5 \cdot t_{\text{SYS}}$		Register address range 0x800xFF
$t_{ m DRDZ}$	3		/RD+/CS \tau to data buffer turn on time
t_{DRDH}	2	15	/RD+/CS _ to data buffer turn off time
t_{RWS}	2		R/W setup time to /DS+/CS \colongle (in mode 2 only)
t_{RWH}	2		R/W hold time after /DS+/CS
$t_{ m WS}$		10	/WAIT turn on time to /DS+/CS or /WR+/CS $\$
$t_{ m WLMIN}$	0		Minimum /WAIT low time
$t_{ m WLMAX}$		$t_{ m CYCLE}$	Maximum /WAIT low time

2.2.4.2 Bus interface in mode 2m and mode 3m (multiplexed)

Read access

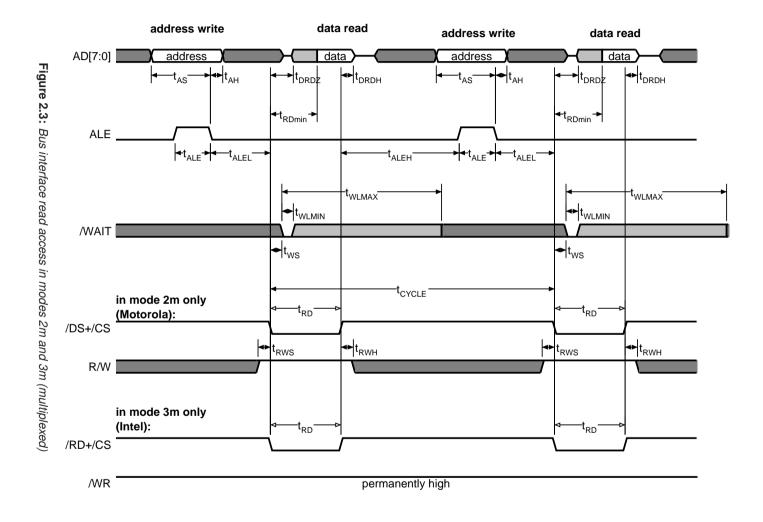
8 bit processors read data like shown in Figure 2.3. Timing values are listed in Table 2.10.

Data can be read with ⁴

$$(/DS + /CS) = '0'$$
 and $R/W = '1'$.

in mode 2m (Motorola) or with

$$/WR = '1'$$


in mode 3m (Intel). The data bus is stable after $t_{RD \, min}$ and returns into tristate after t_{DRDH} .

The address line A0 requires a setup time t_{AS} in relation to \top of ALE. The hold time of these lines is t_{AH} . If consecutive read accesses are on the same register address, multiple address write accesses are not required.

The cycle time specifies the time between two consecutive data accesses. $t_{SYS} = 1/f_{SYS}$ with the system clock f_{SYS} .

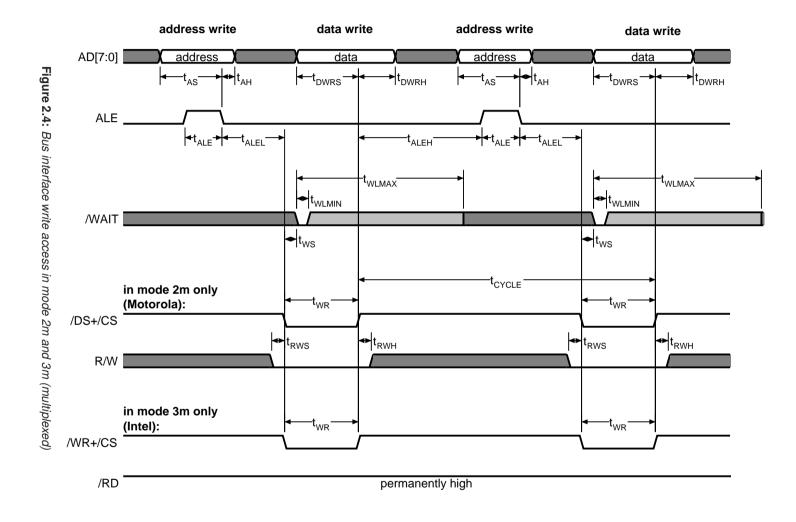
⁴/DS+/CS means logical OR function of the two signals.

XHFC-2SU

Data Sheet

Table 2.11: Symbols of write accesses in Figures 2.4

Symbol	min / ns	max / ns	Characteristic
$t_{ m AS}$	20		Address valid to ALE
t_{AH}	0		Address hold time after /WR+/CS _
$t_{ m ALE}$	10		Address latch time
$t_{ m ALEL}$	0		
			ALE ☐ to /WR+/CS ☐
$t_{ m ALEH}$	0		/WR+/CS _ to ALE _
$t_{ m DWRS}$	20		Write data setup time to /WR+/CS _
$t_{ m DWRH}$	0		Write data hold time from /WR+/CS _
$t_{ m WR}$	20		Write time
$t_{ m CYCLE}$			/DS+/CS (/WR+/CS) _ to next /DS+/CS (/WR+/CS) _
	$1.5 \cdot t_{\mathrm{SYS}}$		Register address range 0x000x7F
	$3.5 \cdot t_{\mathrm{SYS}}$		Register address range 0x800xFF
$t_{ m RWS}$	2		R/W setup time to /DS+/CS \colongle (in mode 2 only)
t_{RWH}	2		R/W hold time after /DS+/CS \(\subseteq \text{(in mode 2 only)} \)
$t_{ m WS}$		10	/WAIT turn on time to /DS+/CS or /WR+/CS $\$
$t_{ m WLMIN}$	0		Minimum /WAIT low time
$t_{ m WLMAX}$		$t_{ m CYCLE}$	Maximum /WAIT low time


Write access

8 bit processors write data like shown in Figure 2.4. Timing values are listed in Table 2.11.

Data is written with \Box of (/DS + /CS) in mode 2m (Motorola) or with \Box of (/WR + /CS) in mode 3m (Intel) respectively. XHFC-2SU requires a data setup time t_{DWRS} and a data hold time t_{DWRH} .

The address line A0 requires a setup time t_{AS} in relation to \top of ALE. The hold time of these lines is t_{AH} . If consecutive write accesses are on the same register address, multiple address write accesses are not required.

XHFC-2SU

2.2.5 Microprocessor connection circuitries

Figures 2.5 to 2.8 show examples how to connect XHFC-2SU to different parallel processor interfaces.

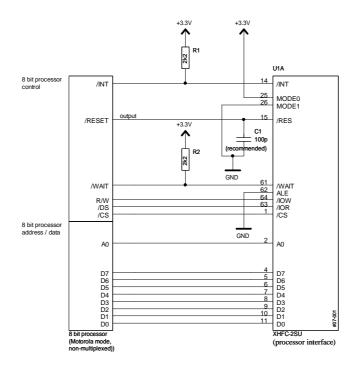


Figure 2.5: 8 bit Motorola processor circuitry example (mode 2)

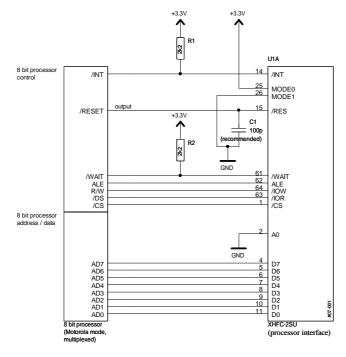


Figure 2.6: 8 bit Motorola processor circuitry example (mode 2m)

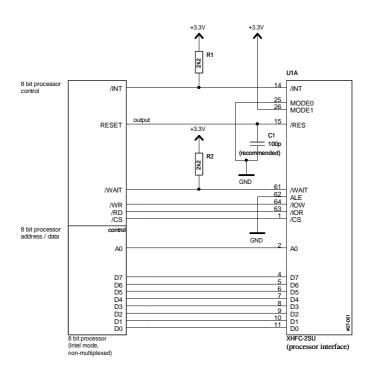


Figure 2.7: 8 bit Intel processor circuitry example (mode 3)

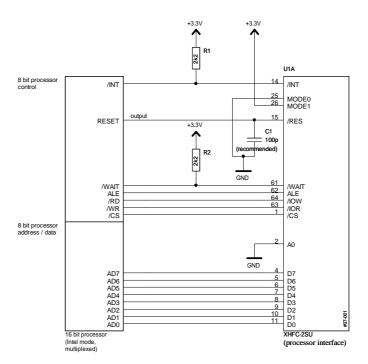


Figure 2.8: 8 bit Intel processor circuitry example (mode 3m)

2.3 Serial processor interface (SPI)

Number Name Description 14 /INT Interrupt request pin, active low/high programmable /RES Reset input pin, active low 15 25 MODE0 Interface mode pin 0 MODE1 Interface mode pin 1 26 4 SPI_TX SPI transmit data output 5 SPI_RX SPI receive data input 63 SPI_CLK SPI clock input SPI device select, active low /SPISEL 62 SPI_INV Invert SPI clock 11 DN₀ SPI device number, bit 0 DN1 SPI device number, bit 1 10 SPI device number, bit 2 9 DN2 SPI device number, bit 3 DN3

Table 2.12: Overview of the SPI interface pins

XHFC-2SU has a serial processor interface (SPI) which is compatible with Motorola's SPI. CPUs and MCUs with SPI interface are also available from a variety of semiconductor vendors. The SPI interface has four signal pins as shown in the upper part of Table 2.12. Additional pins are used for SPI clock inversion and SPI device number selection.

SPI interface mode is selected by MODE0 = '0' and MODE1 = '0' (pins 25 and 26). XHFC-2SU supports only SPI slave mode.

Any register access consists of two transactions – an address write transaction first and a data read or write transaction afterwards. SPI transactions of XHFC-2SU have either a length of 16 bits for single byte accesses or 40 bits for high performance accesses. The first byte is a control byte in both cases, whereas the following bits are either one data byte or four data bytes. Control and data bytes are transmitted with MSB first.

2.3.1 SPI control byte

Tables 2.13 and 2.14 show an overwiev of the control byte construction. R and A are used to specify read/write and address/data transaction types. The meaning of bit position 5 depends on the value of A; broadcasting can be enabled with an address transaction and single or multiple data bytes is selected with a data transaction.

Up to 16 microchips of the XHFC series can be connected to the SPI interface and can operate with the same /SPISEL signal. The desired microchip is selected with the device address C3 \dots C0 within an address transaction. Every XHFC microchip must specify its address with DN3 \dots DN0 pins (device number) connected to ground or power supply. A microchip is selected with C3 \dots C0 = DN3 \dots DN0 where all numbers in the range 0 \dots 15 are allowed.

In addition to the chip selection, an SPI write access writes its data into *all* connected XHFC microchips if broadcast is used. SPI read accesses with enabled broadcast execute the register read access in all connected XHFC microchips, but only the specified chip delivers its data to the SPI master. The broadcast write access is useful for initialization procedures, e.g., for those registers, which must be initialized in all connected XHFC microchips.

Table 2.15 summarizes the SPI control commands which are coded in the control byte.

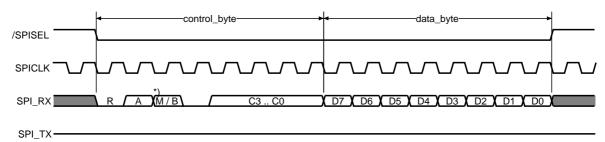
2.3.2 SPI transactions

The waveforms of an address or data write transaction with 16 bits length are shown in Figure 2.9. XHFC-2SU receives the control byte and the data byte with R = '0' on the SPI_RX line. The SPI_TX

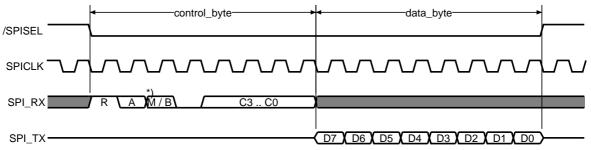
Table 2.13: SPI control byte with A = '0'

Table 2.14: SPI control byte with A = '1'

Name	Description	Bit	Name	Description
R	'0' = write	7	R	'0' = write
	'1' = read			'1' = read
Α	'0' = register data	6	А	'1' = register address
M	'0' = single data byte	5	В	'0' = no broadcast
	'1' = multi data bytes (4			'1' = broadcast
	bytes)	4	'0'	This bit must be zero in all
'0'	This bit must be zero in all			SPI transactions
	SPI transactions	30	C3C0	Device address (used for
'0000'	Must be zero in data transactions			chip select generation)
	R A M	R '0' = write '1' = read A '0' = register data M '0' = single data byte '1' = multi data bytes (4 bytes) '0' This bit must be zero in all SPI transactions '0000' Must be zero in data transac-	R	R


Table 2.15: SPI control commands for register read and write operations

	Control byte					Α	M/B	Timing
R	Α	M/B	0	C3 C0				diagram
0	0	0	0	0000	write	data	single data byte	Fig. 2.9
1	0	0	0	0000	read	data	single data byte	Fig. 2.10
0	1	0	0	CCCC	write	address	no broadcast	Fig. 2.9
1	1	0	0	CCCC	read	address	no broadcast	Fig. 2.10
0	0	1	0	0000	write	data	multiple data bytes	Fig. 2.11
1	0	1	0	0000	read	data	multiple data bytes	Fig. 2.12, 2.13
0	1	1	0	CCCC	write	address	broadcast	Fig. 2.9
1	1	1	0	CCCC	read	address	broadcast	Fig. 2.10
X	X	X	1	XXXX	not all	owed		_


pin is not used for write transactions and has tri-state level all the time.

A read transaction is shown in Figure 2.10. XHFC-2SU receives the control byte on the SPI_RX line and transmits the requested data byte on the SPI_TX line afterwards.

*) A and M / B combinations are 00, 10 and 11 in this timing diagram

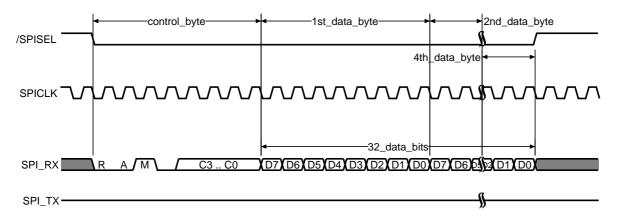
Figure 2.9: 16 bit SPI write transaction (R = '0', one data byte)

*) A and M / B combinations are 00, 10 and 11 in this timing diagram

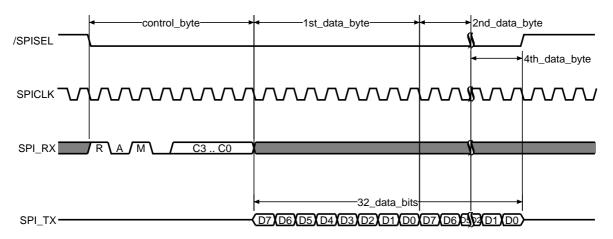
Figure 2.10: 16 bit SPI read transaction (R = '1', one data byte)

A = '0' and M = '1' specify a 40 bit transaction. This is shown in Figures 2.11 and 2.12 for SPI write and read transactions.

Any SPI transactions can be split by the SPI master into the control byte and the data bytes with /SPISEL = '1'. In this case the transmission pauses and will be continued after /SPISEL returns to low level. An example for a split read transaction with multiple data bytes is shown in Figure 2.13. Write transactions can be split in the same way.


The SPI host is not allowed to break an SPI transaction by an interrupt service routine which executes any access to XHFC-2SU. Otherwise master and slave could have different views wether a specific byte is a control or a data byte. If the SPI master cannot ensure this characteristic, interrupts must be disabled between control byte and data byte.

2.3.3 Transaction duration


16 bit SPI transaction have a minimal length of 16 clock cycles. With $f_{\rm SPICLK} = 4$ MHz, e.g., a 16 bit transaction takes 4 μ s. XHFC-2SU can operate with a maximum SPI clock of 25 MHz which leads to a minimal 16 bit transaction time of

$$T_{\text{trans}16,\text{min}} = \frac{16}{25\,\text{MHz}} = 640\,\text{ns}$$
.

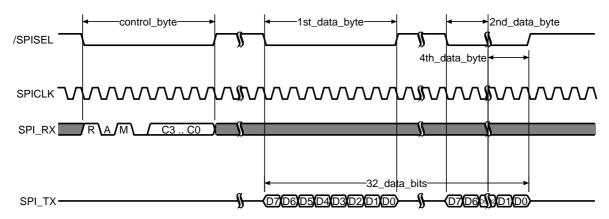


Figure 2.11: 40 bit SPI write transaction (R = '0', four data bytes)

Figure 2.12: 40 bit SPI read transaction (R = '1', four data bytes)

Figure 2.13: *Split 40 bit SPI read transaction (R* = '1')

40 bit SPI transaction have a minimal length of 40 clock cycles. With $f_{\rm SPICLK}=4\,\rm MHz$, e.g., a 40 bit transaction takes 10 μ s. With the maximum SPI clock of 25 MHz, the minimal 40 bit transaction time is

$$T_{\text{trans40,min}} = \frac{40}{25\,\text{MHz}} = 1.6\,\mu\text{s}$$

which leads to to data rate of 400 ns/byte.

The XHFC-2SU SPI protocol defines the following rules for transactions:

- 1. The SPI master is allowed to stop the SPI clock at any time. When the SPI clock is restarted afterwards, the transaction is continued as if it has not been stopped.
- 2. When a write or read transaction is split with /SPISEL = '1' within the control byte, it is ignored and the next received byte is expected to be a control byte.
- 3. When a write transaction is split with /SPISEL = '1' within the data byte, it is ignored and the next received byte is expected to be the data byte again.
- 4. When a read transaction is split with /SPISEL = '1' within the data byte, the transaction quits immediately (SPI_TX is always tri-state when /SPISEL = '1'). The next received byte is expected to be the data byte again.

2.3.4 Register write access

Register write accesses consist always of a transaction sequence with an address write transaction first and one or several data write transactions afterwards. XHFC-2SU offers four ways of executing register write accesses:

- 1. A register write access is a sequence of two SPI write transactions as shown in Figure 2.14. With the first transaction the SPI master specifies the register address (control byte is '01X0 CCCC'). Afterwards, the new register value is transferred from the SPI master to XHFC-2SU (control byte is '0000 0000').
 - 'X' = '0' disables broadcast so that 'CCCC' must specify the desired microchip. Alternatively, broadcast is enabled with 'X' = '1' and 'CCCC' is ignored in this case.
- 2. It is allowed to execute multiple data write transactions to the same register address without address write transactions in between. This is shown in Figure 2.15 and is typically used for transmit FIFO data.
- 3. Another way of writing multiple bytes into the same register is available with the 40 bit write transaction (Figure 2.16). With the first transaction (16 bits) the SPI master specifies the register address (control byte is '01X0 CCCC'). Afterwards, four new register values are transferred from the SPI master to XHFC-2SU (control byte is '0010 0000').
 - Broadcasting is handled in the same way as described in (1).
- 4. Finally, a combination of (2) and (3) can be used to write a multiple of four bytes. First, the control byte '01X0 CCCC' executes the address write transaction, and afterwards four data bytes can be written several times with the control byte '0010 0000' in each 40 bit write transaction.

Figures 2.14 to 2.16 show /SPISEL = '1' between the transactions. This splits the sequence into an address write transaction and one or several data write transactions. The split time has an arbitrary duration. It can also decrease to zero, which means that /SPISEL remains '0' for several transactions.

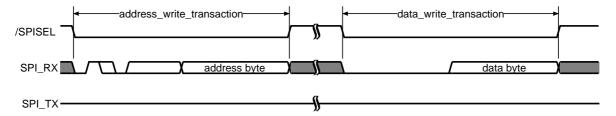


Figure 2.14: Register write access (transaction sequence)

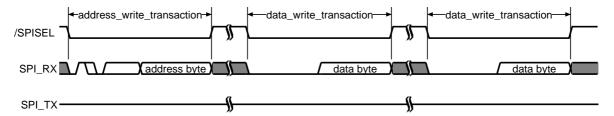


Figure 2.15: Multiple write accesses to the same register

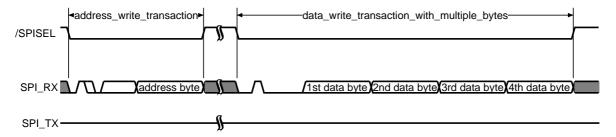


Figure 2.16: Register write access with a 40 bit transaction

The XHFC-2SU SPI protocol defines the following rules for transaction sequences:

- 1. Every data write transaction stores the received data byte into the register which has been selected with the last address write transaction.
- 2. When several consecutive address write transactions occur, the last address write transaction specifies the address for the next data access. All previous address write accesses are ignored, i.e. they have no effect to the XHFC-2SU status.

2.3.5 Register read access

Register read accesses consist always of a transaction sequence with an address write transaction first and one or several data read transactions afterwards. XHFC-2SU offers four ways of executing register read accesses:

- 1. A register read access is a sequence of one SPI write address transactions and one SPI read data transaction as shown in Figure 2.17. With the first transaction the SPI master specifies the register address (control byte is '01X0 CCCC'). Afterwards, XHFC-2SU transfers the register value to the SPI master (control byte is '1000 0000').
 - 'X' = '0' disables broadcast so that 'CCCC' must specify the desired microchip. Alternatively, broadcast is enabled with 'X' = '1' and 'CCCC' is ignored in this case.
- 2. It is allowed to execute multiple data read transactions to the same register address without address write transactions in between. This is shown in Figure 2.18 and is typically used for receiving FIFO data.
- 3. Another way of reading multiple bytes from the same register is available with the 40 bit read transaction (Figure 2.19). With the first transaction (16 bits) the SPI master specifies the register address (control byte is '01X0 CCCC'). Afterwards, four register values are transferred from XHFC-2SU to the SPI master (control byte is '1010 0000').
 - Broadcasting is handled in the same way as described in (1).
- 4. Finally, a combination of (2) and (3) can be used to read a multiple of four bytes. First, the control byte '01X0 CCCC' executes the address write transaction, and afterwards four data bytes can be read several times with the control byte '1010 0000' in each 40 bit read transaction.

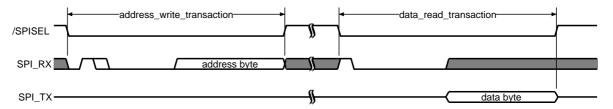


Figure 2.17: Register read access (transaction sequence)

Figures 2.17 to 2.19 show /SPISEL = '1' between the transactions. This splits the sequence into an address write transaction and one or several data read transactions. The split time has an arbitrary duration. It can also decrease to zero, which means that /SPISEL remains '0' for several transactions.

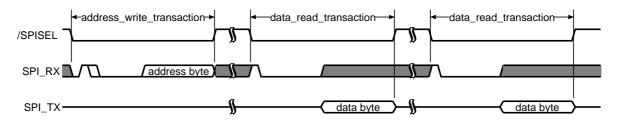


Figure 2.18: Multiple read accesses to the same register

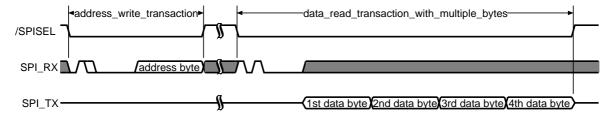


Figure 2.19: Register read access with a 40 bit transaction

2.3.6 Register access duration

There are several SPI data rates due to the different register access types. Table 2.16 gives some examples for $f_{\text{SPICLK}} = 25 \,\text{MHz}$ and either one or 16 accesses to the same register.

Sequence duration and data rates are always calculated without split times neither within nor between transactions.

SPI data transaction control byte	Single or multiple data bytes	Number of accesses to the same register	Minimum number of clock cycles	Sequence duration	Data rate for $f_{SPICLK} = 25\mathrm{MHz}$ and $N = 16$, e.g.
'X0000000'	single	1	32	$T = \frac{32}{f_{\text{SPICLK}}}$	$DR = \frac{1}{T} = 781 \text{kByte/s}$
'X0000000'	single	N	$(N+1)\cdot 16$	$T = \frac{(N+1)\cdot 16}{f_{\text{SPICLK}}}$	$DR = \frac{N}{T} = 1471 \text{kByte/s}$
'X0100000'	multiple	4	56	$T = \frac{56}{f_{\text{SPICLK}}}$	$DR = \frac{4}{T} = 1786 \text{kByte/s}$
'X0100000'	multiple	4N	$16 + N \cdot 40$	$T = \frac{16 + N \cdot 40}{f_{\text{SPICLK}}}$	$DR = \frac{4N}{T} = 2439 \text{kByte/s}$

Table 2.16: SPI data rates

2.3.7 Register address read-back capability

The address read transaction with the control byte '11X0 CCCC' can be executed to read the address of the currently selected register.

This address read transaction does not perform a register read access. Thus it can be used even on those registers that change their contents on a read access, i.e. register contents is changed not until a data read transaction has been executed.

2.3.8 Problems with interrupts during transaction sequences

The address read-back capability is useful for interrupt procedures, e.g., to save and restore the previous state:

This procedure is important to avoid data read or write to an unexpected register address after the transaction sequence has been split between transactions by an interrupt service routine which executes any access to XHFC-2SU. Please note, that transactions are not allowed to be split from the SPI master (see Section 2.3.2).

2.3.9 SPI timing diagrams

Figure 2.20 shows the timing diagram for data write transactions (data from master to slave). Four different variations of the SPI clock are shown. SPI clock can be inverted with SPI_INV = '1'. Further, idle intervals are allowed during non-selected phases where /SPISEL = '1'. During idle intervals, SPI clock must be low for SPI_INV = '0' and it must be high otherwise.

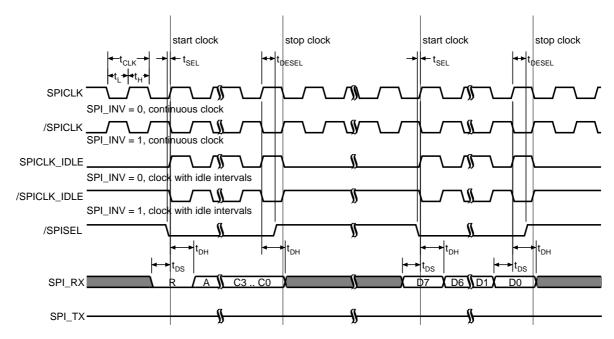


Figure 2.20: SPI timing diagram for data write transactions

Address and data is sampled on the rising edge of SPI_CLK when SPI_INV = '0'. The SPI selection signal /SPISEL must be '0' with this edge at the latest.

When the SPI access is splitted by the SPI master, the rising edge of /SPISEL is required to be $t_{\rm DESEL} \ge 2\,\rm ns$ after the sampling time at the earliest. When clock idle intervals are used, it is necessary to have at least one clock edge after the last sample edge (marked with 'stop clock' in Figure 2.20). This is important to terminate the access internally.

The timing diagram for data read transactions (data from slave to master) is shown in Figure 2.21. The same different variations of the SPI clock which are shown in Figure 2.20 are valid for data read

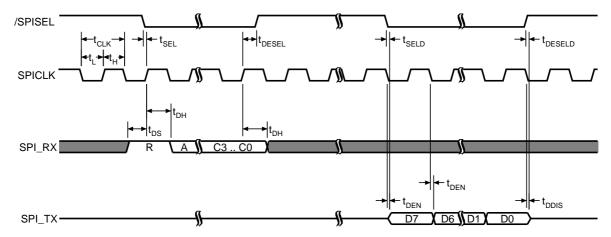


Table 2.17: Symbols of write access in Figure 2.20

Symbol	min / ns	max / ns	Characteristic
$t_{\rm CLK}$	40		SPI clock cycle time
$t_{ m L}$	15		Clock low time
$t_{ m H}$	15		Clock high time
$t_{ m SEL}$	0		SPI selection to sample edge setup time
$t_{ m DESEL}$	2		SPI deselection delay
$t_{ m DS}$	7		Data setup time
$t_{ m DH}$	7		Data hold time

transactions but only continiuos clock with SPI_INV = '0' is shown here.

Address is sampled on the rising edge of SPI_CLK when SPI_INV = '0'. The SPI selection signal /SPISEL must be '0' with this edge at the latest. Data is put out $t_{\rm DEN} \leq 10\,\rm ns$ after the falling edge of SPI_CLK at the latest.

Figure 2.21: SPI timing diagram for data read transactions (see Figure 2.20 for additional clock signals /SPICLK, SPICLK_IDLE and /SPICLK_IDLE)

Table 2.18: Symbols of read access in Figure 2.21

Symbol	min / ns	max / ns	Characteristic		
$t_{ m CLK}$	40		SPI clock cycle time		
$t_{ m L}$	15		Clock low time		
$t_{ m H}$	15		Clock high time		
$t_{ m SEL}$	0		SPI selection to sample edge setup time		
$t_{ m DESEL}$	2		SPI deselection delay		
$t_{ m DS}$	7		Data setup time		
$t_{ m DH}$	7		Data hold time		
$t_{ m SELD}$	0	10	SPI selection to data enable delay		
$t_{ m DESELD}$	0		SPI deselection to data disable delay		
$t_{ m DEN}$	0	10	Clock to data enable setup time		
$t_{ m DDIS}$	0	10	Clock to data disable setup time		

2.3.10 SPI connection circuitry

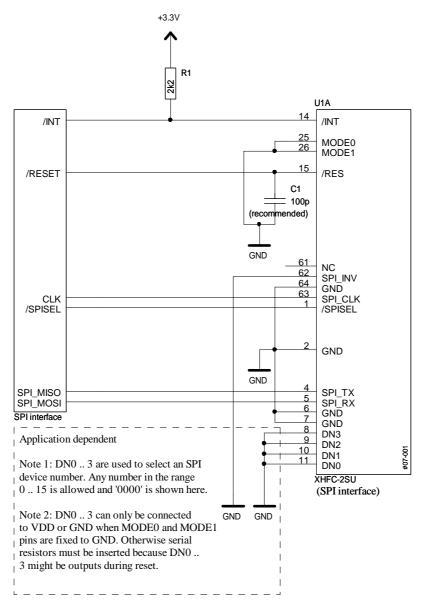


Figure 2.22: SPI connection circuitry

2.4 Auto-EEPROM mode

Please contact Cologne Chip for details if you are interested in using the Auto-EEPROM mode.

2.5 Register description

2.5.1 Write only registers

R_	_CTRL		((w) (Reset group: H) 0x01			
Co	Common control register						
	Bits	Reset value	Name	Description			
	0	0	(reserved)	Must be '0'.			
	1	0	V_FIFO_LPRIO	FIFO access priority for host accesses '0' = normal priority '1' = low priority			
	2	0	(reserved)	Must be '0'.			
	3	0	V_NT_SYNC	Synchronization source for NT mode The transmit data path of the Universal ISDN Ports can be synchronized to different signals. '0' = F0I is used as NT synchronization source '1' = F1_7 is used as NT synchronization source (see register R_SL_SEL7 for time slot selection) Note: This bit selects the synchronization source for both Universal ISDN Ports in NT/LT mode together. It is ignored in TE mode.			
	4	0	(reserved)	Must be '0'.			
	5	0	V_OSC_OFF	Disable oscillator '0' = normal operation '1' = clock oscillator is switched off This bit is reset at every write access to XHFC-2SU or with a wake-up signal on pin WAKEUP. Any chip access is valid not before the oscillator frequency is stable again.			
	76	0	V_SU_CLK	Line interface clock selection The line interface clock f_{SU} is derived from the system clock f_{SYS} '00' = f_{SYS} / 2 '01' = f_{SYS} / 4 '10' = f_{SYS} (normally unused) '11' = f_{SYS} / 8 (normally unused) f_{SU} must be 12.288 MHz.			

R_RAM_ADDR		(w)	(Reset group: H, 0)	80x0	
Address po	inter, low	er part			
Lower addre	ess byte fo	r SRAM access.			
	•				
Bits	Reset value	Name	Des	scription	
70	0x00	V_RAM_ADDR0	Ad	dress bits 70	
Bits	Reset value				

(See Section 13 on page 343 for a fault description and workaround of an address decoding problem which concerns this register among others.)

R_	_RAM_CT	RL	(1	(Reset group: H, 0)	x09			
	SRAM access control register High address bits and control bits for SRAM access.							
	Bits	Reset value	Name	Description				
	30	0	V_RAM_ADDR1	Address bits 118				
	54	0	(reserved)	Must be '00'.				
	6	0	V_ADDR_RES	Address reset '0' = normal operation '1' = address bits 011 are set to zero This bit is automatically cleared.				
	7	0	V_ADDR_INC	Address increment '0' = no address increment '1' = automatically increment of the address afte every write or read on register R_RAM_DATA	er			

2.5.2 Read only registers

R.	_RAM_U	ISE		(r)	(Reset group: -)	0x15
	RAM dut		ss bandwidth by the i	nternal data proces	ssor.	
	Bits	Reset value	Name		ription	
	70		V_SRAM_USE	0x00	ive duty factor = 0% bandwidth used = 100% bandwidth used	

R_CHIP_ID				(r) (Reset group: H)	0x16					
C	Chip identification register									
	Bits	Reset value	Name	Description						
	70	0x61	V_CHIP_ID	Chip identification code '0110 0001' (0x61) means XHFC-2SU.						

R.	_CHIP_R	RV		(r)	(Reset group: H)	0x1F			
XHFC-2SU revision									
		D (
	Bits	Reset value	Name	Descr	ription				
	30	0	V_CHIP_RV	Chip	revision 0				
	74		(reserved)						

R_	_INTDA ⁻	ΤA		(r)	(Reset group: -)	0x88
In	ternal da	ta registe	r			
Th	is registe	r can be re	ad to access data with	n Read* method.		
	Bits	Reset value	Name	Descr	iption	
	70		V_INT_DATA	Inter	nal data buffer	

(See Section 2.2.3.2 on page 45 for details on Read* access.)

2.5.3 Read/write register

R_	_RAM_D/	ATA		(r*/w)	(Reset group: -)	0xC0
	RAM data		ternal SRAM			
	Teet deces	s to the m	ternar 910 tivi			
	Bits	Reset value	Name	Descr	iption	
	70		V_RAM_DATA	The ac	A data access ddress must be written into regi M_ADDR and R_RAM_CTRL	

(See Section 2.2.3.2 on page 45 for details on Read* access.)

Chapter 3

XHFC-2SU data flow

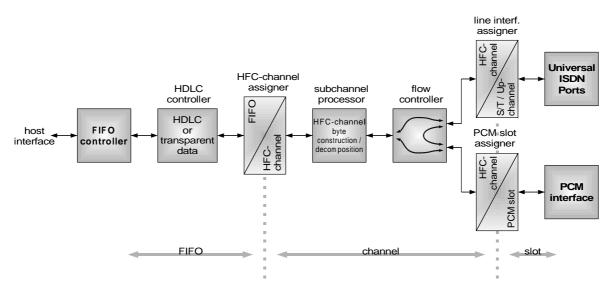


Figure 3.1: Data flow block diagram

3.1 Data flow concept

3.1.1 Overview

XHFC-2SU has a programmable data flow unit, in which the FIFOs are connected to the PCM and the ST/U_p interfaces. Moreover the data flow unit can directly connect PCM and ST/U_p interfaces or two PCM time slots with each other ¹.

The fundamental features of the XHFC-2SU data flow are as follows:

- programmable interconnection capability between FIFOs, PCM time slots and channels of the Universal ISDN Ports
- 2 Universal ISDN Ports (combined ST/Up interfaces)
- in transmit and receive direction there are
 - up to 16 FIFOs each
 - 12, 32, 64 or 128 PCM time slots each in PCM master mode
 - 1...128 PCM time slots each in PCM slave mode
 - 16 HFC-channels each to connect the above-mentioned data interfaces
- 3 data flow modes to satisfy different application tasks
- subchannel processing for bitwise data handling

The complete XHFC-2SU data flow block diagram is shown in Figure 3.1. Basically, data routing requires an allocation number at each block. So there are three areas where numbering is based on FIFOs, HFC-channels and PCM time slots.

FIFO handling and HDLC controller, PCM and ST/U_p interfaces are described in Chapters 4 to 6. So this chapter deals with the data flow unit which is located between and including the HFC-channel assigner, the PCM slot assigner and the line interface assigner.

3.1.2 Term definitions

Figure 3.2 clarifies the relationship and the differences between the numbering of FIFOs, HFC-channels and PCM time slots. The inner circle symbolizes the HFC-channel oriented part of the data flow, while the outer circle shows the connection of three data sources and data drains respectively. The ST/U_p interfaces have a fixed mapping between HFC-channels and ST/U_p -channels so that there is no need of a separate ST/U_p -channel numbering.

FIFO: The FIFOs are buffers between the microprocessor bus interface and the PCM and ST/U_p interfaces. The HDLC controllers are located on the non host bus side of the FIFOs. The number of FIFOs depends on the FIFO size configuration (see Section 4.3) and starts with number 0. The maximum FIFO number is 15. Furthermore data directions transmit and receive are associated with every FIFO number.

HFC-channel: HFC-channels are used to define data paths between FIFOs on the one side and PCM and ST/U_p interfaces on the other side. The HFC-channels are numbered 0..15. Furthermore data directions transmit and receive are associated with every HFC-channel number.

¹In this data sheet the shorter expression "slot" instead of "time slot" is also used with the same meaning.

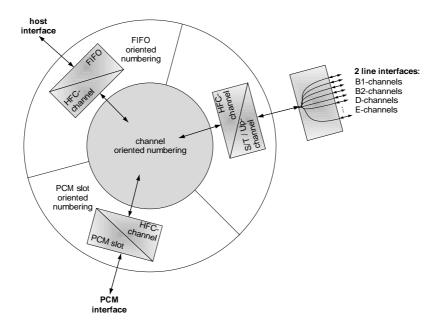


Figure 3.2: Areas of FIFO oriented, HFC-channel oriented and PCM time slot oriented numbering

It is important not to mix up the HFC-channels of the here discussed data flow (inner circle of Figure 3.2) with the ST/U_p -channels of the multiple ST/U_p interfaces.

PCM time slot: The PCM data stream is organized in time slots. The number of PCM time slots depends on the data rate, i.e. there are 32 time slots with 2 MBit/s (numbered 0..31), 64 time slots with 4 MBit/s (numbered 0..63) or 128 time slots with 8 MBit/s (numbered 0..127). Every PCM time slot exists both in transmit and receive data directions.

Every FIFO, HFC-channel and PCM time slot number exist for transmit and receive direction. The data rate is always $8\,\mathrm{kByte/s}$ for every ST/U_p-channel and every PCM time slot. FIFOs, HFC-channels, ST/U_p-channels and PCM time slots have always a width of $8\,\mathrm{bit}$.

3.2 Flow controller

3.2.1 Overview

The various connections between FIFOs, ST/U_p-channels and PCM time slots are set up by programming the flow controller, the HFC-channel assigner and the PCM slot assigner.

The flow controller sets up connections between FIFOs and the ST/U_p interfaces, FIFOs and the PCM interface and between the ST/U_p interfaces and the PCM interface. Bitmap V_DATA_FLOW in register A_CON_HDLC (which exists for each FIFO) configures these connections. The numbering of transmit and corresponding receive FIFOs, HFC-channels and PCM time slots is independent from each other. But in practice the connection table is more clear if the same number is chosen for corresponding transmit and receive direction.

A direct connection between two PCM time slots can be set up inside the PCM slot assigner and will be described in Section 3.3.

The flow controller operates on HFC-channel data. Nevertheless it is programmed with a bitmap of

a FIFO-indexed array register. With this concept it is possible to change the FIFO-to-HFC-channel assignment of a ready-configured FIFO without re-programming its parameters again.

The internal structure of the flow controller contains

- 4 switching buffers, i.e. one for the ST/U_p and PCM interfaces in transmit and receive direction each and
- 3 switches to control the data paths.

3.2.2 Switching buffers

The switching buffers decouple the data inside the flow controller from the data that is transmitted to or received from the ST/U_p and PCM interfaces. With every 125 μ s cycle the switching buffers change their pointers.

If a byte is read from the FIFO and written into a switching buffer, it is transmitted by the connected interface during the *next* 125 μ s cycle. In the reverse case, a received byte which is stored in a switching buffer is copied to the FIFO during the next 125 μ s cycle.

A direct PCM-to-ST/ U_p connection delays each data byte two cycles. That means the received byte is stored in the switching buffer during the first 125 μ s cycle, then copied into the transmit buffer during the second 125 μ s cycle and finally transmitted from the interface during the third 125 μ s cycle.

3.2.3 Timed sequence

The data transmission algorithm of the flow controller is FIFO-oriented and handles all FIFOs, and of course all connected HFC-channels, every 125 µs in the following sequence:

```
FIFO[0,TX]
FIFO[0,RX]
FIFO[1,TX]
FIFO[1,RX]
\vdots
FIFO[n,TX]
FIFO[n,RX]
```

The number of existing FIFOs, and consequently the value of n, depends on the FIFO configuration (see Table 4.2 on page 128). In any case n cannot exceed 15. There are other configurations with n = 7 and n = 3.

Due to the FIFO oriented operation, the number of existing FIFOs also defines the number of processed HFC-channels. HFC-channel numbers can be used in the full range 0..15 but with every processed FIFO just one HFC-channel is processed within the same cycle.

If a faulty configuration writes data from several sources into the same switching buffer, the last write access overwrites the previous ones. Only in this case it is necessary to know the process sequence of the flow controller.

XHFC-2SU has three data flow modes. One of them (*FIFO sequence mode*) is used to configure a programmable FIFO sequence which can be used instead of the ascending FIFO numbering. This is explained in Section 3.4.

3.2.4 Transmit operation (FIFO in transmit data direction)

In transmit operation one HDLC or transparent byte is read from a FIFO and can be transmitted to the ST/U_p and the PCM interface as shown in Figure 3.3. Furthermore, data can be transmitted from the ST/U_p interface to the PCM interface. From the flow controller point of view, the switches select the source for outgoing data. They are controlled by bitmap $V_DATA_FLOW[2..1]$ in register $A_CON_HDLC[n,TX]$ where n is a FIFO number. Transmit operation is configured with $V_FIFO_DIR = '0'$ in the multi-register R_FIFO .

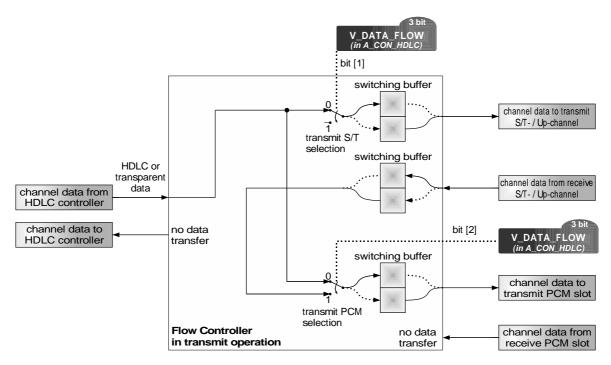


Figure 3.3: The flow controller in transmit operation

- FIFO data is only transmitted to the line interface if V_DATA_FLOW[1] = '0'.
- The PCM interface can transmit a data byte which comes either from the FIFO or from the line interface. Bit V_DATA_FLOW[2] selects the source for the PCM transmit slot (see Figure 3.3). The receiving ST/U_p-channel has always the same number as the transmitting S/T/U_p-channel.
- Bit V_DATA_FLOW[0] is ignored in transmit operation.

3.2.5 Receive operation (FIFO in receive data direction)

Figure 3.4 shows the flow controller structure in receive operation. The two switches are controlled by bitmap V_DATA_FLOW[1..0] in register A_CON_HDLC[*n*,RX] where *n* is a FIFO number. Receive operation is configured with V_FIFO_DIR = '1' in the multi-register R_FIFO. FIFO data can either

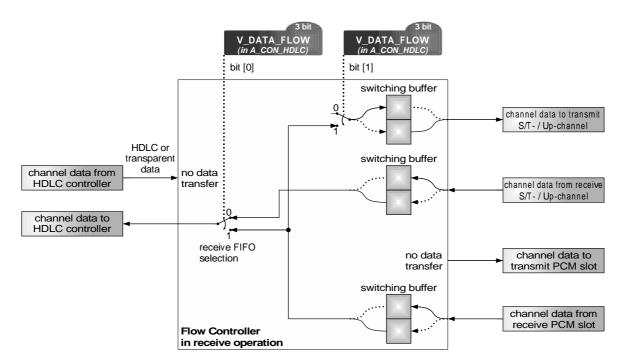


Figure 3.4: The flow controller in receive FIFO operation

be received from the ST/U_p or from the PCM interface. Furthermore, data can be transmitted from the PCM interface to the ST/U_p interface.

- Bit V_DATA_FLOW[0] selects the source for the receive FIFO which can either be the PCM or the line interface.
- Furthermore, the received PCM byte can be transferred to the line interface. This requires bit V_DATA_FLOW[1] = '1'.
- Bit V_DATA_FLOW[2] is ignored in receive FIFO operation.

3.2.6 Connection summary

Table 3.1 shows the flow controller connections as a whole. Bidirectional connections ² are pointed out with a gray box because they are typically used to establish the data transmissions. All rows have an additional connection to a second destination.

The most important connections are bidirectional data transmissions. For these connections it is possible to manage the configuration programming of V_DATA_FLOW with only three different values for transmit and receive FIFO operations. Table 3.2 shows the suitable programming values which can be used to simplify the programming algorithm.

80 of 367 Data Sheet June 2012

²In fact, all connections are unidirectional. However, in typical applications there is always a pair of transmit and receive data channels which belong together. Instead of "transmit and corresponding receive data connection" the shorter expression "bidirectional connection" is used in this data sheet.

Table 3.1: Flow controller connectivity

V_DATA_FLOW		nsmit _DIR = '0')	Receive (V_FIFO_DIR = '1')		
'000' '001'	$\begin{array}{ccc} \text{FIFO} & \rightarrow & \text{PCM} \\ \\ \text{FIFO} & \rightarrow & \text{ST/U}_p \end{array}$	$\begin{array}{ccc} \text{FIFO} & \rightarrow & \text{ST/U}_p \\ \\ \text{FIFO} & \rightarrow & \text{PCM} \end{array}$	$\begin{array}{ccc} \text{FIFO} \; \leftarrow \; \text{ST/U}_p \\ \\ \text{FIFO} \; \leftarrow \; \text{PCM} \end{array}$		
'010' '011'	FIFO → PCM	$FIFO \ \to \ PCM$	$\begin{array}{ccc} \text{FIFO} \; \leftarrow \; \text{ST/U}_p \\ \\ \text{FIFO} \; \leftarrow \; \text{PCM} \end{array}$	$\begin{array}{ccc} \text{ST/U}_p & \leftarrow & \text{PCM} \\ \text{ST/U}_p & \leftarrow & \text{PCM} \end{array}$	
'100' '101'	$\begin{array}{ccc} ST/U_p & \to & PCM \\ FIFO & \to & ST/U_p \end{array}$	$\begin{array}{ccc} \text{FIFO} & \rightarrow & \text{ST/U}_p \\ \text{ST/U}_p & \rightarrow & \text{PCM} \end{array}$	$\begin{array}{ccc} \text{FIFO} \; \leftarrow \; \text{ST/U}_p \\ \text{FIFO} \; \leftarrow \; \text{PCM} \end{array}$		
'110' '111'		$\begin{array}{ccc} ST/U_p & \to & PCM \\ ST/U_p & \to & PCM \end{array}$	$\begin{array}{cccc} ST/U_p & \leftarrow & PCM \\ ST/U_p & \leftarrow & PCM \end{array}$	$\begin{array}{ccc} \text{FIFO} \; \leftarrow \; \text{ST/U}_p \\ \text{FIFO} \; \leftarrow \; \text{PCM} \end{array}$	

Table 3.2: *V_DATA_FLOW* programming values for bidirectional connections

Connect	ion		V_FIFO_DIR	Required V_DATA_FLOW	Recommended V_DATA_FLOW
FIFO	\rightarrow	ST/U _p	'0' (TX)	'x0x'	'000'
FIFO	\leftarrow	ST/U _p	'1' (RX)	'xx0'	
FIFO	\rightarrow	PCM	'0' (TX)	'0xx'	20042
FIFO	\leftarrow	PCM	'1' (RX)	'xx1'	'001'
ST/Up	\rightarrow	PCM	'0' (TX)	'1xx'	14.4.01
ST/U _p	\leftarrow	PCM	'1' (RX)	'x1x'	'110'

3.3 Assigners

The data flow block diagram in Figure 3.1 contains three assigners. These functional blocks are used to connect FIFOs, ST/U_p -channels and PCM time slots to the HFC-channels.

3.3.1 HFC-channel assigner

The HFC-channel assigner interconnects FIFOs and HFC-channels. Its functionality depends on the data flow mode described in Section 3.4.

3.3.2 PCM slot assigner

The PCM slot assigner can connect each PCM time slot to an arbitrary HFC-channel. Therefore, for a selected time slot ³ the connected HFC-channel number and data direction must be written into register A_SL_CFG[SLOT] as follows:

```
Register setup:

A_SL_CFG[SLOT]: V_CH_SDIR = <HFC-channel data direction>
: V_CH_SNUM = <HFC-channel number>
```

Typically, the data direction of a HFC-channel and its connected PCM time slot is the same.

If two PCM time slots are connected to each other, incoming data on a slot is transferred to the PCM slot assigner and stored in the PCM receive switching buffer of the connected HFC-channel. From there it is read (i.e. same HFC-channel) and transmitted to a transmit PCM time slot.

3.3.3 Line interface assigner

Table 3.3 shows the assignment between HFC-channels and the ST/U_p -channels . There is no possibility to change this allocation, so there is no register for programming the line interface assigner.

If ST/U_p-channels are coded as

B1-channel = 0 B2-channel = 1 D-channel = 2 E-channel = 3

it is possible to calculate

HFC-channel number = interface number $\cdot 4 + S/T$ -channel code.

For a given HFC-channel number the belonging ST/U_p-channel is calculated with ⁴

```
\begin{array}{lll} & interface \ number & = & HFC\mbox{-}channel \ number \ div \ 4 \\ ST/U_p\mbox{-}channel \ code & = & HFC\mbox{-}channel \ number \ mod \ 4 \ . \end{array}
```

³A time slot is specified by writing its number and data direction into register R_SLOT. Then all accesses to the slot array registers belong to this time slot. Please see Chapter 6 for details.

⁴div is the integer division. mod is the division remainder. $i \mod j = (i/j - i \operatorname{div} j) \cdot j$.

 Table 3.3: Line interface assigner

HFC-channel	ST/U _p -chan	nel	HFC-channel	ST/U _p -char	nnel
number direction	interface channel	direction	number	interface channel	direction
[0,TX]	#0 B1	TX	[4,TX]	#1 B1	TX
[0,RX]	#0 B1	RX	[4,RX]	#1 B1	RX
[1,TX]	#0 B2	TX	[5,TX]	#1 B2	TX
[1,RX]	#0 B2	RX	[5,RX]	#1 B2	RX
[2,TX]	#0 D	TX	[6,TX]	#1 D	TX
[2,RX]	#0 D	RX	[6,RX]	#1 D	RX
[3,TX]	#0 BAC/S	TX	[7,TX]	#1 BAC/S	TX
[3,RX]	#0 E	RX	[7,RX]	#1 E	RX

In both cases the equivalence

HFC-channel direction $= ST/U_p$ -channel direction

is valid.

3.3.4 Assigner summary

The three different assigner types of XHFC-2SU are shown in Figure 3.5. Assigner programming is always handled with array registers. This can be a FIFO array register or a PCM slot array register.

- The line interface assigner is not programmable. Every HFC-channel is connected to a specific ST/U_p -channel like shown in Table 3.3.
- The PCM slot assigner is programmed by register A_SL_CFG[SLOT]. The PCM time slot must be selected before by writing the desired slot number and direction into register R_SLOT.
- The HFC-channel assigner programming depends on the data flow mode which is described in Section 3.4. This section explains in what cases the assigner is programmable and how this can be done. Figure 3.5 gives a hint, that the programming procedure is handled with array register A_CHANNEL[FIFO]. Please see section 3.4 for details and restrictions.

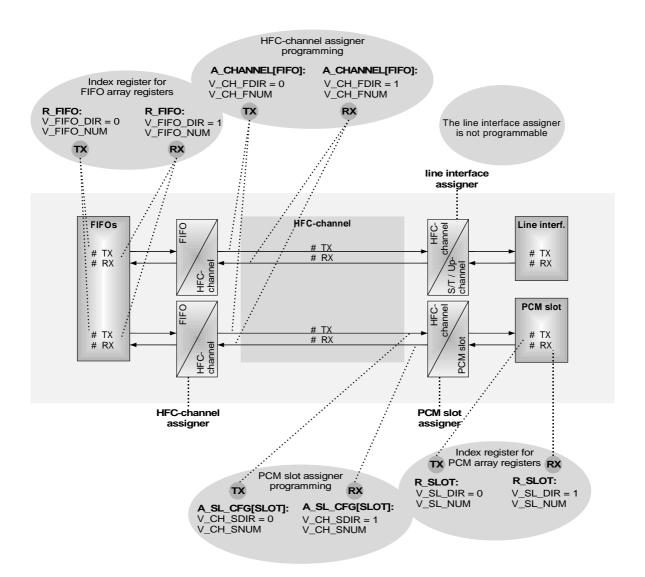


Figure 3.5: Overview of the assigner programming

3.4 Data flow modes

The internal operation of the HFC-channel assigner and the subchannel processor as well depends on the selected data flow mode. Three modes are available and will be described in this section:

- Simple Mode (SM),
- Channel Select Mode (CSM) and
- FIFO Sequence Mode (FSM)

Various array registers are available to configure the data flow. Unused FIFOs and PCM time slots should remain in their reset state.

FIFO array registers are indexed by R_FIFO in most cases. But there are some exceptions depending on the data flow mode and the target array register. Table 3.4 shows all FIFO array registers and their index registers at the different data flow modes.

3.4.1 Simple Mode (SM)

3.4.1.1 Mode description

In *Simple Mode* (SM) only one-to-one connections are possible. That means one FIFO, one ST/U_p -channel or one PCM time slot can be connected to each other. The number of connections is limited by the number of FIFOs. It is possible to establish as many connections as there are FIFOs⁵. The actual number of FIFOs depends on the FIFO setup (see Section 4.3).

Simple Mode is selected with V_DF_MD = '00' in register R_FIFO_MD. All FIFO array registers are indexed by the multi-register R_FIFO (address 0x0F) in this data flow mode.

The FIFO number is always the same as the HFC-channel number. Thus, the HFC-channel assigner cannot be programmed in *Simple Mode*. In contrast to this, the PCM time slot number can be chosen independently from the HFC-channel number.

Due to the fixed correspondence between FIFO number and HFC-channel, a pair of transmit and receive FIFOs is allocated even if a bidirectional data connection between the PCM interface and the line interface is established without using the FIFO. Nevertheless, in this case the FIFO must be enabled to enable the data transmission.

A direct coupling of two PCM time slots uses a PCM switching buffer and no FIFO has to be enabled. This connection requires a HFC-channel number (resp. the same FIFO number). An arbitrary HFC-channel number can be chosen. If there are less than 16 transmit and receive FIFOs each, it is usefull to choose a HFC-channel number that is greater than the maximum FIFO number. This saves FIFO resources where no data is stored in a FIFO.

June 2012 Data Sheet 85 of 367

⁵Except PCM-to-PCM connections which do not need a FIFO resource if the involved HFC-channel number is higher than the maximum FIFO number.

 Table 3.4: Index registers of the FIFO array registers (sorted by address)

	Array	register		Index reg	ister in		Index mea	ning in	
Context	name	address	I/O mode	SM	CSM	FSM	SM	CSM	FSM
FIFO data counters	0x04	A_Z1[FIFO]	r	R_FIFO	R_FIFO	R_FIFO	FIFO	FIFO	FIFO
	0x06	A_Z2[FIFO]	r	R_FIFO	R_FIFO	R_FIFO	FIFO	FIFO	FIFO
FIFO frame counters	0x0C	A_F1[FIFO]	r	R_FIFO	R_FIFO	R_FIFO	FIFO	FIFO	FIFO
	0x0D	A_F2[FIFO]	r	R_FIFO	R_FIFO	R_FIFO	FIFO	FIFO	FIFO
FIFO configuration	0x0E	A_INC_RES_FIFO[FIFO]	W	R_FIFO	R_FIFO	R_FIFO	FIFO	FIFO	FIFO
FIFO data access	0x80	A_FIFO_DATA[FIFO]	r/w	R_FIFO	R_FIFO	R_FIFO	FIFO	FIFO	FIFO
	0x84	A_FIFO_DATA_NOINC[FIFO]	r/w	R_FIFO	R_FIFO	R_FIFO	FIFO	FIFO	FIFO
Subchannel processor	0xF4	A_CH_MSK[FIFO]	r*/w	R_FIFO	R_FIFO	R_FIFO	HFC-channel	HFC-channel	HFC-channel
FIFO configuration	0xFA	A_CON_HDLC[FIFO]	r*/w	R_FIFO	R_FIFO	R_FIFO	FIFO	FIFO	FIFO
Subchannel Processor	0xFB	A_SUBCH_CFG[FIFO]	r*/w	R_FIFO	R_FIFO	R_FSM_IDX	FIFO	FIFO	list index
FIFO configuration	0xFC	A_CHANNEL[FIFO]	r*/w	R_FIFO	R_FIFO	R_FSM_IDX	FIFO	FIFO	list index
FIFO configuration	0xFD	A_FIFO_SEQ[FIFO]	r*/w	R_FIFO	R_FIFO	R_FSM_IDX	FIFO	FIFO	list index
FIFO configuration	0xFF	A_FIFO_CTRL[FIFO]	r*/w	R_FIFO	R_FIFO	R_FIFO	FIFO	FIFO	FIFO

Please note!

The index of FIFO array registers is always denoted '[FIFO]' even if the meaning is different from this in particular cases (grey marked fields in Table 3.4).

3.4.1.2 Subchannel processing

If the data stream of a FIFO does not require full 8 kByte/s data rate, the subchannel processor might be used. Unused bits can be masked out and replaced by bits of an arbitrary mask byte which can be specified in A_CH_MSK.

For D- and E-channel processing the subchannel functionality must be enabled. Only two bits of a data byte are processed every $125 \,\mu s$.

In transparent mode only the non-masked bits of a byte are processed. Masked bits are taken from register A_CH_MSK. So the effective FIFO data rate always remains 8 kByte/s whereas the usable data rate depends on the number of non-masked bits.

In HDLC mode the data rate of the FIFO is reduced according to how many bits are not masked out.

Please see Section 3.5 from page 108 for details concerning the subchannel processor.

3.4.1.3 Example for SM

Figure 3.6 shows an example with four bidirectional connections (\P FIFO-to-ST/U_p, \P FIFO-to-PCM, \P PCM-to-ST/U_p and \P PCM-to-PCM). The FIFO box on the left side contains the number and direction information of the used FIFOs. The ST/U_p and PCM boxes on the right side contain the ST/U_p-channels and PCM time slot numbers and directions which are used in this example. Black lines illustrate data paths, whereas dotted lines symbolize blocked resources. These are not used for the data transmission, but they are necessary to enable the settings.

Please note!

All settings in Figure 3.6 are configured in bidirectional data paths due to typical applications of XHFC-2SU. However, transmit and receive directions are independent from each other and could occur one at a time as well.

The following settings demonstrate the required register values to establish the connections. All involved FIFOs have to be enabled with $V_FIFO_IRQ \neq 0$ in register A_CON_HDLC[FIFO].

The subchannel processor is not used in this example. For this reason, registers A_SUBCH_CFG and A_CH_MSK remain in their reset state.

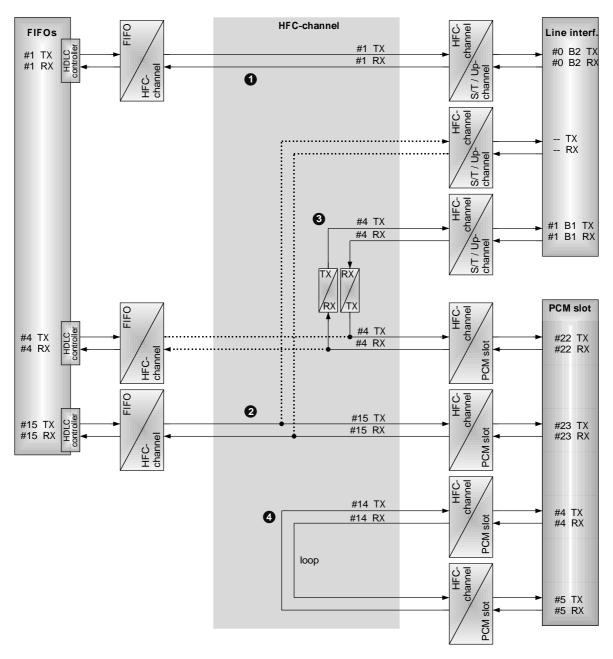


Figure 3.6: SM example

• FIFO-to-ST/Up

As HFC-channel and FIFO numbers are the same in SM, a selected ST/U_p -channel specifies the corresponding FIFO (and same in inverse, of course). There is no need of programming the HFC-channel assigner.

To set up a FIFO-to-ST/ U_p connection, the desired ST/ U_p -channel has to be chosen and the linked FIFO (see Table 3.3) has to be programmed. Due to the user's requirements, V_REV can be programmed either to normal or inverted bit order of the FIFO data.

HDLC or transparent mode (V_HDLC_TRP) can freely be chosen as well. In addition to the settings shown here, a periodic interrupt (in transparent mode) or a *end of frame* interrupt (in HDLC mode) can be enabled.

```
(SM 1 TX)
Register setup:
R_FIFO
                    : V_FIFO_DIR
                                                  (transmit FIFO)
                                                  (FIFO #1)
                    : V_FIFO_NUM = 1
                    : V_REV
                                                  (normal bit order)
A_CON_HDLC[1,TX]: V_IFF
                                                  (0x7E as inter frame fill)
                    : V_HDLC_TRP = 0
                                                  (HDLC mode)
                    : V_FIFO_IRQ
                                     = 7
                                                  (enable FIFO)
                    : V_DATA_FLOW = '000'
                                                  (FIFO \rightarrow ST/U_p , FIFO \rightarrow PCM)
```

Register setup:				(SM 1 RX)
R_FIFO	: V_FIFO_DIR		(receive FIFO)	_
	: V_FIFO_NUM	= 1	(FIFO #1)	
	: V_REV	= 0	(normal bit order)	
A_CON_HDLC[1,RX]: V_IFF	= 0	(0x7E as inter frame fill)	
	: V_HDLC_TRP	= 0	(HDLC mode)	
	: V_FIFO_IRQ	= 7	(enable FIFO)	
	: V_DATA_FLOW	= '000'	$(FIFO \leftarrow ST/U_p \)$	

2 FIFO-to-PCM

The FIFO-to-PCM connection can use different numbers for the involved HFC-channels and PCM time slots. The desired numbers are linked together in the PCM slot assigner.

As the line interface assigner links the HFC-channels to the ST/U_p -channels, every used HFC-channel blocks the connected ST/U_p -channel . In this example a FIFO is chosen, which is not assigned to a line interface channel. Thus there are no resources blocked.

Again, V_REV and V_HDLC_TRP can freely be chosen according to the user's requirements. As in the previous setting, a periodic interrupt in transparent mode or a *end of frame* interrupt in HDLC mode can be enabled.

Register setup:			(SM 2 TX)
R_FIFO	: V_FIFO_DIR	= 0	(transmit FIFO)
	: V_FIFO_NUM	= 15	(FIFO #15)
	: V_REV	= 0	(normal bit order)
A_CON_HDLC[15,TX	<pre>(]: V_IFF</pre>	= 0	(0x7E as inter frame fill)
	: V_HDLC_TRP	= 0	(HDLC mode)
	: V_FIFO_IRQ	= 7	(enable FIFO)
	: V_DATA_FLOW	<i>l</i> = '001'	$(FIFO \rightarrow ST/U_p \ , FIFO \rightarrow PCM)$
R_SLOT	: V_SL_DIR	= 0	(transmit slot)
	: V_SL_NUM	= 23	(slot #23)
A_SL_CFG[23,TX]	: V_CH_SDIR	= 0	(transmit HFC-channel)
	: V_CH_SNUM	= 15	(HFC-channel #15)
	: V_ROUT	= '10'	(data to pin STIO1)

Register setup:				(SM 2 RX)
R_FIFO	: V_FIFO_DIR	= 1	(receive FIFO)	
	: V_FIFO_NUM	= 15	(FIFO #15)	
	: V_REV	= 0	(normal bit order)	
A_CON_HDLC[15,RX	[]: V_IFF	= 0	(0x7E as inter frame fill)	
	: V_HDLC_TRP	= 0	(HDLC mode)	
	: V_FIFO_IRQ	= 7	(enable FIFO)	
	: V_DATA_FLOW	' = '001'	$(FIFO \leftarrow PCM)$	
R_SLOT	: V_SL_DIR	= 1	(receive slot)	
	: V_SL_NUM	= 23	(slot #23)	
A_SL_CFG[23,RX]	: V_CH_SDIR	= 1	(receive HFC-channel)	
	: V_CH_SNUM	= 15	(HFC-channel #15)	
	: V_ROUT	= '10'	(data from pin STIO2)	

9 PCM-to-ST/U_p

A direct PCM-to-ST/U_p coupling is shown in the third connection set. The array registers of FIFO[4,TX] and FIFO[4,RX] contain the data flow settings, so they must be configured and the FIFOs must be enabled to switch on the data transmission. This is done with V_FIFO_IRQ \neq 0 in register A_CON_HDLC[FIFO].

In receive direction, data is stored in the connected FIFO. But it is not used and needs not to be read. A FIFO overflow has no effect and can be ignored. Consequently, the V_HDLC_TRP setting has no effect to the transferred data between the PCM and the ST/U_p interface neither in receive nor in transmit direction. A PCM-to- ST/U_p connection operates always in transparent mode.

For a PCM-to-ST/ U_p connection, the data direction changes between the two interfaces. In detail, data is received on a RX line and then transmitted on a TX line to the other interface. Therefore, a TX-RX-exchanger is inserted for this connection. The blocked FIFOs are on the PCM side of the TX-RX-exchanger. Like shown in the register setting below, data direction of FIFO, ST/ U_p and PCM lines are never mixed up when programming the assigners in *Simple Mode*.

Register setup:				(SM 3 TX)
R_FIFO	: V_FIFO_DIR	= 0	(transmit FIFO)	
	: V_FIFO_NUM	= 4	(FIFO #4)	
	: V_REV	= 0	(normal bit order)	
A_CON_HDLC[4,TX]: V_IFF	= 0	(0x7E as inter frame fill)	
	: V_HDLC_TRP	= 1	(transparent mode)	
	: V_FIFO_IRQ	= 7	(enable data transmission)	
	: V_DATA_FLOW	= '110'	$(ST/U_p \to PCM)$	
R_SLOT	: V_SL_DIR	= 0	(transmit slot)	
	: V_SL_NUM	= 22	(slot #22)	
A_SL_CFG[22,TX]	: V_CH_SDIR	= 0	(transmit HFC-channel)	
	: V_CH_SNUM	= 4	(HFC-channel #4)	
	: V_ROUT	= '10'	(data to pin STIO1)	

Register setup:			(SM 3 RX)
R_FIFO	: V_FIFO_DIR	= 1	(receive FIFO)
	: V_FIFO_NUM	= 4	(FIFO #4)
	: V_REV	= 0	(normal bit order)
A_CON_HDLC[4,RX] : V_IFF	= 0	(0x7E as inter frame fill)
	: V_HDLC_TRP	= 1	(transparent mode)
	: V_FIFO_IRQ	= 7	(enable data transmission)
	: V_DATA_FLOW	<i>I</i> = '110'	$(\text{FIFO} \leftarrow \text{ST/U}_p \text{ , ST/U}_p \ \leftarrow \text{PCM})$
R_SLOT	: V_SL_DIR	= 1	(receive slot)
	: V_SL_NUM	= 22	(slot #22)
A_SL_CFG[22,RX]	: V_CH_SDIR	= 1	(receive HFC-channel)
	: V_CH_SNUM	= 4	(HFC-channel #4)
	: V_ROUT	= '10'	(data from pin STIO2)

4 PCM-to-PCM

A PCM-to-PCM configuration does not occupy any FIFO resources. An example is shown in the last connection set. HFC-channel[14,RX] is used to connect PCM slot[4,RX] to PCM slot[5,TX]. Data from PCM slot[5,RX] to PCM slot[4,TX] is transferred through HFC-channel[14,TX].

A HFC-channel loop is easily established by linking two PCM time slots to the same HFC-channel. It is a good choice to select a HFC-channel which is not assigned to a ST/U_p -channel to avoid waste of resources.

Register setu	p:	(SM 4 no. 1)
R_SLOT	: V_SL_DIR = 1	(receice slot)
	: V_SL_NUM = 4	(slot #4)
A_SL_CFG[4	I,RX]: $V_CH_SDIR = 1$	(receive HFC-channel)
	$: V_CH_SNUM = 14$	(HFC-channel #14)
	: V_ROUT = '11'	(data from pin STIO1)
R_SLOT	: $V_SL_DIR = 0$	(transmit slot)
	: $V_SL_NUM = 5$	(slot #5)
A_SL_CFG[5	$[S,TX]: V_CH_SDIR = 1$	(receive HFC-channel)
	: $V_CH_SNUM = 14$	(HFC-channel #14)
	: V_ROUT = '11'	(data to pin STIO2)

Register setu	р:	(SM 4 no. 2	2)
R_SLOT	: V_SL_DIR = 1	(receice slot)	
	$: V_SL_NUM = 5$	(slot #5)	
A_SL_CFG[5	$[S,RX]: V_CH_SDIR = 0$	(transmit HFC-channel)	
	$: V_CH_SNUM = 14$	(HFC-channel #14)	
	: V_ROUT = '10'	(data from pin STIO2)	
R_SLOT	: $V_SL_DIR = 0$	(transmit slot)	
	$: V_SL_NUM = 4$	(slot #4)	
A_SL_CFG[4	I,TX]: $V_CH_SDIR = 0$	(transmit HFC-channel)	
	$: V_CH_SNUM = 14$	(HFC-channel #14)	
	: V_ROUT = '10'	(data to pin STIO1)	

Rule

In *Simple Mode* for every used FIFO[n] the HFC-channel[n] is also used. This is valid in reverse case, too, except for PCM-to-PCM configurations.

3.4.2 Channel Select Mode (CSM)

3.4.2.1 Mode description

The *Channel Select Mode* (CSM) allows an arbitrary assignment between a FIFO and the connected HFC-channel as shown in Figure 3.7 (left side). Beyond this, it is possible to connect several FIFOs to one HFC-channel (Fig. 3.7, right side). This works in transmit and receive direction and can be used to connect one 8 kByte/s ST/U_p-channel or PCM time slot to multiple FIFO data streams, with lower data rate each. In this case the subchannel processor must be used.

Figure 3.7: HFC-channel assigner in CSM

Channel Select Mode is selected with V_DF_MD = '01' in register R_FIFO_MD. All FIFO array registers are indexed by the multi-register R_FIFO (address 0x0F) in this data flow mode.

3.4.2.2 HFC-channel assigner

The connection between a FIFO and a HFC-channel can be established by register A_CHANNEL which exists for every FIFO. For a selected FIFO, the HFC-channel to be connected must be written into V_CH_FNUM of register A_CHANNEL. Typically, the data direction in V_CH_FDIR is the same as the FIFO data direction V_FIFO_DIR in the multi-register R_FIFO. With the following register settings the HFC-channel assigner connects the selected FIFO to HFC-channel n.

```
Register setup:

A_CHANNEL[FIFO]: V_CH_FDIR = V_FIFO_DIR
: V_CH_FNUM = n
```

A direct connection between a PCM time slot and an ST/U_p -channel allocates one FIFO although this FIFO does not store any data. In *Channel Select Mode* – in contrast to *Simple Mode* – an arbitrary FIFO can be chosen. This FIFO must be enabled to switch on the data transmission.

3.4.2.3 Subchannel Processing

If more than one FIFO is connected to one HFC-channel, this HFC-channel number must be written into the V_CH_FNUM bitmap of all these FIFOs. In this case every FIFO contributes one or more bits to construct one HFC-channel byte. Unused bits of a HFC-channel byte can be set with an arbitrary mask byte in register A_SUBCH_CFG.

In transparent mode the FIFO data rate always remains 8 kByte/s. In HDLC mode the FIFO data rate is determined by the number of bits transmitted to the HFC-channel.

Please see Section 3.5 on page 108 for details concerning the subchannel processor.

3.4.2.4 Example for CSM

The example for a *Channel Select Mode* configuration in Figure 3.8 shows three bidirectional connections (\P FIFO-to-ST/U_p, \P FIFO-to-PCM and \P PCM-to-ST/U_p). The black lines illustrate data paths, whereas the dotted lines symbolize blocked resources. These are not used for data transmission, but they are necessary to enable the settings.

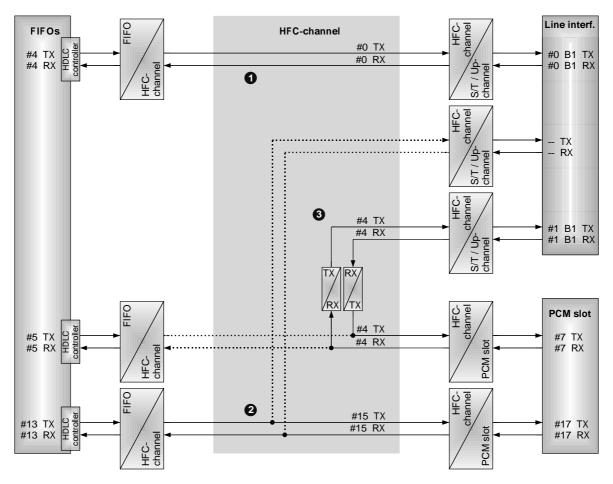


Figure 3.8: CSM example

The following settings demonstrate the required register values to establish the connections. All involved FIFOs have to be enabled with $V_FIFO_IRQ \neq 0$ in register A_CON_HDLC[FIFO].

The subchannel processor is not used in this example. For this reason, registers A_SUBCH_CFG and A_CH_MSK remain in their reset state.

• FIFO-to-ST/Up

HFC-channel and FIFO numbers can be chosen independently from each other. This is shown in the FIFO-to-ST/ U_p connection.

Due to the user's requirements, V_REV can be programmed either to normal or inverted bit order of the FIFO data.

HDLC or transparent mode (V_HDLC_TRP) can freely be chosen as well. In addition to the settings shown here, a periodic interrupt (in transparent mode) or a *end of frame* interrupt (in HDLC mode) can be enabled.

```
(CSM 1 TX)
Register setup:
R_FIFO
                   : V_FIFO_DIR
                                                 (transmit FIFO)
                   : V_FIFO_NUM
                                                 (FIFO #4)
                   : V_REV
                                     = 0
                                                 (normal bit order)
                                                 (0x7E as inter frame fill)
A\_CON\_HDLC[4,TX]: V\_IFF
                   : V_HDLC_TRP = 0
                                                 (HDLC mode)
                                                 (enable FIFO)
                   : V_FIFO_IRQ
                    : V_DATA_FLOW = '000'
                                                 (FIFO \rightarrow ST/U_p , FIFO \rightarrow PCM)
A\_CHANNEL[4,TX] : V\_CH\_FDIR
                                     = 0
                                                 (transmit HFC-channel)
                                                 (HFC-channel #0)
                   : V_CH_FNUM = 0
```

Register setup:				(CSM 1 RX)
R_FIFO	: V_FIFO_DIR	= 1	(receive FIFO)	
	: V_FIFO_NUM	= 4	(FIFO #4)	
	: V_REV	= 0	(normal bit order)	
A_CON_HDLC[4,RX]	: V_IFF	= 0	(0x7E as inter frame fill)	
	: V_HDLC_TRP	= 0	(HDLC mode)	
	: V_FIFO_IRQ	= 7	(enable FIFO)	
	: V_DATA_FLOW	= '000'	$(FIFO \leftarrow ST/U_p \;)$	
A_CHANNEL[4,RX]	: V_CH_FDIR	= 1	(receive HFC-channel)	
	: V_CH_FNUM	= 0	(HFC-channel #0)	

2 FIFO-to-PCM

The FIFO-to-PCM connection blocks one transmit and one receive ST/U_p -channel .

In this example, the selected HFC-channel is not assigned to a line interface channel. So there are no resources blocked.

Again, V_REV and V_HDLC_TRP can freely be chosen according to the user's requirements. As in the previous setting, HDLC mode is selected and the FIFOs are enabled with $V_FIFO_IRQ = 1$.

Register setup:			(CSM ② TX)
R_FIFO	: V_FIFO_DIR	= 0	(transmit FIFO)
	: V_FIFO_NUM	= 13	(FIFO #13)
	: V_REV	= 0	(normal bit order)
A_CON_HDLC[13,TX]: V_IFF	= 0	(0x7E as inter frame fill)
	: V_HDLC_TRP	= 0	(HDLC mode)
	: V_FIFO_IRQ	= 7	(enable FIFO)
	: V_DATA_FLOW	<i>I</i> = '001'	$(\text{FIFO} \rightarrow \text{ST/U}_p \text{ , FIFO} \rightarrow \text{PCM})$
A_CHANNEL[13,TX]	: V_CH_FDIR	= 0	(transmit HFC-channel)
	: V_CH_FNUM	= 15	(HFC-channel #15)
R_SLOT	: V_SL_DIR	= 0	(transmit slot)
	: V_SL_NUM	= 17	(slot #17)
A_SL_CFG[17,TX]	: V_CH_SDIR	= 0	(transmit HFC-channel)
	: V_CH_SNUM	= 15	(HFC-channel #15)
	: V_ROUT	= '10'	(data to pin STIO1)

Register setup:				(CSM 2 RX)
R_FIFO	: V_FIFO_DIR	= 1	(receive FIFO)	
	: V_FIFO_NUM	= 13	(FIFO #13)	
	: V_REV	= 0	(normal bit order)	
A_CON_HDLC[13,RX] : V_IFF	= 0	(0x7E as inter frame fill)	
	: V_HDLC_TRP	= 0	(HDLC mode)	
	: V_FIFO_IRQ	= 7	(enable FIFO)	
	: V_DATA_FLOW	= '001'	$(FIFO \leftarrow PCM)$	
A_CHANNEL[13,RX]	: V_CH_FDIR	= 1	(receive HFC-channel)	
	: V_CH_FNUM	= 15	(HFC-channel #15)	
R_SLOT	: V_SL_DIR	= 1	(receive slot)	
	: V_SL_NUM	= 17	(slot #17)	
A_SL_CFG[17,RX]	: V_CH_SDIR	= 1	(receive HFC-channel)	
	: V_CH_SNUM	= 15	(HFC-channel #15)	
	: V_ROUT	= '10'	(data from pin STIO2)	

3 PCM-to-ST/U_p

The PCM-to-ST/ U_p connection blocks one transmit and one receive FIFO. Although these FIFOs are not used, they must be enabled to switch on the data transmission between the PCM and the ST/ U_p interface.

In receive direction, data is stored in the connected FIFO. But it is not used and needs not to be read. A FIFO overflow has no effect and can be ignored. Consequently, the V_HDLC_TRP setting has no effect to the transferred data between the PCM and the ST/U_p interface neither in receive nor in transmit direction. A PCM-to- ST/U_p connection operates always in transparent mode.

For a PCM-to-ST/ U_p connection, the data direction changes between the two interfaces. In detail, data is received on a RX line and then transmitted on a TX line to the other interface. Therefore, a TX-RX-exchanger is inserted for this connection. The blocked FIFOs are on the PCM side of the TX-RX-exchanger, typically. 6

Register setup:				(CSM 3 TX)
R_FIFO	: V_FIFO_DIR	= 0	(transmit FIFO)	
	: V_FIFO_NUM	= 5	(FIFO #5)	
	: V_REV	= 0	(normal bit order)	
A_CON_HDLC[5,TX]]: V_IFF	= 0	(0x7E as inter frame fill)	
	: V_HDLC_TRP	= 1	(transparent mode)	
	: V_FIFO_IRQ	= 7	(enable data transmission)	
	: V_DATA_FLOW	= '110'	$(ST/U_p \ \to PCM)$	
A_CHANNEL[5,TX]	: V_CH_FDIR	= 0	(transmit HFC-channel)	
	: V_CH_FNUM	= 4	(HFC-channel #4)	
R_SLOT	: V_SL_DIR	= 0	(transmit slot)	
	: V_SL_NUM	= 7	(slot #7)	
A_SL_CFG[7,TX]	: V_CH_SDIR	= 0	(transmit HFC-channel)	
	: V_CH_SNUM	= 4	(HFC-channel #4)	
	: V_ROUT	= '10'	(data to pin STIO1)	

Register setup:			(CSM 3 RX)
R_FIFO	: V_FIFO_DIR	= 1	(receive FIFO)
	: V_FIFO_NUM	= 5	(FIFO #5)
	: V_REV	= 0	(normal bit order)
A_CON_HDLC[5,RX]	: V_IFF	= 0	(0x7E as inter frame fill)
	: V_HDLC_TRP	= 1	(transparent mode)
	: V_FIFO_IRQ	= 7	(enable data transmission)
	: V_DATA_FLOW	= '110'	$(FIFO \leftarrow ST/U_p \text{ , } ST/U_p \leftarrow PCM)$
A_CHANNEL[5,RX]	: V_CH_FDIR	= 1	(receive HFC-channel)
	: V_CH_FNUM	= 4	(HFC-channel #4)
R_SLOT	: V_SL_DIR	= 1	(receive slot)
	: V_SL_NUM	= 7	(slot #7)
A_SL_CFG[7,RX]	: V_CH_SDIR	= 1	(receive HFC-channel)
	: V_CH_SNUM	= 4	(HFC-channel #4)
	: V_ROUT	= '10'	(data from pin STIO2)

June 2012 Data Sheet 97 of 367

 $^{^6}$ It is not forbidden to connect the blocked FIFOs at the ST/U_p side of the TX-RX-exchanger. 'Advanced users' might find configurations where this is useful. But all typical configuration settings do not require this exceptional option.

Rule

In Channel Select Mode

- Every used HFC-channel requires at least one enabled FIFO (except for the PCM-to-PCM connection) with the same data direction.
- Every used PCM time slot requires one HFC-channel (except for the PCM-to-PCM connection where a full duplex connection with four time slots allocates only two HFC-channels).

3.4.3 FIFO Sequence Mode (FSM)

3.4.3.1 Mode description

In contrast to the PCM and ST/U_p-channels , the FIFO data rate is not fixed to 8 kByte/s in *FIFO Sequence Mode*. In the previous section the CSM allows the functional capability of a FIFO data rate with less than 8 kByte/s. This section shows how to use FIFOs with a data rate which is higher than 8 kByte/s. In transmit direction one FIFO can cyclically distribute its data to several HFC-channels. In opposite direction, received data from several HFC-channels can be collected cyclically in one FIFO (see Fig. 3.9, right side). A one-to-one connection between FIFO and HFC-channel is also possible in FSM, of course (Fig. 3.9, left side).

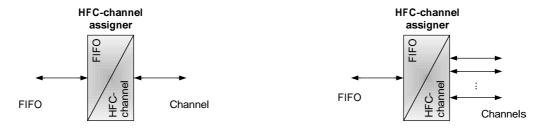


Figure 3.9: HFC-channel assigner in FSM

FIFO Sequence Mode is selected with V_DF_MD = '11' in register R_FIFO_MD. This data flow mode selects the multi-register R_FSM_IDX at the address 0x0F for some FIFO array registers (see Table 3.4 on page 86).

3.4.3.2 FIFO sequence

To achieve a FIFO data rate higher than 8 kByte/s, a FIFO must be connected to more than one HFC-channel. As there is only one register A_CHANNEL[FIFO] for each FIFO, the FSM programming method must differ from the previous modes. Some array registers which are indexed by R_FIFO must be indexed by R_FSM_IDX in FIFO Sequence Mode (see Table 3.4).

In FSM all FIFOs are organized in a list with up to 32 entries. Every list entry is assigned to a FIFO. The FIFO configuration can be set up as usual, i.e. HFC-channel allocation, flow controller programming and subchannel processing can be configured as described in the previous sections. Additionally, each list entry specifies the next FIFO of the sequence. The list is terminated by an 'end of list' entry. This procedure is shown in Figure 3.10 with j+1 list entries. The first FIFO of the sequence must be specified in register R_FIRST_FIFO.

A quite simple FSM configuration with every FIFO and every HFC-channel specified only one time in the list, would have the same data transmission result as the CSM with an equivalent FIFO \longleftrightarrow HFC-channel setup. But if a specific FIFO is selected n times in the list and connected to n different HFC-channels, the FIFO data rate is $n \cdot 8 \, \text{kByte/s}$.

The complete list is processed every $125 \,\mu s$ with ascending list index beginning with 0. Suppose the transmit FIFO m occurs several times in the list. Then the first FIFO byte is transferred to the first connected HFC-channel, the second byte of FIFO m to the second connected HFC-channel and so on. This is similar in receive data direction. The first byte written into FIFO m comes from the first connected HFC-channel, the second byte from the second connected HFC-channel and so on.

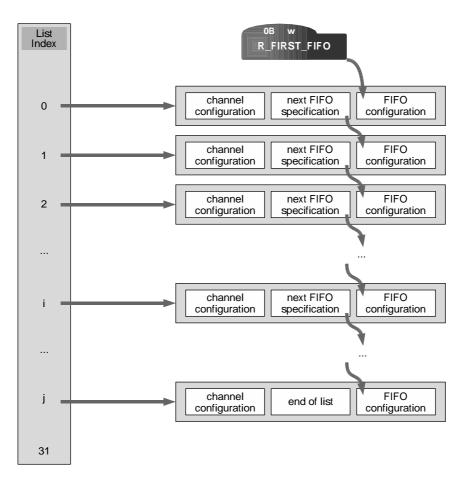


Figure 3.10: FSM list processing

3.4.3.3 FSM programming

Register R_FSM_IDX specifies the list index with bitmap V_IDX in the range of 0..31. R_FSM_IDX is a multi-register and has the same address as R_FIFO because in FSM it replaces R_FIFO for the list programming of the HFC-channel based registers. The array registers A_CHANNEL, A_FIFO_SEQ and A_SUBCH_CFG are indexed with the list index V_IDX instead of the FIFO number (see Table 3.4 on page 86). All other FIFO array registers remain indexed by R_FIFO.

Data flow

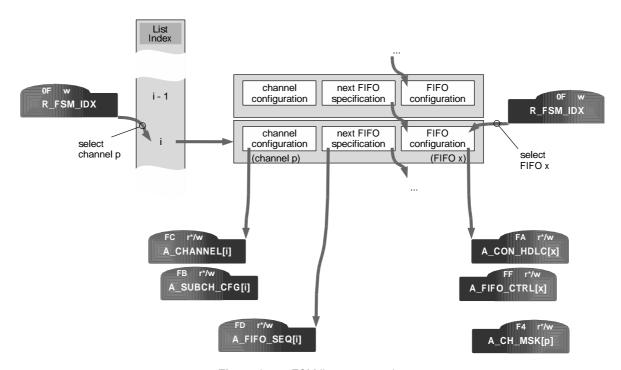


Figure 3.11: FSM list programming

The first processed FIFO has to be specified in register R_FIRST_FIFO with the direction bit V_FIRST_FIFO_DIR and the FIFO number V_FIRST_FIFO_NUM. The next FIFO has to be specified in register A_FIFO_SEQ[V_IDX = 0].

A FIFO handles more than one HFC-channel if a FIFO is specified several times in the 'next FIFO' entries.

The FIFO sequence list terminates with V_SEQ_END = '1' in register A_FIFO_SEQ. The other list entries must specify V_SEQ_END = '0' to continue the sequence processing with the next entry.

Programming of the HFC-channel and FIFO registers is shown in Figure 3.11. The connected HFC-channel array registers are indexed by the list index which is written into register R_FSM_IDX. On the other hand, FIFO array registers are indexed by register R_FIFO as usual.

- After writing the list index *i* into register R_FSM_IDX, the registers A_CHANNEL[*i*] and A_SUBCH_CFG[*i*] can be programmed to assign and configure an HFC-channel.
- The next FIFO in the sequence must be specified in register A_FIFO_SEQ[i].
- Supposed, that the previous list entry i-1 has specified A_FIFO_SEQ[i-1] = FIFO x, then the corresponding FIFO array registers have to be programmed by first setting R_FIFO = x. Afterwards, registers A_CON_HDLC[x], A_FIFO_CTRL[x] and A_CH_MSK can be programmed

in the usual way. Please note, that register A_CH_MSK requires the addressed HFC-channel to be specified in register R_FIFO (see remark on page 109).

3.4.3.4 Example for FSM

Figure 3.12 shows an example with three bidirectional connections (1 8 kByte/s-FIFO-to-ST/U_p, 2 8 kByte/s-FIFO-to-PCM and 3 16 kByte/s-FIFO-to-ST/U_p). The black lines illustrate data paths, whereas the dotted lines symbolize blocked HFC-channels. These are not used for data transmission, but they are necessary to enable the settings.

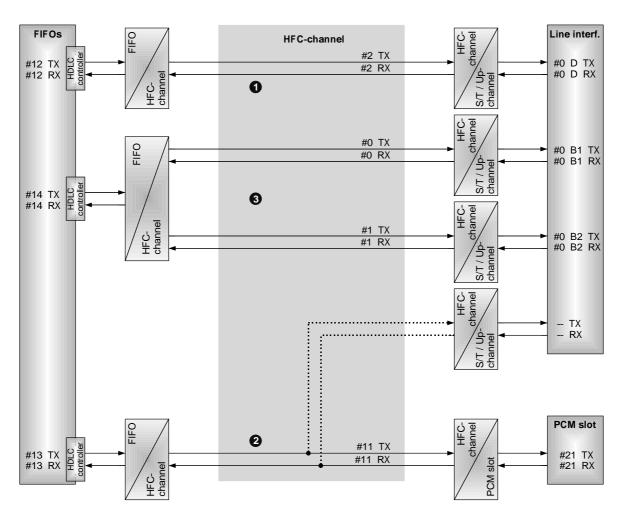


Figure 3.12: FSM example

The following settings demonstrate the required register values to establish the connections. All involved FIFOs have to be enabled with $V_FIFO_IRQ \neq 0$ in register A_CON_HDLC[FIFO].

The subchannel processor is not used in this example. For this reason, registers A_SUBCH_CFG and A_CH_MSK remain in their reset state.

All FIFOs can be arranged in arbitrary order. In the example the list specification of Table 3.5 is chosen. To select FIFO[12,TX] beeing the first FIFO, R_FIRST_FIFO is set as follows:

Register setup:

R_FIRST_FIFO: V_FIRST_FIFO_DIR = '0' (transmit FIFO)

: V_FIRST_FIFO_NUM = 12 (FIFO #12)

Table 3.5: List specification of the example in Figure 3.12

Example number	List index		Co	nnection
0	0	FIFO[12,TX]	\rightarrow	ST/U _p interf. #0, D TX
0	1	FIFO[12,RX]	\leftarrow	ST/U _p interf. #0, D RX
2	2	FIFO[13,RX]	\leftarrow	PCM time slot[21,RX]
2	3	FIFO[13,TX]	\rightarrow	PCM time slot[21,TX]
③	4	FIFO[14,TX]	\rightarrow	ST/U _p interf. #0, B1 TX
3	5	FIFO[14,RX]	\leftarrow	ST/U _p interf. #0, B1 RX
3	6	FIFO[14,TX]	\rightarrow	ST/U _p interf. #0, B2 TX
3	7	FIFO[14,RX]	\leftarrow	ST/U _p interf. #0, B2 RX

• FIFO-to-ST/Up

The bidirectional FIFO-to-ST/ U_p connection use the list indices 0 and 1. Registers A_CHANNEL and A_FIFO_SEQ are indexed by the list index.

Register setup:			(FSM 1 list indices 0 and 1)
R_FSM_IDX	: V_IDX	= 0	(List index #0, used for FIFO[12,TX])
A_CHANNEL[#0]	: V_CH_FDIR	= 0	(transmit HFC-channel)
	: V_CH_FNUM	= 2	(HFC-channel #2)
A_FIFO_SEQ[#0]	: V_NEXT_FIFO_DIR	= 1	(next: receive FIFO)
	: V_NEXT_FIFO_NUM	= 12	(next: FIFO #12)
	: V_SEQ_END	= 0	(continue)
R_FSM_IDX	: V_IDX	= 1	(List index #1, used for FIFO[12,RX])
A_CHANNEL[#1]	: V_CH_FDIR	= 1	(receive HFC-channel)
	: V_CH_FNUM	= 2	(HFC-channel #2)
A_FIFO_SEQ[#1]	: V_NEXT_FIFO_DIR	= 1	(next: receive FIFO)
	: V_NEXT_FIFO_NUM	= 13	(next: FIFO #13)
	: V_SEQ_END	= 0	(continue)

The FIFO programming sequence is indexed by the FIFO number and direction. V_REV, V_HDLC_TRP and V_FIFO_IRQ can be programmed due to the user's requirements. FIFO[12,TX] and FIFO[12,RX] must both be enabled.

Register setup:		(FSM 1 FIFO programming for list indices 0 and 1)
R_FIFO	: V_FIFO_DIR	= 0	(transmit FIFO)
	: V_FIFO_NUM	= 12	(FIFO #12)
	: V_REV	= 0	(normal bit order)
A_CON_HDLC[12,TX	[]: V_IFF	= 0	(0x7E as inter frame fill)
	: V_HDLC_TRP	= 0	(HDLC mode)
	: V_FIFO_IRQ	= 7	(enable FIFO)
	: V_DATA_FLOW	= '000'	$(FIFO \rightarrow ST/U_p \;, FIFO \rightarrow PCM)$
R_FIFO	: V_FIFO_DIR	= 1	(receive FIFO)
	: V_FIFO_NUM	= 12	(FIFO #12)
	: V_REV	= 0	(normal bit order)
A_CON_HDLC[12,RX	(]: V_IFF	= 0	(0x7E as inter frame fill)
	: V_HDLC_TRP	= 0	(HDLC mode)
	: V_FIFO_IRQ	= 7	(enable FIFO)
	: V_DATA_FLOW	= '000'	$(FIFO \leftarrow ST/U_n)$

2 FIFO-to-PCM

The following two list entries (indices 2 and 3) define the bidirectional FIFO-to-PCM connection.

Using two HFC-channels which are not assigned to line interface channels does not block any resources.

Register setup:		(FSM 2 list indices 2 and 3)
R_FSM_IDX : V_IDX	= 2	(List index #2, used for FIFO[13,RX])
A_CHANNEL[#2] : V_CH_FDIR	= 1	(receive HFC-channel)
: V_CH_FNUM	= 11	(HFC-channel #11)
A_FIFO_SEQ[#2]: V_NEXT_FIFO_DIR	= 0	(next: transmit FIFO)
: V_NEXT_FIFO_NUM	= 13	(next: FIFO #13)
: V_SEQ_END	= 0	(continue)
R_FSM_IDX : V_IDX	= 3	(List index #3, used for FIFO[13,TX])
A_CHANNEL[#3] : V_CH_FDIR	= 0	(transmit HFC-channel)
: V_CH_FNUM	= 11	(HFC-channel #11)
A_FIFO_SEQ[#3]: V_NEXT_FIFO_DIR	= 0	(next: transmit FIFO)
: V_NEXT_FIFO_NUM	= 14	(next: FIFO #14)
: V_SEQ_END	= 0	(continue)

Register setup:		(FSM 2	RX FIFO programming for list indices 2 and 3)
R_FIFO	: V_FIFO_DIR	= 1	(receive FIFO)
	: V_FIFO_NUM	= 13	(FIFO #13)
	: V_REV	= 0	(normal bit order)
A_CON_HDLC[13,RX	[]: V_IFF	= 0	(0x7E as inter frame fill)
	: V_HDLC_TRP	= 0	(HDLC mode)
	: V_FIFO_IRQ	= 7	(enable FIFO)
	: V_DATA_FLOW	= '001'	$(FIFO \leftarrow PCM)$
R_SLOT	: V_SL_DIR	= 1	(receive slot)
	: V_SL_NUM	= 21	(slot #21)
A_SL_CFG[21,RX]	: V_CH_SDIR	= 1	(receive HFC-channel)
	: V_CH_SNUM	= 11	(HFC-channel #11)
	: V_ROUT	= '10'	(data from pin STIO2)

Register setup:	_	(FSM 6	TX FIFO programming for list indices 2 and 3)
R_FIFO	: V_FIFO_DIR	= 0	(transmit FIFO)
	: V_FIFO_NUM	= 13	(FIFO #13)
	: V_REV	= 0	(normal bit order)
A_CON_HDLC[13,TX	X]: V_IFF	= 0	(0x7E as inter frame fill)
	: V_HDLC_TRP	= 0	(HDLC mode)
	: V_FIFO_IRQ	= 7	(enable FIFO)
	: V_DATA_FLOW	= '001'	$(\text{FIFO} \rightarrow \text{ST/U}_p \text{ , FIFO} \rightarrow \text{PCM})$
R_SLOT	: V_SL_DIR	= 0	(transmit slot)
	: V_SL_NUM	= 21	(slot #21)
A_SL_CFG[21,TX]	: V_CH_SDIR	= 0	(transmit HFC-channel)
	: V_CH_SNUM	= 11	(HFC-channel #11)
	: V_ROUT	= '10'	(data to pin STIO1)

3 FIFO to multiple ST/U_p-channels

The last setting shows a channel bundling configuration of one FIFO to two B-channels of the ST/U_p interface for both transmit and receive directions. The FIFOs have a data rate of $16\,kByte/s$ each.

Register setup:		(FSM 3 list indices 4 and 5)
R_FSM_IDX : V_IDX	= 4	(List index #4, used for FIFO[14,TX])
A_CHANNEL[#4] : V_CH_FDIR	= 0	(transmit HFC-channel)
: V_CH_FNUM	= 0	(HFC-channel #0)
A_FIFO_SEQ[#4]: V_NEXT_FIFO_DIR	= 1	(next: receive FIFO)
: V_NEXT_FIFO_NUM	1 = 14	(next: FIFO #14)
: V_SEQ_END	= 0	(continue)
R_FSM_IDX : V_IDX	= 5	(List index #5, used for FIFO[14,RX])
A_CHANNEL[#5] : V_CH_FDIR	= 1	(receive HFC-channel)
: V_CH_FNUM	= 0	(HFC-channel #0)
A_FIFO_SEQ[#5]: V_NEXT_FIFO_DIR	= 0	(next: transmit FIFO)
: V_NEXT_FIFO_NUM	1 = 14	(next: FIFO #14)
: V_SEQ_END	= 0	(continue)

Register setup:			(FSM 3 FIFO programming for list indices 4 and 5)
R_FIFO	: V_FIFO_DIR	= 0	(transmit FIFO)
	: V_FIFO_NUM	= 14	(FIFO #14)
	: V_REV	= 0	(normal bit order)
A_CON_HDLC[14,TX]	: V_IFF	= 0	(0x7E as inter frame fill)
	: V_HDLC_TRP	= 0	(HDLC mode)
	: V_FIFO_IRQ	= 7	(enable FIFO)
	: V_DATA_FLOW	= '000'	$(FIFO \rightarrow ST/U_p \ , FIFO \rightarrow PCM)$
R_FIFO	: V_FIFO_DIR	= 1	(receive FIFO)
	: V_FIFO_NUM	= 14	(FIFO #14)
	: V_REV	= 0	(normal bit order)
A_CON_HDLC[14,RX]	: V_IFF	= 0	(0x7E as inter frame fill)
	: V_HDLC_TRP	= 0	(HDLC mode)
	: V_FIFO_IRQ	= 7	(enable FIFO)
	: V_DATA_FLOW	= '000'	$(FIFO \leftarrow ST/U_p\)$

When the FIFO[14,TX] and FIFO[14,RX] are used for the second time, they need not to be programmed again. So just the HFC-channels have to programmed for the list indices #6 and #7.

Register setup:		(FSM 3 list indices 6 and 7)
R_FSM_IDX : V_IDX	= 6	(List index #6, used for FIFO[14,TX])
A_CHANNEL[#6] : V_CH_FDIR	= 0	(transmit HFC-channel)
: V_CH_FNUM	= 1	(HFC-channel #1)
A_FIFO_SEQ[#6]: V_NEXT_FIFO_DIR	= 1	(next: receive FIFO)
: V_NEXT_FIFO_NUM	= 14	(next: FIFO #14)
: V_SEQ_END	= 0	(continue)
R_FSM_IDX : V_IDX	= 7	(List index #7, used for FIFO[14,RX])
A_CHANNEL[#7] : V_CH_FDIR	= 1	(receive HFC-channel)
: V_CH_FNUM	= 1	(HFC-channel #1)
A_FIFO_SEQ[#7]: V_NEXT_FIFO_DIR	= 0	
: V_NEXT_FIFO_NUM	= 0	
: V_SEQ_END	= 1	(end of list)

3.5 Subchannel Processing

3.5.1 Overview

Data transmission between a FIFO and the connected HFC-channel can be controlled by the subchannel processor. The behavior of this functional unit depends on the selected data flow mode (SM, CSM or FSM) and the operation mode of the HDLC controller (transparent or HDLC mode). The subchannel controller allows to process less than 8 bits of the transferred FIFO data bytes.

The subchannel processor cannot be used for direct PCM-to-ST/ U_p or PCM-to-PCM connections, because a FIFO must participate in the data flow.

A general overview of the subchannel processor in transmit direction is shown as a simplified example in Figure 3.13. Three transmit FIFOs are connected to one HFC-channel. Details of subchannel processing are described in the following sections, partitioned into the different modes of the data flow and the HDLC controller.

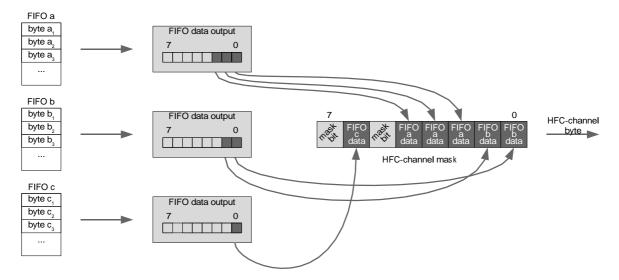


Figure 3.13: General structure of the subchannel processor shown with an example of three connected FIFOs

The essence of the subchannel processor is a bit extraction / insertion unit for every FIFO and a byte mask for every HFC-channel. Therefore, the subchannel processor is divided into two parts A and B like shown in Figure 3.14. The behaviour of the FIFO oriented part A depends on the HDLC or transparent mode selection. The HFC-channel oriented part B has a different behaviour due to the selected data flow SM or CSM/FSM.

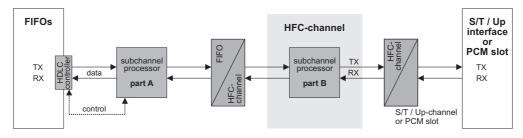


Figure 3.14: Location of the subchannel parts A and B in the data flow diagram

XHFC-2SU Data flow

3.5.2 Subchannel registers

The FIFO bit extraction / insertion requires two register settings. V_BIT_CNT defines the number of bits to be extracted / inserted. These bits are always aligned to position 0 in the FIFO data. This bit field can freely be placed in the HFC-channel byte. For this, the start bit can be selected with V_START_BIT in the range of 0..7. Both values are located in register A_SUBCH_CFG[FIFO].

The HFC-channel mask can be stored in register A_CH_MSK[FIFO]. This mask is only used for transmit data. The processed FIFO bits are stored in this register, so it must be re-initialized after changing the settings in A_SUBCH_CFG[FIFO]. Each HFC-channel has its own mask byte. To write this byte for HFC-channel [n,TX], the HFC-channel must be written into the multi-register R_FIFO first. The desired mask byte m can be written with A_CH_MSK = m after this index selection.

Important!

Typically, the multi-register R_FIFO contains always a FIFO index. There is one exception where the R_FIFO value has a different meaning: The HFC-channel mask byte A_CH_MSK is programmed by writing the \underline{HFC} -channel into the $\underline{R_FIFO}$ register.

The default subchannel configuration in register A_SUBCH_CFG leads to a transparent behavior. That means, only complete data bytes are transmitted in receive and transmit direction.

3.5.3 Details of the FIFO oriented part of the subchannel processor (part A)

The subchannel processor part A lies between the HDLC controller and the HFC-channel assigner. Figure 3.15 shows the block diagram for both receive and transmit data directions.

At the HDLC controller side, there are a data path and two control lines. These communicate the number of bits to be processed and the HDLC/transparent mode selection between the two modules. In transparent mode always one byte is transferred between the HDLC controller and the subchannel controller part A every 125 µs cycle. In HDLC mode the number of bits is specified by the subchannel bitmap V_BIT_CNT in register A_SUBCH_CFG[FIFO].

On the other side, the data path between subchannel processor part A and the HFC-channel assigner transfers always one byte in transmit and receive direction during every 125 µs cycle.

3.5.3.1 FIFO transmit operation in transparent mode

In transparent mode every FIFO has a data rate of $8\,kByte/s$. Every $125\,\mu s$ one byte of a FIFO is processed. The number of bits specified in V_BIT_CNT is placed at position V_START_BIT + V_BIT_CNT - 1..V_START_BIT while the other bits are not used and will be overwritten from the HFC-channel mask in part B of the subchannel processor.

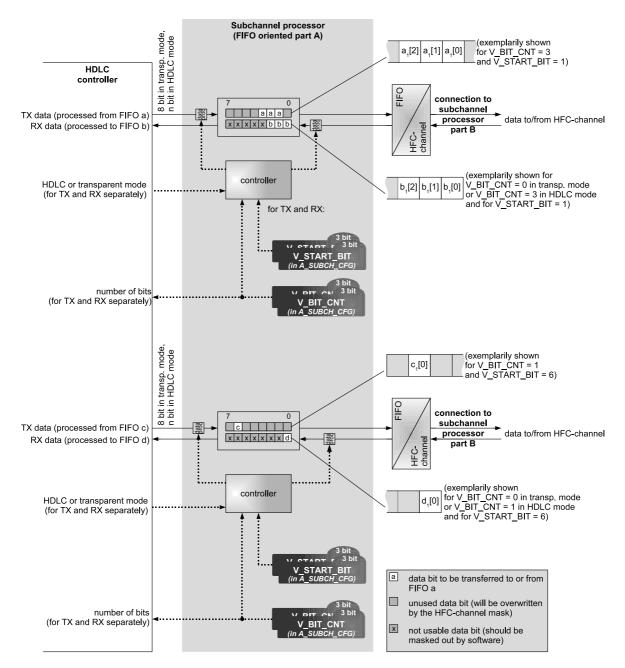


Figure 3.15: Part A of the subchannel processor

XHFC-2SU Data flow

3.5.3.2 FIFO transmit operation in HDLC mode

The HDLC mode allows to reduce the data rate of a FIFO. With every 125 µs cycle the subchannel processor requests V_BIT_CNT bits from the HDLC controller. The FIFO data rate is

$$DR_{FIFO} = \begin{cases} V_BIT_CNTkBit/s : V_BIT_CNT > 0 \\ 8kBit/s : V_BIT_CNT = 0 \end{cases}$$

or might be a little lower due to the bit stuffing (zero insertion).

3.5.3.3 FIFO receive operation in transparent mode

The subchannel processor part A receives one byte every 125 µs cycle. Typically, only some bits – depending on the usage mode of this receive channel – contain valid data. V_START_BIT defines the position of the valid bit field in the received HFC-channel byte. The subchannel processor part A shifts the valid bit field to position 0 before a whole byte is transferred to the HDLC controller. The invalid bits must be masked out by software. The FIFO data rate is always 8 kByte/s in this configuration.

If transparent mode is selected, V_BIT_CNT must always be '000' in receive direction. The number of valid bits must be handled by the software.

3.5.3.4 FIFO receive operation in HDLC mode

From every received HFC-channel data byte only V_BIT_CNT bits beginning at position V_START_BIT contain valid data. Only these bits are transferred to the HDLC controller. So the FIFO data rate is

$$DR_{FIFO} = \left\{ \begin{array}{ccc} \text{V_BIT_CNTkBit/s} & : & \text{V_BIT_CNT} > 0 \\ & & 8 \, \text{kBit/s} & : & \text{V_BIT_CNT} = 0 \end{array} \right.$$

or might be a little lower due to the bit stuffing (zero deletion).

3.5.4 Details of the HFC-channel oriented part of the subchannel processor (part B)

Part B of the subchannel processor is located inside the HFC-channel area. With every $125\,\mu s$ cycle it transmits and receives always one data byte to/from the connected interface (either PCM or ST/U_p interface). On the other side, to/from every connected HFC-channel assigner one byte is transferred in both transmit and receive directions. Figure 3.16 shows the block diagram of this module.

3.5.4.1 FIFO transmit operation in SM

As the FIFO and HFC-channel numbers are the same in *Simple Mode*, only one FIFO can be connected to a HFC-channel. Subchannel processing can do nothing more than masking out some bits of every transmitted data byte.

The specified bit field is put into the HFC-channel mask byte before the data byte is transmitted to the connected interface.

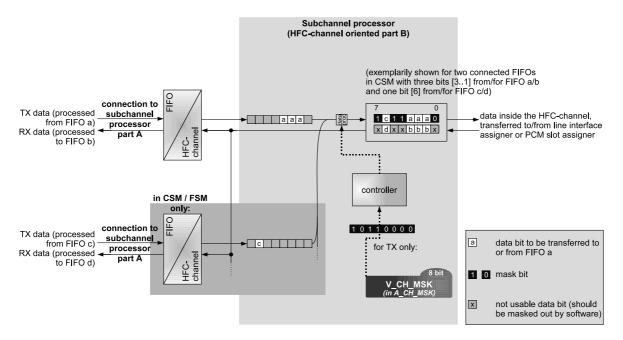


Figure 3.16: Part B of the subchannel processor

3.5.4.2 FIFO transmit operation in CSM and FSM

In *Channel Select Mode* and *FIFO Sequence Mode*, several FIFOs can contribute data to one HFC-channel data byte. From every connected HFC-channel assigner, one or more bits are extracted and are joined to a single HFC-channel data byte.

Here, the subchannel processor works in the same way as in *Simple Mode*, except that multiple bit insertion is performed. All FIFOs which contribute data bits to the HFC-channel byte should specify different bit locations to avoid overwriting data.

3.5.4.3 FIFO receive operation in SM

The received data byte is transferred to the HFC-channel assigner without modification. Part B of the subchannel processor has no effect to the receive data. Typically, only some bits contain valid data which will be extracted by the part A of the subchannel processor.

3.5.4.4 FIFO receive operation in CSM and FSM

If there are several FIFOs connected to one receive HFC-channel in *Channel Select Mode* or *FIFO Sequence Mode*, every received data byte is transferred to all connected HFC-channel assigners without modification. Part B of the subchannel processor has no effect to the receive data. Typically, the HFC-channel data byte contains bit fields for several FIFOs which will be extracted by their part A of the subchannel processor.

3.5.5 Subchannel example for SM

The subchannel processing example in Figure 3.17 shows two bidirectional configurations (\bigcirc FIFOto-ST/U_p and \bigcirc FIFO-to-PCM) in *Simple Mode*.

Please note!

All subchannel examples in this document have always the same number of bits and the same start bit for corresponding transmit and receive FIFOs. Actually, transmit and receive configuration settings are independently from each other. The settings are chosen for clearness and can simply be reproduced with looped data pathes.

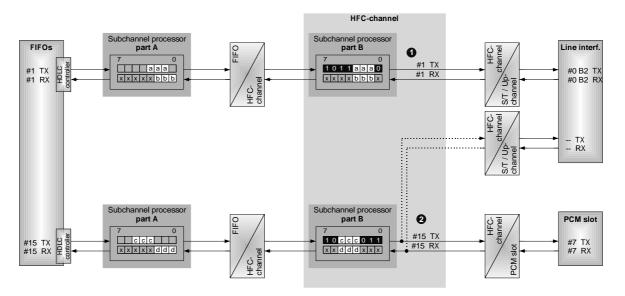


Figure 3.17: SM example with subchannel processor

\bullet FIFO-to-ST/U_p (TX)

The first setting shows a FIFO-to-ST/U_p data transmission in transparent mode.

Register A_SUBCH_CFG[FIFO] defines three bits [2..0] to be transmitted from each FIFO byte. These bits have the position [3..1] in the HFC-channel data byte.

All other data bits in the HFC-channel byte are defined by the HFC-channel mask V_CH_MSK = '1011 0000' in register A_CH_MSK. This array register must be selected by writing the HFC-channel number and direction into register R_FIFO. The mask bits [3..1] are *don't care* because they are overwritten from the FIFO data.

A detailed overview of the transmitted data is shown in Table 3.6. The first data byte in FIFO[1,TX] is a_1 , the second byte is a_2 , and so on. In transparent mode only $(a_1[2..0], a_2[2..0], ...)$ are placed in the HFC-channel bytes at the location [3..1] and $(a_1[7..3], a_2[7..3], ...)$ are ignored and replaced by the HCF-channel mask.

Register setup:			(SM ① TX)
R_FIFO	: V_FIFO_DIR	= 0	(transmit FIFO)
	: V_FIFO_NUM	= 1	(FIFO #1)
	: V_REV	= 0	(normal bit order)
A_CON_HDLC[1,TX]	: V_IFF	= 0	(0x7E as inter frame fill)
	: V_HDLC_TRP	= 1	(transparent mode)
	: V_FIFO_IRQ	= 7	(enable FIFO)
	: V_DATA_FLOW	= '000'	(FIFO \rightarrow ST/U _p , FIFO \rightarrow PCM)
A_SUBCH_CFG[1,TX]: V_BIT_CNT	= 3	(process 3 bits)
	: V_START_BIT	= 1	(start with bit 1)
	: V_LOOP_FIFO	= 0	(normal operation)
	: V_INV_DATA	= 0	(normal data transmission)
R_FIFO	: V_FIFO_DIR	= 0	(transmit HFC-channel)
	: V_FIFO_NUM	= 1	(HFC-channel #1)
	: V_REV	= 0	(normal bit order)
A_CH_MSK[1,TX]	: V_CH_MSK	= '1011 0000'	(mask byte)

• FIFO-to-ST/U_p (RX)

Only three bits [3..1] from the received HFC-channel byte are assumed to be valid data. Nevertheless, the number of received bits must be set to the value $V_BIT_CNT = 0$ which means 'one byte'. The start position is specified with $V_START_BIT = 1$ in register A_SUBCH_CFG. As the received bit field is aligned to position 0, these bits represent FIFO data b[2..0].

A detailed overview of the received data is shown in Table 3.7. The first data byte in FIFO[1,RX] is b_1 , the second byte is b_2 , and so on. Only $(b_1[2..0], b_2[2..0], ...)$ contain valid data and $(b_1[7..3], b_2[7..3], ...)$ must be masked out by software.

```
(SM 1 RX)
Register setup:
R_FIFO
                     : V_FIFO_DIR
                                      = 1
                                                   (receive FIFO)
                                                   (FIFO #1)
                     : V_FIFO_NUM = 1
                     : V_REV
                                      = 0
                                                   (normal bit order)
A_CON_HDLC[1,RX] : V_IFF
                                      = 0
                                                   (0x7E as inter frame fill)
                     : V_HDLC_TRP
                                                   (transparent mode)
                     : V_FIFO_IRQ
                                                   (enable FIFO)
                     : V_DATA_FLOW = '000'
                                                   (FIFO \leftarrow ST/U_p \ )
A_SUBCH_CFG[1,RX]: V_BIT_CNT
                                                   (process 8 bits)
                     : V_START_BIT = 1
                                                   (start with bit 1)
                     : V_LOOP_FIFO = 0
                                                   (normal operation)
                     : V_INV_DATA
                                                   (normal data transmission)
```


Table 3.6: Subchannel processing according to Figure 3.17 (SM **1** TX, transparent mode)

	7 0
HFC-channel mask:	1 0 1 1 0 0 0 0
HFC-channel transmit byte 1:	$\begin{array}{c c c c c c c c c c c c c c c c c c c $
HFC-channel transmit byte 2:	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
HFC-channel transmit byte 3:	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$
	•••

Table 3.7: Subchannel processing according to Figure 3.17 (SM **1** RX, transparent mode)

	7 0
HFC-channel receive byte 1:	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$
HFC-channel receive byte 2:	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$
HFC-channel receive byte 3:	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$

2 FIFO-to-PCM (TX)

The second *Simple Mode* configuration connects a FIFO in HDLC mode with the PCM interface ⁷. Bitmap V_BIT_CNT in register A_SUBCH_CFG[FIFO] defines three FIFO data bits to be transmitted during every 125 µs cycle. The bit field location in the HFC-channel data byte is specified by bitmap V_START_BIT in the same register.

All other data bits in the HFC-channel are defined by the HFC-channel mask in register A_CH_MSK. This array register must be selected by writing the HFC-channel number and direction into register R_FIFO. The mask bits [5..3] are *don't care* because they are overwritten from the FIFO data.

A detailed overview of the transmitted data is shown in Table 3.8. The first data byte in FIFO[15,TX] is c_1 , the second byte is c_2 , and so on. In HDLC mode, FIFO bytes are dispersed among several HFC-channel bytes.

June 2012 Data Sheet 115 of 367

⁷HDLC bit stuffing is not shown in this example.

Register setup:			(SM 2 TX)
R_FIFO	: V_FIFO_DIR	= 0	(transmit FIFO)
	: V_FIFO_NUM	= 15	(FIFO #15)
	: V_REV	= 0	(normal bit order)
A_CON_HDLC[15,TX]	: V_IFF	= 0	(0x7E as inter frame fill)
	: V_HDLC_TRP	= 0	(HDLC mode)
	: V_FIFO_IRQ	= 7	(enable FIFO)
	: V_DATA_FLOW	= '001'	(FIFO \rightarrow ST/U $_p$, FIFO \rightarrow PCM)
A_SUBCH_CFG[15,TX]	: V_BIT_CNT	= 3	(process 3 bits)
	: V_START_BIT	= 3	(start with bit 3)
	: V_LOOP_FIFO	= 0	(normal operation)
	: V_INV_DATA	= 0	(normal data transmission)
R_FIFO	: V_FIFO_DIR	= 0	(transmit HFC-channel)
	: V_FIFO_NUM	= 15	(HFC-channel #15)
	: V_REV	= 0	(normal bit order)
A_CH_MSK[15,TX]	: V_CH_MSK	= '1011 0011'	(mask byte)
R_SLOT	: V_SL_DIR	= 0	(transmit slot)
	: V_SL_NUM	= 7	(slot #7)
A_SL_CFG[7,TX]	: V_CH_SDIR	= 0	(transmit HFC-channel)
	: V_CH_SNUM	= 15	(HFC-channel #15)
	: V_ROUT	= '10'	(data to pin STIO1)

2 FIFO-to-PCM (RX)

Only three bits [5..3] from the received HFC-channel byte are assumed to be valid data. This is done with bitmaps V_BIT_CNT = 3 and V_START_BIT = 3 in register A_SUBCH_CFG. The bit field is aligned to position 0 and transferred to the HDLC controller. There, FIFO data bytes are constructed from several received bit fields.

A detailed overview of the received data is shown in Table 3.9. The first data byte in FIFO[15,RX] is d_1 , the second byte is d_2 , and so on. In HDLC mode, FIFO bytes are constructed from several HFC-channel bytes.

Register setup:				(SM 2 RX)
R_FIFO	: V_FIFO_DIR	= 1	(receive FIFO)	
	: V_FIFO_NUM	= 15	(FIFO #15)	
	: V_REV	= 0	(normal bit order)	
A_CON_HDLC[15,RX] : V_IFF	= 0	(0x7E as inter frame fill)	
	: V_HDLC_TRP	= 0	(HDLC mode)	
	: V_FIFO_IRQ	= 7	(enable FIFO)	
	: V_DATA_FLOW	= '001'	$(\text{FIFO} \leftarrow \text{PCM})$	
A_SUBCH_CFG[15,R]	X]: V_BIT_CNT	= 3	(process 3 bits)	
	: V_START_BIT	= 3	(start with bit 3)	
	: V_LOOP_FIFO	= 0	(normal operation)	
	: V_INV_DATA	= 0	(normal data transmission)	
R_SLOT	: V_SL_DIR	= 1	(receive slot)	
	: V_SL_NUM	= 7	(slot #7)	
A_SL_CFG[7,RX]	: V_CH_SDIR	= 1	(receive HFC-channel)	
	: V_CH_SNUM	= 15	(HFC-channel #15)	
	: V_ROUT	= '10'	(data from pin STIO2)	

Table 3.8: Subchannel processing according to Figure 3.17 (SM **2** TX, HDLC mode)

	7							0
HFC-channel mask:	1	0	0	0	0	0	1	1
HFC-channel transmit byte 1:	1	0	$c_1[2]$	$c_1[1]$	$c_1[0]$	0	1	1
HFC-channel transmit byte 2:	1	0	$c_1[5]$	$c_1[4]$	$c_1[3]$	0	1	1
HFC-channel transmit byte 3:	1	0	$c_2[0]$	$c_1[7]$	$c_{1}[6]$	0	1	1
HFC-channel transmit byte 4:	1	0	$c_{2}[3]$	$c_2[2]$	$c_2[1]$	0	1	1

Table 3.9: Subchannel processing according to Figure 3.17 (SM **2** RX, HDLC mode)

	7 0
HFC-channel receive byte 1:	$x \mid x \mid d_1[2] \mid d_1[1] \mid d_1[0] \mid x \mid x \mid x$
HFC-channel receive byte 2:	$x \mid x \mid d_1[5] \mid d_1[4] \mid d_1[3] \mid x \mid x \mid x$
HFC-channel receive byte 3:	$x \mid x \mid d_2[0] \mid d_1[7] \mid d_1[6] \mid x \mid x \mid x$
HFC-channel receive byte 4:	$x \mid x \mid d_2[3] \mid d_2[2] \mid d_2[1] \mid x \mid x \mid x$
•••	

June 2012 Data Sheet 117 of 367

3.5.6 Subchannel example for CSM

In *Channel Select Mode* up to 8 FIFOs can be assigned to one HFC-channel if only 1 bit is processed by every FIFO. The example in Figure 3.18 shows two bidirectional configurations ($\mathbf{0}$ FIFO-to-ST/U_p and $\mathbf{0}$ FIFO-to-PCM) with two FIFOs per direction each.

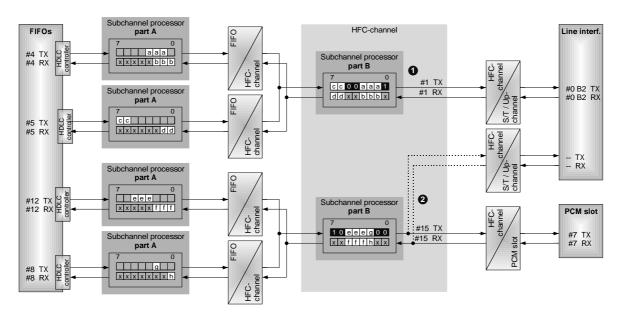


Figure 3.18: CSM example with subchannel processor

\bullet FIFO-to-ST/U_p (TX)

In the first setting two transmit FIFOs are connected to one HFC-channel. Transparent mode is selected in this example.

Registers A_SUBCH_CFG[FIFO] of FIFO[4,TX] and FIFO[5,TX] define both, the number of bits to be extracted from the FIFO data bytes and their position in the HFC-channel byte.

The HFC-channel mask in register A_CH_MSK defines the bit values that are not used for FIFO data. The array register must be selected by writing the HFC-channel number and direction into register R_FIFO. The mask bits [7..6, 3..1] are *don't care* because they are overwritten from the FIFO data.

A detailed overview of the transmitted data is shown in Table 3.10. The first data byte in FIFO[4,TX] is a_1 , the second byte is a_2 , and so on. FIFO[5,TX] is represented by the data bytes c_1 , c_2 , and so on.

Register setup:			(CSM ① TX)
R_FIFO	: V_FIFO_DIR	= 0	(transmit FIFO)
	: V_FIFO_NUM	= 4	(FIFO #4)
	: V_REV	= 0	(normal bit order)
A_CON_HDLC[4,TX]	: V_IFF	= 0	(0x7E as inter frame fill)
	: V_HDLC_TRP	= 1	(transparent mode)
	: V_FIFO_IRQ	= 7	(enable FIFO)
	: V_DATA_FLOW	= '000'	$(FIFO \rightarrow ST/U_p \;, FIFO \rightarrow PCM)$
$A_{\sf CHANNEL}[4,\!TX]$: V_CH_FDIR	= 0	(transmit HFC-channel)
	: V_CH_FNUM	= 1	(HFC-channel #1)
A_SUBCH_CFG[4,TX]]: V_BIT_CNT	= 3	(process 3 bits)
	: V_START_BIT	= 1	(start with bit 1)
	: V_LOOP_FIFO	= 0	(normal operation)
	: V_INV_DATA	= 0	(normal data transmission)
R_FIFO	: V_FIFO_DIR	= 0	(transmit FIFO)
	: V_FIFO_NUM	= 5	(FIFO #5)
	: V_REV	= 0	(normal bit order)
A_CON_HDLC[5,TX]	: V_IFF	= 0	(0x7E as inter frame fill)
	: V_HDLC_TRP	= 1	(transparent mode)
	: V_FIFO_IRQ	= 7	(enable FIFO)
	: V_DATA_FLOW	= '000'	$(FIFO \rightarrow ST/U_p \;, FIFO \rightarrow PCM)$
A_CHANNEL[5,TX]	: V_CH_FDIR	= 0	(transmit HFC-channel)
	: V_CH_FNUM	= 1	(HFC-channel #1)
A_SUBCH_CFG[5,TX]]: V_BIT_CNT	= 2	(process 2 bits)
	: V_START_BIT	= 6	(start with bit 6)
	: V_LOOP_FIFO	= 0	(normal operation)
	: V_INV_DATA	= 0	(normal data transmission)
R_FIFO	: V_FIFO_DIR	= 0	(transmit HFC-channel)
	: V_FIFO_NUM	= 1	(HFC-channel #1)
	: V_REV	= 0	(normal bit order)
$A_CH_MSK[0,\!TX]$: V_CH_MSK	= '0000 0001'	(mask byte)

\bullet FIFO-to-ST/U_p (RX)

The received HFC-channel byte is distributed to two FIFOs. The bit fields [7..6] and [3..1] from the received HFC-channel byte are assumed to be valid data. Nevertheless, the number of received bits must be set to the value V_BIT_CNT = 0 which means 'one byte'. The start position is specified with V_START_BIT in register A_SUBCH_CFG. As the received bit fields are aligned to position 0, these bits represent FIFO data b[2..0] and d[1..0].

A detailed overview of the received data is shown in Table 3.11. The first data byte in FIFO[4,RX] is b_1 , the second byte is b_2 , and so on. FIFO[5,RX] data bytes are d_1 , d_2 , and so on.

Register setup:				(CSM 1 RX)
R_FIFO	: V_FIFO_DIR	= 1	(receive FIFO)	
	: V_FIFO_NUM	= 4	(FIFO #4)	
	: V_REV	= 0	(normal bit order)	
${\sf A_CON_HDLC}[4,\!RX]$: V_IFF	= 0	(0x7E as inter frame fill)	
	: V_HDLC_TRP	= 1	(transparent mode)	
	: V_FIFO_IRQ	= 7	(enable FIFO)	
	: V_DATA_FLOW	= '000'	$(\text{FIFO} \leftarrow \text{ST/U}_p \;)$	
A_CHANNEL[4,RX]	: V_CH_FDIR	= 1	(receive HFC-channel)	
	: V_CH_FNUM	= 1	(HFC-channel #1)	
A_SUBCH_CFG[4,RX]: V_BIT_CNT	= 0	(process 8 bits)	
	: V_START_BIT	= 1	(start with bit 1)	
	: V_LOOP_FIFO	= 0	(normal operation)	
	: V_INV_DATA	= 0	(normal data transmission)	
R_FIFO	: V_FIFO_DIR	= 1	(receive FIFO)	
	: V_FIFO_NUM	= 5	(FIFO #5)	
	: V_REV	= 0	(normal bit order)	
A_CON_HDLC[5,RX]	: V_IFF	= 0	(0x7E as inter frame fill)	
	: V_HDLC_TRP	= 1	(transparent mode)	
	: V_FIFO_IRQ	= 7	(enable FIFO)	
	: V_DATA_FLOW	= '000'	$(FIFO \leftarrow ST/U_p)$	
A_CHANNEL[5,RX]	: V_CH_FDIR	= 1	(receive HFC-channel)	
	: V_CH_FNUM	= 1	(HFC-channel #1)	
A_SUBCH_CFG[5,RX]: V_BIT_CNT	= 0	(process 8 bits)	
	: V_START_BIT	= 6	(start with bit 6)	
	: V_LOOP_FIFO	= 0	(normal operation)	
	: V_INV_DATA	= 0	(normal data transmission)	

Table 3.10: Subchannel processing according to Figure 3.18 (CSM **①** TX, transparent mode)

	7 0
HFC-channel mask:	0 0 0 0 0 0 1
HFC-channel transmit byte 1:	$c_1[1] \mid c_1[0] \mid 0 \mid 0 \mid a_1[2] \mid a_1[1] \mid a_1[0] \mid 1$
HFC-channel transmit byte 2:	$c_{2}[1] \mid c_{2}[0] \mid 0 \mid 0 \mid a_{2}[2] \mid a_{2}[1] \mid a_{2}[0] \mid 1$
HFC-channel transmit byte 3:	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$
•••	

XHFC-2SU Data flow

Table 3.11: Subchannel processing according to Figure 3.18 (CSM ● RX, transparent mode)

	7 0
HFC-channel transmit byte 1:	$d_1[1] \mid d_1[0] \mid x \mid x \mid b_1[2] \mid b_1[1] \mid b_1[0] \mid x$
HFC-channel transmit byte 2:	$d_2[1] \mid d_2[0] \mid x \mid x \mid b_2[2] \mid b_2[1] \mid b_2[0] \mid x$
HFC-channel transmit byte 3:	$d_3[1] \mid d_3[0] \mid x \mid x \mid b_3[2] \mid b_3[1] \mid b_3[0] \mid x$
•••	

2 FIFO-to-PCM (TX)

A FIFO-to-PCM configuration in HDLC mode with two FIFOs in transmit and receive direction each is shown in the second example setting ⁸.

Registers A_SUBCH_CFG[FIFO] of FIFO[12,TX] and FIFO[8,TX] define both, the numbers of FIFO data bits to be transmitted during every 125 µs cycle and their position in the HFC-channel byte.

All other data bits in the HFC-channel are defined by the HFC-channel mask in register A_CH_MSK. This array register must be selected by writing the HFC-channel number and direction into register R_FIFO. The mask bits [5..2] are *don't care* because they are overwritten from the FIFO data.

A detailed overview of the transmitted data is shown in Table 3.12. The first data byte in FIFO[12,TX] is e_1 , the second byte is e_2 , and so on. FIFO[8,TX] transmits bytes g_1 , g_2 , and so on. In HDLC mode, FIFO bytes are dispersed among several HFC-channel bytes.

June 2012 Data Sheet 121 of 367

⁸HDLC bit stuffing is not shown in this example.

Register setup:				(CSM 2 TX)
R_FIFO	: V_FIFO_DIR	=	0	(transmit FIFO)
	: V_FIFO_NUM	=	12	(FIFO #12)
	: V_REV	=	0	(normal bit order)
A_CON_HDLC[12,TX]	: V_IFF	=	0	(0x7E as inter frame fill)
	: V_HDLC_TRP	=	0	(HDLC mode)
	: V_FIFO_IRQ	=	7	(enable FIFO)
	: V_DATA_FLOW	=	'001'	$(FIFO \rightarrow ST/U_p \ , FIFO \rightarrow PCM)$
A_CHANNEL[12,TX]	: V_CH_FDIR	=	0	(transmit HFC-channel)
	: V_CH_FNUM	=	15	(HFC-channel #15)
A_SUBCH_CFG[12,TX]	: V_BIT_CNT	=	3	(process 3 bits)
	: V_START_BIT	=	3	(start with bit 3)
	: V_LOOP_FIFO	=	0	(normal operation)
	: V_INV_DATA	=	0	(normal data transmission)
R_FIFO	: V_FIFO_DIR	=	0	(transmit FIFO)
	: V_FIFO_NUM	=	8	(FIFO #8)
	: V_REV	=	0	(normal bit order)
A_CON_HDLC[8,TX]	: V_IFF	=	0	(0x7E as inter frame fill)
	: V_HDLC_TRP	=	0	(HDLC mode)
	: V_FIFO_IRQ	=	7	(enable FIFO)
	: V_DATA_FLOW	=	'001'	(FIFO \rightarrow ST / U _p , FIFO \rightarrow PCM)
A_CHANNEL[8,TX]	: V_CH_FDIR	=	0	(transmit HFC-channel)
	: V_CH_FNUM	=	15	(HFC-channel #15)
A_SUBCH_CFG[8,TX]	: V_BIT_CNT	=	1	(process 1 bit)
	: V_START_BIT	=	2	(start with bit 2)
	: V_LOOP_FIFO	=	0	(normal operation)
	: V_INV_DATA	=	0	(normal data transmission)
R_FIFO	: V_FIFO_DIR	=	0	(transmit HFC-channel)
	: V_FIFO_NUM	=	15	(HFC-channel #15)
	: V_REV	=	0	(normal bit order)
A_CH_MSK[15,TX]	: V_CH_MSK	=	'1000 1100'	(mask byte)
R_SLOT	: V_SL_DIR	=	0	(transmit slot)
	: V_SL_NUM	=		(slot #7)
A_SL_CFG[7,TX]	: V_CH_SDIR		0	(transmit HFC-channel)
[.,,]	: V_CH_SNUM		15	(HFC-channel #15)
	: V_ROUT		'10'	(data to pin STIO1)

2 FIFO-to-PCM (RX)

HFC-channel[15,RX] receives data bits that are to be distributed to FIFO[12,RX] and FIFO[8,RX].

Registers A_SUBCH_CFG[FIFO] of FIFO[12,RX] and FIFO[8,RX] define the numbers of valid data bits and their positions in the HFC-channel byte. These bits are dispersed to FIFO[12,RX] and FIFO[8,RX] where they are aligned to bit 0.

A detailed overview of the received data is shown in Table 3.13. The first data byte in FIFO[12,RX] is f_1 , the second byte is f_2 , and so on. FIFO[8,RX] receives bytes h_1 , h_2 , and so on. In HDLC mode, FIFO bytes are collected from several HFC-channel bytes.

Register setup:				(CSM 2 RX)
R_FIFO	: V_FIFO_DIR	= 1	(receive FIFO)	
	: V_FIFO_NUM	= 12	(FIFO #12)	
	: V_REV	= 0	(normal bit order)	
${\sf A_CON_HDLC}[12,\!RX]$: V_IFF	= 0	(0x7E as inter frame fill)	
	: V_HDLC_TRP	= 0	(HDLC mode)	
	: V_FIFO_IRQ	= 7	(enable FIFO)	
	: V_DATA_FLOW	= '001'	$(FIFO \leftarrow PCM)$	
A_CHANNEL[12,RX]	: V_CH_FDIR	= 1	(receive HFC-channel)	
	: V_CH_FNUM	= 15	(HFC-channel #15)	
A_SUBCH_CFG[12,TX	[]: V_BIT_CNT	= 3	(process 3 bits)	
	: V_START_BIT	= 3	(start with bit 3)	
	: V_LOOP_FIFO	= 0	(normal operation)	
	: V_INV_DATA	= 0	(normal data transmission)	
R_FIFO	: V_FIFO_DIR	= 1	(receive FIFO)	
	: V_FIFO_NUM	= 8	(FIFO #8)	
	: V_REV	= 0	(normal bit order)	
${\sf A_CON_HDLC}[8,\!RX]$: V_IFF	= 0	(0x7E as inter frame fill)	
	: V_HDLC_TRP	= 0	(HDLC mode)	
	: V_FIFO_IRQ	= 7	(enable FIFO)	
	: V_DATA_FLOW	= '001'	$(FIFO \leftarrow PCM)$	
$A_{CHANNEL}[8,\!RX]$: V_CH_FDIR	= 1	(receive HFC-channel)	
	: V_CH_FNUM	= 15	(HFC-channel #15)	
${\sf A_SUBCH_CFG[8,TX]}$: V_BIT_CNT	= 1	(process 1 bit)	
	: V_START_BIT	= 2	(start with bit 2)	
	: V_LOOP_FIFO	= 0	(normal operation)	
	: V_INV_DATA	= 0	(normal data transmission)	
R_SLOT	: V_SL_DIR	= 1	(receive slot)	
	: V_SL_NUM	= 7	(slot #7)	
A_SL_CFG[7,RX]	: V_CH_SDIR	= 1	(receive HFC-channel)	
	: V_CH_SNUM	= 15	(HFC-channel #15)	
	: V_ROUT	= '10'	(data from pin STIO2)	

Table 3.12: Subchannel processing according to Figure 3.18 (CSM 2 TX, HDLC mode)

	7 0
HFC-channel mask:	1 0 0 0 1 1 0 0
HFC-channel transmit byte 1:	$\begin{array}{c c c c c c c c c c c c c c c c c c c $
HFC-channel transmit byte 2:	$\begin{array}{c c c c c c c c c c c c c c c c c c c $
HFC-channel transmit byte 3:	$\begin{array}{c c c c c c c c c c c c c c c c c c c $
HFC-channel transmit byte 4:	$\begin{array}{c c c c c c c c c c c c c c c c c c c $

Table 3.13: Subchannel processing according to Figure 3.18 (CSM **2** RX, HDLC mode)

7	0
HFC-channel transmit byte 1: $\begin{array}{ c c c c c c c c c c c c c c c c c c c$	$] \mid x \mid x$
HFC-channel transmit byte 2: $\begin{bmatrix} x & x & f_1[5] & f_1[4] & f_1[3] & h_1[1] \end{bmatrix}$] x x
HFC-channel transmit byte 3: $\begin{vmatrix} x & x & f_2[0] & f_1[7] & f_1[6] & h_1[2] \end{vmatrix}$	$\begin{bmatrix} x & x \end{bmatrix}$
HFC-channel transmit byte 4: $\begin{bmatrix} x & x & f_2[3] & f_2[2] & f_2[1] & h_1[3] \end{bmatrix}$] x x

Chapter 4

FIFO handling and HDLC controller

Table 4.1: Overview of the XHFC-2SU FIFO registers

Write only registers:			Read/wri	te registers:	
Address	Name	Page	Address	Name	Page
0x0B	R_FIRST_FIFO	133	0x80	A_FIFO_DATA	145
0x0C	R_FIFO_THRES	134	0x84	A_FIFO_DATA_NOINC	145
0x0D	R_FIFO_MD	135	0xF4	A_CH_MSK	146
0x0E	A_INC_RES_FIFO	136	0xFA	A_CON_HDLC	147
0x0F	R_FIFO	137	0xFB	A_SUBCH_CFG	149
0x0F	R_FSM_IDX	137	0xFC	A_CHANNEL	150
			0xFD	A_FIFO_SEQ	151
Read only	Read only register:		0xFF	A_FIFO_CTRL	152
Address	Name	Page			
0x04	A_Z1	138			
0x06	A_Z2	138			
0x0C	A_F1	138			
0x0D	A_F2	139			
0x0E	A_FIFO_STA	140			
0x14	A_USAGE	141			
0x24	R_FILL_BL0	141			
0x25	R_FILL_BL1	142			
0x26	R_FILL_BL2	143			
0x27	R_FILL_BL3	144			

4.1 Overview

There are up to 16 receive FIFOs and up to 16 transmit FIFOs with 32 HDLC controllers in whole. The HDLC controllers are located on the ST/U_p interface side of the FIFOs. Thus plain data is always stored in the FIFOs. Automatic zero insertion is done in HDLC mode when HDLC data goes from the FIFOs to the ST/U_p interface or to the PCM bus (transmit FIFO operation). Automatic zero deletion is done in HDLC mode when the HDLC data comes from the ST/U_p interface or PCM bus (receive FIFO operation).

There are more transmit and receive FIFOs than B-, D- and E-channels. These can be used for PCM-to-FIFO and PCM-to-ST/U_p configurations.

The FIFO control registers are used to select and control the FIFOs of XHFC-2SU. The FIFO register set exists for every FIFO number and receive/transmit direction. A FIFO is selected by the FIFO select register R_FIFO.

All FIFOs are disabled after reset (hardware reset, global software reset or HFC reset). With register A_CON_HDLC the selected FIFO is enabled by setting V_FIFO_IRQ to a value different from zero.

4.2 FIFO counters

The FIFOs are realized as ring buffers in the internal SRAM. They are controlled by counters. The counter sizes depend on the setting of the FIFO sizes. Z1 is the FIFO input counter and Z2 is the FIFO output counter.

Each counter points to a byte position in the SRAM. On a FIFO input operation Z1 is incremented. On an output operation Z2 is incremented. If Z1 = Z2 and F1 = F2 the FIFO is empty.

After every pulse on the F0IO signal, HDLC bytes are written into the ST/U_p interface (from a transmit FIFO) and HDLC bytes are read from the ST/U_p interface (to a receive FIFO). A connection to the PCM interface is also possible.

The D-channel data is processed in exactly the same way as the B-channel data, except that the D-FIFO data rate is reduced in HDLC mode.

Additionally there are two 4 bit counters F1 and F2 for every FIFO. They count the HDLC frames and form a ring buffer as Z1 and Z2 do, too.

F1 is incremented when a complete frame has been received and stored in the FIFO. F2 is incremented when a complete frame has been read from the FIFO. If F1 = F2 there is no complete frame in the FIFO.

The reset state of the Z- and F-counters are

- $Z1 = Z2 = Z_{MAX}^{1}$ and
- $F1 = F2 = F_{MAX} = 0x07$.

This initialization can be carried out with a global software reset or a HDLC reset. For this, bits V_SRES or V_HFC_RES in register R_CIRM have to be set. Individual FIFOs can be reset with bit V_RES_FIFO in register A_INC_RES_FIFO.

¹See Z_{max} value in Table 4.2.

In addition, a hardware reset initializes the counters.

Please note!

Abort D-channel transmission

A FIFO reset should never be initiated while an HDLC ending flag is just in transmission. If this cannot be ensured – or to be on the safe side – any FIFO reset can be wrapped in a D-channel reset as shown below.

Additionally, V_RES_FIFO_ERR should always be set together with a FIFO reset even if no FIFO error is pending. This can be done with a single register write access.

Register setup:			
R_FIFO	: V_FIFO_DIR	= dir	Select FIFO data direction*
	: V_FIFO_NUM	= n	Select FIFO number
repeat until			
R_STATUS	: V_BUSY	= 0	Wait until not busy
R_SU_SEL	: V_SU_SEL	= m	Select interface number
A_SU_CTRL1[ST/Up]	: V_D_RES	= 1	D-channel reset
A_INC_RES_FIFO[FIF0)]: V_RES_FIFO_E	RR = 1	Reset FIFO error *
	: V_RES_FIFO	= 1	Reset selected FIFO
repeat until			
R_STATUS	: V_BUSY	= 0	Wait until not busy
A_SU_CTRL1[ST/Up]	: V_D_RES	= 0	Normal D-channel operation
* Single register write acc	cess together with the f	following com	nmand.

Important!

Busy status after FIFO change, FIFO reset and F1/F2 incrementation

Changing a FIFO, reseting a FIFO or incrementing the F-counters causes a short BUSY period of XHFC-2SU. This means an access to FIFO control registers is not allowed until BUSY status is cleared (bit V_BUSY in register R_STATUS). The maximum duration takes 25 clock cycles (\sim 1 μ s). Status, interrupt and control registers can be read and written at any time.

Please note!

The counter state Z_{MIN} (resp. F_{MIN}) of the Z-counters (resp. F-counters) follows counter state Z_{MAX} (resp. F_{MAX}) in the FIFOs.

Please note that Z_{MIN} and Z_{MAX} depend on the FIFO number and FIFO size (s. Section 4.3 and Table 4.2).

4.3 FIFO size setup

Table 4.2 shows how the FIFO size can be varied. Additionally, the initial Z_{max} and Z_{min} values are given in Table 4.2. A global software reset should be initiated after changing the FIFO size.

Normal operation with transmit and receive FIFOs is configured with V_UNIDIR_MD = '0' in register R_FIFO_MD. Some applications may use only transmit or only receive FIFOs. In this case V_UNIDIR_MD = '1' provides two settings as shown in Table 4.2. The data direction can be chosen either with V_UNIDIR_RX = '0' (only transmit FIFOs available) or with V_UNIDIR_RX = '1' (only receive FIFOs available). V_UNIDIR_RX is ignored if V_UNIDIR_MD = '0'.

V_FIFO_MD	V_UNIDIR_MD	FIF numl	_	$\mathbf{Z}_{ ext{MIN}}$	$\mathbf{Z}_{ ext{MAX}}$	FIFO size (byte)
'00'	'0'	0	15	0x00	0x3F	64
'01'	'0'	0	7	0x00	0x7F	128
'10'	'0'	0	3	0x00	0xFF	256
'00'	'1'	0	15	0x00	0x7F	128
'01'	'1'	0	7	0x00	0xFF	256

Table 4.2: FIFO size setup

4.4 FIFO operation

Important!

The HDLC controller needs F0IO and either C4IO or C2IO clocks for operation. These clocks are generated from XHFC-2SU if PCM master mode is selected (V_PCM_MD = '1').

In PCM slave mode (V_PCM_MD = '0'), F0IO and either C4IO or C2IO clocks must be feed into these pins (see Figure 6.5 on page 229, signal C4I is required).

4.4.1 HDLC transmit FIFOs

Data can be transmitted from the host bus interface to the FIFO with write access to registers A_FIFO_DATA and A_FIFO_DATA_NOINC. XHFC-2SU converts the data into HDLC code and tranfers it from the FIFO to the ST/U_p or the PCM bus interface.

XHFC-2SU checks Z1 and Z2. If Z1 = Z2 (FIFO empty), XHFC-2SU generates a HDLC flag ('0111 1110') or continuous '1's (depending on bit V_IFF in register A_CON_HDLC) and transmits it to the ST/U_p interface. In this case Z2 is not incremented. If also F1 = F2 only HDLC flags

^{*:} Please note, that any configuration that uses *receive FIFOs beyond the maximum FIFO number* can store data in the RAM. This may destroy data from other FIFOs.

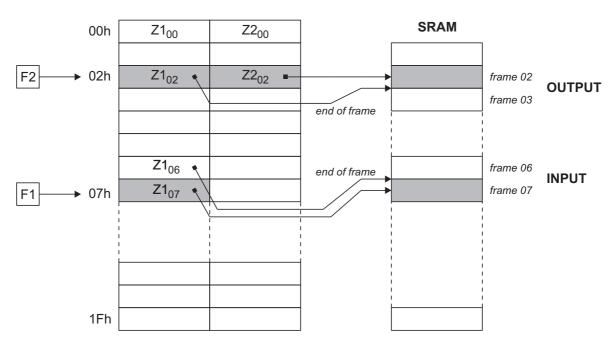


Figure 4.1: FIFO organization

or continuous '1's are sent to the ST/U_p interface and all counters remain unchanged. If the frame counters are unequal F2 is incremented and XHFC-2SU tries to transmit the next frame. At the end of a frame (Z2 reaches Z1) it automatically generates the 16 bit CRC checksum and adds an ending flag. If there is another frame in the FIFO ($F1 \neq F2$) the F2 counter is incremented again.

With every byte being written from the host bus side to the FIFO, Z1 is incremented automatically. If a complete frame has been sent into the FIFO F1 must be incremented to transmit the next frame. If the frame counter F1 is incremented the Z-counters may also change because Z1 and Z2 are functions of F1 and F2. Thus there are Z1(F1), Z2(F1), Z1(F2) and Z2(F2) (see Fig. 4.1).

Z1(F1) is used for the frame which is just written from the host bus side. Z2(F2) is used for the frame which is just being transmitted to the PCM or ST/U_p interface side of XHFC-2SU. Z1(F2) is the end of frame pointer of the current output frame.

In the transmit HFC-channels F1 is only incremented from the host interface side if the software driver wants to say "end of transmit frame". This is done by setting bit V_INC_F in register A_INC_RES_FIFO. Then the current value of Z1 is stored, F1 is incremented and Z1 is used as start address of the next frame.

4.4.2 Automatic D-channel frame repetition (for S/T in TE mode only)

The D-channel transmit FIFO has a special feature. If the ST/U_p interface signals a D-channel contention before the CRC is sent the Z2 counter is set to the starting address of the current frame and XHFC-2SU tries to repeat the frame automatically.

Please note!

XHFC-2SU begins to transmit the bytes from a FIFO at the moment the FIFO is changed (writing R_FIFO) or the F1 counter is incremented. Switching to the FIFO that is already selected also starts the transmission. Thus by selecting the same FIFO again transmission can be started.

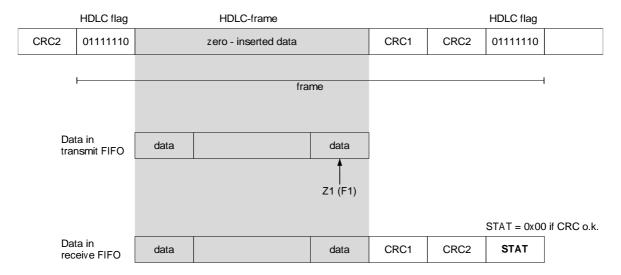


Figure 4.2: FIFO data organization in HDLC mode

4.4.3 HDLC receive FIFOs

The receive HFC-channels receive data from the ST/U_p or PCM bus interface read registers. The data is converted from HDLC into plain data and sent to the FIFO. The data can then be read via the host bus interface.

XHFC-2SU checks the HDLC data coming in. If it finds a flag or more than 5 consecutive '1's it does not generate any output data. In this case Z1 is not incremented. Proper HDLC data being received is converted by XHFC-2SU into plain data. After the ending flag of a frame, XHFC-2SU checks the HDLC CRC checksum. If it is correct one byte with all '0's is inserted behind the CRC data in the FIFO named STAT (see Fig. 4.2). This last byte of a frame in the FIFO is different from all '0's if there is no correct CRC field at the end of the frame.

If the STAT value is 0xFF, the HDLC frame ended with at least 8 bits '1's. This is similar to an abort HDLC frame condition.

The ending flag of a HDLC frame can also be the starting flag of the next frame.

After a frame is received completely, F1 is incremented by XHFC-2SU automatically and the next frame can be received.

After reading a frame via the host bus interface F2 has to be incremented. If the frame counter F2 is incremented also the Z-counters may change because Z1 and Z2 are functions of F1 and F2. Thus there are Z1(F1), Z2(F1), Z1(F2) and Z2(F2) (see Fig. 4.1).

Z1(F1) is used for the frame which is just received from the ST/U_p interface side of XHFC-2SU.

Z2(F2) is used for the frame which is just beeing transmitted to the host bus interface. Z1(F2) is the end of frame pointer of the current output frame.

To calculate the length of the current receive frame the software has to evaluate Z1 - Z2 + 1. When Z2 reaches Z1 the complete frame has been read.

In the receive HFC-channels F2 must be incremented from the host interface side after the software detects an end of receive frame (Z1=Z2) and $F1\neq F2$. Then the current value of Z2 is stored, F2 is incremented and Z2 is copied as start address of the next frame. This is done by setting bit V_INC_F in register A_INC_RES_FIFO. If Z1=Z2 and F1=F2 the FIFO is totally empty. Z1(F1) can not be accessed.

Important!

Before reading a new frame, a change FIFO operation (write access to register R_FIFO) has to be done even if the desired FIFO is already selected. The change FIFO operation is required to update the internal buffer of XHFC-2SU. Otherwise the first byte of the FIFO will be taken from the internal buffer and may be invalid.

4.4.4 Transparent mode of XHFC-2SU

It is possible to switch off the HDLC operation for each FIFO independently by bit V_HDLC_TRP in register A_CON_HDLC . If this bit is set, data from the FIFO is sent directly to the ST/U_p or PCM bus interface and data from the ST/U_p or PCM bus interface is sent directly to the FIFO.

Be sure to switch into transparent mode only if F1 = F2. Being in transparent mode the F-counters remain unchanged. Z1 and Z2 are the input and output pointers respectively. Because F1 = F2, the Z-counters are always accessable and have valid data for FIFO input and output.

If a transmit FIFO changes to FIFO empty condition no CRC is generated and the last data byte written into the FIFO is repeated until there is new data.

Normally the last byte is undefined because of the *Z*-counter pointing to a previously unwritten address. To define the last byte, the last write access to the FIFO must be done without *Z* increment (see register A_FIFO_DATA_NOINC).

In receive HFC-channels there is no check on flags or correct CRCs and no status byte added.

Unlike in HDLC mode, where byte synchronization is achieved with HDLC flags, the byte boundaries are not arbitrary. The data is just the same as it comes from or is sent to the ST/U_p or PCM bus interface.

Transmit and receive transparent data can be done in two ways. The usual way is transporting FIFO data to the ST/U_p interface with the LSB first as usual in HDLC mode. The second way is transmitting the bytes in reverse bit order as usual for PCM data. So the first bit is the MSB. The bit order can be reversed by setting bit V_REV in register R_FIFO when the FIFO is selected.

Important!

For normal data transmission register A_SUBCH_CFG must be set to 0x00. To use 56 kbit/s restricted mode for U.S. ISDN lines, register A_SUBCH_CFG must be set to 0x07 for B-channels.

4.5 Register description

4.5.1 Write only registers

R_	_FIRST_	FIFO		(w)	(Reset group: H, 0, 1)	0x0B			
	First FIFO of the FIFO sequence This register is only used in FIFO Sequence Mode, see register R_FIFO_MD for data flow mode selection.								
	Bits	Reset value	Name	De	escription				
	0	0	V_FIRST_FIFO_DIR	Th in '0'	ata direction his bit defines the data direction of the FIFO sequence. = transmit FIFO data = receive FIFO data	the first FIFO			
	41	0	V_FIRST_FIFO_NUM	Tł	FO number his bitmap defines the number of the FIFO sequence.	e first FIFO in			
	75	0	(reserved)	M	ust be '000'.				

R_FIFO_THRES (w) (Reset group: H, 0, 1, 2, 3) **0x0C**

FIFO fill level control register

The FIFO fill level can be controlled by a theshold which is specified separately for transmit and receive FIFOs.

Bits	Reset value	Name	Description
30	1	V_THRES_TX	Threshold for all transmit FIFOs The threshold is a multiple of 16 bytes. 0 = 0 bytes 1 = 16 bytes 2 = 32 bytes 15 = 240 bytes
74	1	V_THRES_RX	Threshold for all receive FIFOs The threshold is a multiple of 16 bytes. 0 = 0 bytes 1 = 16 bytes 0 = 32 bytes 15 = 240 bytes

(See Section 13 on page 343 for a fault description and workaround of an address decoding problem which concerns this register among others.)

R_FIFO_MD	(\mathbf{w})	(Reset group: H)	0x0D
-----------	----------------	------------------	------

FIFO mode configuration

This register defines the FIFO number and size. The actual FIFO size depends also on the V_UNIDIR_MD value.

val	alue.						
	Bits	Reset value	Name	Description			
	10	0	V_FIFO_MD	This bitmap and V_UNIDIR_MD are used to organize the FIFOs. FIFO mode with V_UNIDIR_RX = '0': '00' = 16 FIFOs with 64 bytes for TX and RX each '01' = 8 FIFOs with 128 bytes for TX and RX each '10' = 4 FIFOs with 256 bytes for TX and RX each '11' = not allowed FIFO mode with V_UNIDIR_RX = '1': '00' = 16 FIFOs with 128 bytes for TX and RX each '01' = 8 FIFOs with 256 bytes for TX and RX each '10' = not allowed '11' = not allowed			
	32	0	V_DF_MD	Data flow mode selection '00' = Simple Mode (SM) '01' = Channel Select Mode (CSM) '10' = not allowed '11' = FIFO Sequence Mode (FSM)			
	4	0	V_UNIDIR_MD	Unidirectional FIFO data direction '0' = both transmit and receive FIFOs available (normal operation), V_UNIDIR_RX is ignored '1' = unidirectional FIFO mode, either transmit or receive FIFOs available due to V_UNIDIR_RX value Unidirectional FIFO data is used for voice recording, e.g., and has double FIFO size. Note: The FIFOs of the unused data direction must not be enabled.			
	5	0	V_UNIDIR_RX	FIFO data direction This bit is only used in unidirectional FIFO mode (V_UNIDIR_MD = '1'). '0' = only transmit FIFOs available '1' = only receive FIFOs available			
	76	0	(reserved)	Must be '00'.			

 $\textbf{A_INC_RES_FIFO} [FIFO] \qquad \qquad (w) \qquad (Reset group: H, 0, 1, 2, 3) \qquad \textbf{0x0E}$

Increment and reset FIFO register

Before writing this array register the FIFO must be selected by register R_FIFO.

Bits	Reset value	Name	Description
0	0	V_INC_F	Increment the <i>F</i> -counters of the selected FIFO '0' = no increment '1' = increment This bit is automatically cleared after the counter increment has been processed.
1	0	V_RES_FIFO	FIFO reset '0' = no reset '1' = reset selected FIFO (<i>F</i> - and <i>Z</i> -counters and channel mask A_CH_MSK are reset) This bit is automatically cleared after the FIFO reset has been processed.
2	0	V_RES_LOST	LOST error bit reset '0' = no reset '1' = reset LOST This bit is automatically cleared with the LOST error bit reset.
3	0	V_RES_FIFO_ERR	FIFO error reset '0' = no operation '1' = Resets bit V_FIFO_ERR in register A_FIFO_STA This bit automatically reset to '0' after the FIFO error reset has been executed. Note: for transmit FIFOs, this bit should be set to '1' not before V_ABO_DONE = '1' in register A_FIFO_STA to ensure a completed frame abort.
74	0	(reserved)	Must be '0000'.

R_FIFO (w)	(Reset group: H, 0, 1)	0x0F
--------------	------------------------	------

FIFO selection register

This register is used to select a FIFO. Before a FIFO array register can be accessed, this index register must specify the desired FIFO number and data direction.

Note: This register is a multi-register. It is selected with bitmap V_DF_MD less than '11' in register R_FIFO_MD (SM and CSM). In FSM (V_DF_MD = '11') some FIFO array registers are indexed by the multi-register R_FSM_IDX instead, but most FIFO array registers remain indexed by this register.

Bits	Reset value	Name	Description
0	0	V_FIFO_DIR	FIFO data direction '0' = transmit FIFO data '1' = receive FIFO data
41	0	V_FIFO_NUM	FIFO number
65	0	(reserved)	Must be '00'.
7	0	V_REV	Bit order '0' = LSB first '1' = MSB first LSB first is used in HDLC mode while MSB first is used in transparent mode. The bit order is being reversed for the data written into the FIFO or when the data is read from the FIFO.

R_FSM_IDX	(w)	(Reset group: H, 0, 1)	0x0F
-----------	-------	------------------------	------

Index register of the FIFO sequence

This register is used to select a list number in *FIFO Sequence Mode*. Some FIFO array registers are indexed by this list number. Before these registers can be accessed, this index register must specify the desired list number.

Note: This register is a multi-register. It is selected with bitmap V_DF_MD = '11' in register R_FIFO_MD. In FSM only few FIFO array registers are indexed by this multi-register, but most FIFO array registers remain indexed by R_FIFO.

Bits	Reset value	Name	Description
40	0x00	V_IDX	List index The list index must be in the range 031.
75	0	(reserved)	Must be '000'.

4.5.2 Read only registers

A_	_ Z1 [FIF	0]		(r)	(Reset group: H, 0, 1)	0x04
FI	FO inpu	t counter	Z 1			
Вє	efore reac	ling this ar	ray register th	e FIFO must be sel	ected by register R_FIFO.	
	Bits	Reset value	Name		Description	
	70		V_Z1		Counter value of $Z1$ The reset value is Z_{max} and depends configuration.	on the FIFO

(See Table 4.2 for reset value.)

A_	_Z2 [FIF0	O]		(r)	(Reset group: H, 0, 1)	0x06
	FIFO output counter Z2 Before reading this array register the FIFO must be selected by register R_FIFO.					
Ве	erore reac	iing this ar	ray register th	e FIFO must be selected	1 by register R_FIFO.	
	Bits	Reset value	Name	Des	scription	
	70		V_Z2	The	unter value of $Z2$ e reset value is Z_{max} and depends figuration.	on the FIFO

(See Table 4.2 for reset value.)

A.	_ F1 [FIF0	D]		(r)	(Reset group: H, 0, 1)	0x0C
FIFO input HDLC frame counter $F1$ Before reading this array register the FIFO must be selected by register R_FIFO.						
	Bits	Reset value	Name	D	escription	
	70	7	V_F1	_	ounter value to 7 HDLC frames can be stored in	n every FIFO.

A_	_F2 [FIFC)]		(r)	(Reset group: H, 0, 1)	0x0D
	FIFO output HDLC frame counter F2 Before reading this array register the FIFO must be selected by register R_FIFO.					
	Bits	Reset value	Name	D	escription	
	70	7	V_F2	_	ounter value o to 7 HDLC frames can be store	d in every FIFO.

(See Section 13 on page 343 for a fault description and workaround of an address decoding problem which concerns this register among others.)

_FIFO_S	TA [FIFO]		(r)	(Reset group: H, 0, 1) 0	x0E
FO statu	ıs register				
efore read	ling this ar	ray register the FIFO m	ust be sel	ected by register R_FIFO.	
Bits	Reset value	Name		Description	
0	0	V_FIFO_ERR		FIFO error This status bit has different meaning for transm and receive FIFOs.	it
				Transmit FIFO: There are two different situation for a FIFO to run empty. (1) A valid HDLC frame has been sent when the FIFO runs empty at the end of a frame and $F1 = F2$ gets true after $Z2$ increment. (2) An invalid HDLC frame has been sent when the FIFO runs empty within a frame, i.e. $F1 = 1$ is already valid during data transmission and $Z2$ increment cannot be executed.	e n F2
				When V_FR_ABO = '0' in register A_FIFO_CTRL, this bit is set to '1' to indicate a empty FIFO (either situation 1 or situation 2). Transmitted frames are valid in any case, but the frame got split in situation 2.	
				When V_FR_ABO = '1' in register A_FIFO_CTRL, this bit is only set to '1' to indic an aborted frame (situation 2 only, invalid frame	
				As long as the FIFO is empty, interframe fill is repeatedly send in HDLC mode.	
				Receive FIFO: This bit is set to '1' to indicate either a FIFO overflow ($Z1 = Z2$ after $Z1$ increment) or a frame counter overflow ($F1 = R$ after $F1$ increment).	F2
				Note: V_FIFO_ERR must be reset from host processor with V_RES_FIFO_ERR = '1'.	
31		(reserved)			
4	0	V_ABO_DONE		Frame abort done This status bit is only used for transmit FIFOs a is not defined for receive FIFOs.	ınc
				This bit is set after sixteen consecutive '1's have been transmitted. It is reset together with V_FIFO_ERR.	
75		(reserved)			

A	_USAGE	[FIFO]		(r)	(Reset group: H, 0, 1)	0x14
Fl	IFO fill le	evel				
В	efore read	ling this ar	ray register the FIFC	must be select	ed by register R_FIFO.	
	Bits	Reset value	Name	D	escription	
	70	0x00	V_USAGE	T	umber of bytes currently stored in the FIFO is empty when this register loo.	

R_FILL_BL0	(r)	(Reset group: H, 0, 1)	0x24
------------	-----	------------------------	------

FIFO fill level for FIFO block 0

When a bit is set to '1', more than the specified number of bytes is currently being in the FIFO. The threshold is separately defined for transmit and receive FIFOs, V_THRES_TX for transmit FIFOs and V_THRES_RX for receive FIFOs in register R_FIFO_THRES .

Bits	Reset value	Name	Description
0	0	V_FILL_FIFO0_TX	FIFO[0,TX] fill level
1	0	V_FILL_FIFO0_RX	FIFO[0,RX] fill level
2	0	V_FILL_FIFO1_TX	FIFO[1,TX] fill level
3	0	V_FILL_FIFO1_RX	FIFO[1,RX] fill level
4	0	V_FILL_FIFO2_TX	FIFO[2,TX] fill level
5	0	V_FILL_FIFO2_RX	FIFO[2,RX] fill level
6	0	V_FILL_FIFO3_TX	FIFO[3,TX] fill level
7	0	V_FILL_FIFO3_RX	FIFO[3,RX] fill level

R_FILL_BL1	(r)	(Reset group: H, 0, 1)	0x25

FIFO fill level for FIFO block 1

When a bit is set to '1', more than the specified number of bytes is currently being in the FIFO. The threshold is separately defined for transmit and receive FIFOs, V_THRES_TX for transmit FIFOs and V_THRES_RX for receive FIFOs in register R_FIFO_THRES.

Bits	Reset value	Name	Description
0	0	V_FILL_FIFO4_TX	FIFO[4,TX] fill level
1	0	V_FILL_FIFO4_RX	FIFO[4,RX] fill level
2	0	V_FILL_FIFO5_TX	FIFO[5,TX] fill level
3	0	V_FILL_FIFO5_RX	FIFO[5,RX] fill level
4	0	V_FILL_FIFO6_TX	FIFO[6,TX] fill level
5	0	V_FILL_FIFO6_RX	FIFO[6,RX] fill level
6	0	V_FILL_FIFO7_TX	FIFO[7,TX] fill level
7	0	V_FILL_FIFO7_RX	FIFO[7,RX] fill level

R_FILL_BL2 (r) (Reset group: H, 0, 1) **0x26**

FIFO fill level for FIFO block 2

When a bit is set to '1', more than the specified number of bytes is currently being in the FIFO. The threshold is separately defined for transmit and receive FIFOs, V_THRES_TX for transmit FIFOs and V_THRES_RX for receive FIFOs in register R_FIFO_THRES.

Bits	Reset value	Name	Description
0	0	V_FILL_FIFO8_TX	FIFO[8,TX] fill level
1	0	V_FILL_FIFO8_RX	FIFO[8,RX] fill level
2	0	V_FILL_FIFO9_TX	FIFO[9,TX] fill level
3	0	V_FILL_FIFO9_RX	FIFO[9,RX] fill level
4	0	V_FILL_FIFO10_TX	FIFO[10,TX] fill level
5	0	V_FILL_FIFO10_RX	FIFO[10,RX] fill level
6	0	V_FILL_FIFO11_TX	FIFO[11,TX] fill level
7	0	V_FILL_FIFO11_RX	FIFO[11,RX] fill level

R_FILL_BL3	(r)	(Reset group: H, 0, 1)	0x27

FIFO fill level for FIFO block 3

When a bit is set to '1', more than the specified number of bytes is currently being in the FIFO. The threshold is separately defined for transmit and receive FIFOs, V_THRES_TX for transmit FIFOs and V_THRES_RX for receive FIFOs in register R_FIFO_THRES.

Bits	Reset value	Name	Description
0	0	V_FILL_FIFO12_TX	FIFO[12,TX] fill level
1	0	V_FILL_FIFO12_RX	FIFO[12,RX] fill level
2	0	V_FILL_FIFO13_TX	FIFO[13,TX] fill level
3	0	V_FILL_FIFO13_RX	FIFO[13,RX] fill level
4	0	V_FILL_FIFO14_TX	FIFO[14,TX] fill level
5	0	V_FILL_FIFO14_RX	FIFO[14,RX] fill level
6	0	V_FILL_FIFO15_TX	FIFO[15,TX] fill level
7	0	V_FILL_FIFO15_RX	FIFO[15,RX] fill level

4.5.3 Read/write registers

A_I	FIFO_DA	NTA [FIFO]	(r/w)	(Reset group: -)	0x80
FIF	O data r	register				
Bef	ore writing	ng or read	ing this array register t	he FIFO must be	selected by register R_FIFO.	
	Bits	Reset value	Name	Descri	ption	
	70		V_FIFO_DATA		byte write one byte from/to the FIFO egister R_FIFO and increment Z	

A_I	FIFO_DA	TA_NOI	NC [FIFO]	(r/w)	(Reset group: -)	0x84
FIF	'O data r	register				
Bef	ore writin	ng or read	ing this array register	the FIFO must be	e selected by register R_FIFO.	
	Bits	Reset value	Name	Descr	ription	
	70		V_FIFO_DATA_NO	Write select	byte one byte to or read one byte from the desired with register R_FIFO without menting Z-counter.	

(This register can be used to store the last FIFO byte in transparent transmit mode. Then this byte is repeately transmitted.)

A_CH_M	SK [FIFO]		(r*/w)	(Reset group: H, 0, 1)	0xF4
HFC-char	nel data n	nask for the selecte	d transmit HFC	-channel	
For receive	FIFOs thi	s register is ignored.			
Before wri	ting this ar	ray register, the HFC	C-channel must b	e selected by register R_FIFO.	
Bits	Reset value	Name	De	scription	
70	0xFF	V_CH_MSK	Th bit	ask byte is bitmap defines bit values for not p s of a HFC-channel. All not process 'C-channel are set to the value define	ed bits of a

register.

This register has only a meaning when

 $V_BIT_CNT \neq 0$ in register A_SUBCH_CFG.

_CON_F	HDLC [FIFO)]	$(\mathbf{r}^*/\mathbf{w})$ (Reset group: H, 0, 1)
DLC an	d connectio	on settings of the selec	ed FIFO
efore wri	ting this ar	ay register the FIFO m	st be selected by register R_FIFO.
Bits	Reset value	Name	Description
0	0	V_IFF	Inter frame fill '0' = write HDLC flags 0x7E as inter frame fill '1' = write all '1's as inter frame fill Note: For D-channel this bit must be '1'.
1	0	V_HDLC_TRP	HDLC mode/transparent mode selection '0' = HDLC mode '1' = transparent mode Note: For D-channel this bit must be '0'.
42	0	V_FIFO_IRQ	FIFO interrupt configuration This bitmap has a different meaning in HDLC transparent mode.
			Transparent mode (V_HDLC_TRP = '1'): The FIFO is enabled with any value $\neq 0$. A FII interrupt is generated all 2^n bytes when the bits [n-1:0] of the Z2-counter (in transmit direction the Z1-counter (in receive direction) change from all '1's to all '0's. $n = V_FIFO_IRQ + 2$. $0 = FIFO$ disabled, no interrupt $1 = FIFO$ enabled, all $2^3 = 8$ bytes an interrupt generated $2 = FIFO$ enabled, all $2^4 = 16$ bytes an interrupt generated $3 = FIFO$ enabled, all $2^5 = 32$ bytes an interrupt generated $4 = FIFO$ enabled, all $2^6 = 64$ bytes an interrupt generated $5 = FIFO$ enabled, all $2^7 = 128$ bytes an interrupt is generated $6 = FIFO$ enabled, all $2^7 = 128$ bytes an interrupt generated
			HDLC mode (V_HDLC_TRP = '0'): The FIFO is enabled with any value ≠ 0. A FII interrupt can be generated at end of frame. 0 = FIFO disabled, no interrupt 17 = FIFO enabled, interrupt enabled Note: When mixed interrupt generation is select with V_MIX_IRQ = '1' in register A_FIFO_CT FIFO interrupts occur at end of frame as well a after 2 ⁿ bytes.
			Note: A FIFO must be enabled even for connections between line interface and PCM interface. No data transmission is performed w

(continued on next page)

disabled FIFO.

Bits	Reset value	Name	Description
75	0	V_DATA_FLOW	Data flow configuration In transmit operation (V_FIFO_DIR = '0' in register R_FIFO):
			'000', '001' = FIFO \rightarrow ST/U _p , FIFO \rightarrow PCM '010', '011' = FIFO \rightarrow PCM '100', '101' = FIFO \rightarrow ST/U _p , ST/U _p \rightarrow PCM '110', '111' = ST/U _p \rightarrow PCM
			In receive operation (V_FIFO_DIR = '1' in register R_FIFO):
			'000', '100' = FIFO \leftarrow ST/U _p '001', '101' = FIFO \leftarrow PCM '010', '110' = FIFO \leftarrow ST/U _p , ST/U _p \leftarrow PCM '011', '111' = FIFO \leftarrow PCM, ST/U _p \leftarrow PCM Note: ST/U _p \leftrightarrow PCM configurations use V_FIFO_IRQ to enable the data transmission, i.e. V_FIFO_IRQ must not be zero. As received PCM-to-ST/U _p data is stored in the FIFO, interrupt generation can be used. ST/U _p -to-PCM data transmission is connected to a transmit FIFO and here no interrupt capability is available.

A_SUBCH_CFG [FIFO] $(\mathbf{r}^*/\mathbf{w})$ (Reset group: H, 0, 1) **0xFB**

Subchannel parameters for bit processing of the selected FIFO

Before writing this array register the FIFO must be selected by register R_FIFO.

Note: For D- and E-channels this register must be 0x02.

Bits	Reset value	Name	Description
20	0	V_BIT_CNT	Number of bits to be processed in the HFC-channel byte In HDLC mode, only this number of bits is read from or written into the FIFO. In transparent mode always a whole FIFO byte is read or written, but only V_BIT_CNT bits contain valid data. '000' = process 8 bits (64 kbit/s) '001' = process 1 bit (8 kbit/s) '010' = process 2 bits (16 kbit/s) '011' = process 3 bits (24 kbit/s) '100' = process 4 bits (32 kbit/s) '101' = process 5 bits (40 kbit/s) '111' = process 6 bits (48 kbit/s) '111' = process 7 bits (56 kbit/s)
53	0	V_START_BIT	Start bit in the HFC-channel byte This bitmap specifies the position of the bit field in the HFC-channel byte. The bit field is located at position V_START_BIT in the HFC-channel byte. V_BIT_CNT + V_START_BIT must not be greater than 7 to get the bit field completely inside the HFC-channel byte. Any value greater than 7 produces an undefined behavior of the subchannel processor.
6	0	V_LOOP_FIFO	FIFO loop '0' = normal operation '1' = repeat current FIFO data (useful only in transparent mode) Note: This bit is ignored for receive FIFOs.
7	0	V_INV_DATA	Inverted data '0' = normal data transmission '1' = inverted data transmission

A_CHANNEL [FIFO] (r^*/w) (Reset group: H, 0, 1) **0xFC**

HFC-channel assignment for the selected FIFO

This register is only used in *Channel Select Mode* and *FIFO Sequence Mode*.

Before writing this array register the FIFO must be selected by register R_FIFO.

Bits	Reset value	Name	Description
0	0	V_CH_FDIR	HFC-channel data direction '0' = HFC-channel for transmit data '1' = HFC-channel for receive data Reset value: This bitmap is reset to the same value as the current FIFO, i.e. V_CH_FDIR of A_CHANNEL[number, direction] = direction.
41	0	V_CH_FNUM	HFC-channel number (015) Reset value: This bitmap is reset to the same value as the current FIFO, i.e. V_CH_FNUM of A_CHANNEL[number, direction] = number.
75		(reserved)	Must be '000' when written.

FIFO sequence list

This register is only used in FIFO Sequence Mode.

Before writing this array register the FIFO must be selected by register R_FIFO.

Bits	Reset value	Name	Description
0	0	V_NEXT_FIFO_DIR	FIFO data direction This bit defines the data direction of the next FIFO in FIFO sequence. '0' = transmit FIFO data '1' = receive FIFO data Reset value: This bitmap is reset to the same value as the current FIFO, i.e. V_NEXT_FIFO_DIR of A_FIFO_SEQ[number, direction] = direction.
41	0	V_NEXT_FIFO_NUM	FIFO number This bitmap defines the FIFO number of the next FIFO in the FIFO sequence. Reset value: This bitmap is reset to the same value as the current FIFO, i.e. V_NEXT_FIFO_NUM of A_FIFO_SEQ[number, direction] = number.
5		(reserved)	Must be '0' when written.
6	0	V_SEQ_END	End of FIFO list '0' = FIFO list goes on '1' = FIFO list is terminated after this FIFO (V_NEXT_FIFO_DIR and V_NEXT_FIFO_NUM are ignored)
7		(reserved)	Must be '0' when written.

A_{FIFO} (r*/w) (Reset group: H, 0, 1)	0xFF
--	------

Control register for the selected FIFO

Before writing this array register the FIFO must be selected by register R_FIFO.

Bits	Reset value	Name	Description
0	0	V_FIFO_IRQMSK	Interrupt mask for the selected FIFO '0' = The FIFO interrupt is not used for generating a signal on the interrupt pin 14. The interrupt status can be read from registers R_FIFO_BL0_IRQR_FIFO_BL3_IRQ nevertheless. '1' = The FIFO interrupt event generates a signal on the interrupt pin 14. Note: In addition to this interrupt mask, FIFO interrupt must be enabled globally with V_FIFO_IRQ_EN = '1' in register R_IRQ_CTRL.
1	0	V_BERT_EN	BERT enable '0' = BERT disabled, normal data is transmitted and received '1' = BERT enabled, output of BERT generator is transmitted and received data is checked by BERT
2	0	V_MIX_IRQ	Mixed interrupt generation in HDLC mode This bit is only used in HDLC mode and it should be '0' in transparent mode. '0' = FIFO interrupts are generated either on <i>end of</i> frame (in HDLC mode) or periodically (in transparent mode) '1' = FIFO interrupts are generated both on <i>end of</i> frame and periodically when the bits [n-1:0] of the Z2-counter (in transmit direction) or the Z1-counter (in receive direction) change from all '1's to all '0's (n = V_FIFO_IRQ + 3 in register A_CON_HDLC)

Bits	Reset value	Name	Description
3	0	V_FR_ABO	Transmit FIFO (FIFO underrun indication): When the selected transmit FIFO runs empty within a frame, a frame abort can be generated, i.e at least sixteen consecutive '1's are transmitted. The receiver gets an invalid frame in this case. '0' = no frame abort after FIFO empty '1' = generate frame abort when FIFO runs empty within a frame (Z1 = Z2 and already F1 = F2, F-increment cannot be executed) Empty FIFO condition can be watched with bit V_FIFO_ERR in register A_FIFO_STA. Receive FIFO (aborted frame received): When the HDLC controller of the selected receive FIFO gets seven or more consecutive '1's, a frame abort condition can be signaled. '0' = no frame abort indication, FIFO status byte indicates only CRC error with any value not equal to 0x00 '1' = frame abort is indicated with FIFO status byte oxFF, any other FIFO status byte 0xFF, any other FIFO status byte 0xFF and 0xFF.
4	0	V_NO_CRC	Suppress CRC transmission '0' = CRC is transmitted at the end of a frame (normal operation) '1' = CRC bytes are not transmitted at the end of a frame (must be done by the host processor instead
5	0	V_NO_REP	No automatic repetition on HDLC frames (D-channel) '0' = After D-channel contention, the frame is automatically repeated '1' = After D-channel ontention, the frame is not repeated and it is aborted.

Chapter 5

Universal ISDN Port

Table 5.1: Overview of the ST/U_p interface registers

Write only	y registers:		Read only	registers:	
Address	Name	Page	Address	Name	Page
0x16	R_SU_SEL	193	0x13	R_AF0_OVIEW	209
0x30	A_SU_WR_STA	194	0x30	A_SU_RD_STA	210
0x31	A_SU_CTRL0	195	0x31	A_SU_DLYL	211
0x32	A_SU_CTRL1	197	0x32	A_SU_DLYH	212
0x33	A_SU_CTRL2	198	0x34	A_MS_RX	213
0x34	A_MS_TX	200	0x35	A_SU_STA	214
0x35	A_ST_CTRL3	201	0x3C	A_B1_RX	215
0x35	A_UP_CTRL3	202	0x3D	A_B2_RX	216
0x36	A_MS_DF	204	0x3E	A_D_RX	217
0x37	A_SU_CLK_DLY	205	0x3F	A_E_RX	218
0x3C	A_B1_TX	206			
0x3D	A_B2_TX	206			
0x3E	A_D_TX	207			
0x3F	A_BAC_S_TX	208			

5.1 General overview of the S/T and U_p interfaces

The Universal ISDN Port consists of a line interface with both S/T and U_p signaling capability. It can be configured to TE or NT/LT mode.

5.1.1 Array registers and multiregisters

Every line interface can be switched either into S/T or U_p mode separately; so they are called *Universal ISDN Port*. For both modes there is a complete set of registers. These registers are multi-registers, which means they have the same address and I/O functionality (write or read) but different meaning or bitmap structure. Yet, most of them are very similar in S/T and U_p mode.

Furthermore, all registers are described to be array registers because there are several line interfaces in XHFC-2SU and each has the complete set of registers. So, the Universal ISDN Port module – with multiple entities – has registers which are multi-registers *and* array registers at the same time.

Register accesses concerning the line interfaces have to be done as follows:

- 1. Array register selection: The line interface number must be selected first by writing the appropriate value into bitmap V_SU_SEL of register R_SU_SEL.
 - XHFC-2S4U: S/T interfaces 0..1 available, U_p interfaces 0..3 available
 - XHFC-4SU: S/T interfaces 0..3 available, U_p interfaces 0..3 available
- 2. Multiregister selection: Then the interface mode can be chosen (only in the initialization procedure). The selected line interface works in S/T mode with the bitmap value V_ST_SEL = '0' in register A_ST_CTRL3. The line interface can be switched into U_p mode with V_ST_SEL = '1' 1. It is strongly recommended to select the interface mode before any other register of the selected line interface is written.
- **3.** Any other register access: Now all registers of the selected line interface in its chosen mode (S/T or U_p) can be accessed.

These three steps describe the initialization procedure after reset. Afterwards, step 2 must not be executed again, of course.

Important!

The Universal ISDN Port is in S/T mode after reset. When U_p mode is required, it should be selected after reset, i.e. no other register of the line interface module should be written before.

5.1.2 Block diagram of the Universal ISDN Port module

The line interface module consists of the receive and transmit data pathes with a clock processing unit each, the clock distribution unit and the state machine. The overall connections of these units are shown in Figure 5.1.

¹Please note, that there is an array register at address 0x35 which is also a multi-register. For a line interface in S/T mode, A_ST_CTRL3 is used while a line interface in U_p mode uses A_UP_CTRL3.

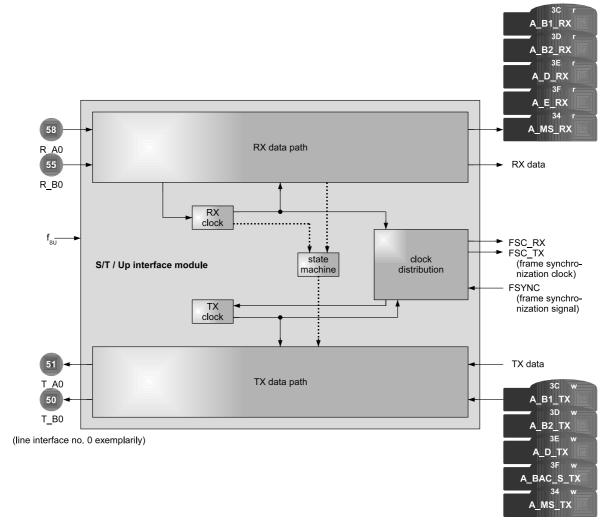


Figure 5.1: Overview of the Universal ISDN Port module (For details see Figures 5.13 or 5.5)

5.2 S/T interface description

5.2.1 Overview

The Universal ISDN Port is able to provide an S/T line interface in TE or NT mode according to ITU-T I.430 [9] and ETSI TBR 003[4] specifications.

The line interface is a four-wire interface and has separated transmitter and receiver with configurable behaviour. The ISDN data frame structure is handled by hardware. Thus plain data is processed on the host side of the S/T interface.

A specification conform state machine for TE and NT mode is implemented (see Section 5.2.6).

The S/T interface uses the modified AMI coding for input and output signals. This pseudo-ternary coding converts logical ones to 0 V level. Logical zeros are coded by alternating positive and negative voltage with 750 mV nominal amplitude on the line.

5.2.2 Frame Structure

The frame structures on the S/T interface are different for each direction of transmission. Both structures are illustrated in Figure 5.2. The raw data bit rate is 192 kBit/s in transmit and receive direction.

HDLC B-channel data starts with the LSB, PCM B-channel data starts with the MSB.

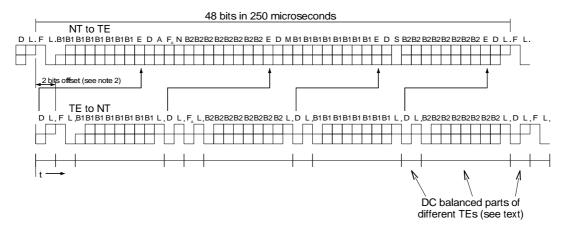


Figure 5.2: Frame structure at reference points S and T (see legend in Table 5.2 and specification [9])

The nominal 2 bit offset is as seen from the TE in Figure 5.2. The offset can be adjusted for TE mode with bitmap V_SU_CLK_DLY in register A_SU_CLK_DLY. The corresponding offset at the NT is not fixed and may be greater due to delay in the interface cable and varies by configuration.

The TE-to-NT transmission has 10 balancing bits within every frame to achieve independent DC balanced parts for different TEs. This is indicated by lines below the frame structure in Figure 5.2.

In the NT-to-TE direction there is only one real DC-balance bit at the end of the frame because all data comes from the same source. Another L-bit at the beginning of the frame belongs to the preceding F-bit and is used for code violation.

Table 5.2: Legend for Figure 5.2

NT-to-	NT-to-TE & TE-to-NT:		-TE only:		
Code	Description	Code	Description		
F	Framing bit, marks the start of the frame (1 bit/frame)	Е	Bit within the E-channel (D-echochannel, 4 bit/frame)		
B1	Bit within the B1-channel (2 byte/frame)	M	Multiframing bit, marks the start of		
B2	Bit within the B2-channel (2 byte/frame)		the multiframe in every 20th frame		
D	Bit within the D-channel (4 bit/frame)		(1 bit/frame)		
L	DC balancing bit (NT-to-TE: 2 bit/frame,	N	Boolean complementation of the auxiliary framing bit F_A , $N = \overline{F}_A$ (1 bit/frame)		
Г	TE-to-NT: 10 bit/frame)	S	S-bit of the multiframe (1 bit/frame)		
F_A	NT-to-TE: Auxiliary framing bit, marks the start of subchannel 1 in every 5th frame, a multiframe bit (S-bit) is transmitted in the same frame (1 bit/frame)	A	Activation bit (1 bit/frame)		
	TE-to-NT: Q-bit of the multiframe (1 bit/frame)				

5.2.3 Multiframe structure

There is a higher frame structure called *multiframe*. A multiframe has the length of 4 bits and consists of the bits Q1, Q2, Q3 and Q4 (TE-to-NT) or S1, S2, S3 and S4 (NT-to-TE). Q1 and S1 are transmitted first. As there is one multiframe bit transferred every fifth 250 µs cycle, a complete multiframe is transferred every 5 ms. This means that a multiframe has a length of 20 S/T frames.

The F_A - and M-bits are used to identify the multiframes. Table 5.3 shows the position of the multiframe bits. A detailed specification of the multiframe structure is given in [9].

Multiframe transmission must be enabled with V_ST_SQ_EN = '1' in register A_SU_CTRL0.

5.2.4 Data transmission

B-channel data on the line interface must be enabled for transmit and receive direction separately.

 $V_B1_TX_EN = '1'$ in register A_SU_CTRL0 enables data transmission for the B1-channel and $V_B2_TX_EN = '1'$ in the same register enables data transmission for the B2-channel.

 $V_B1_RX_EN = '1'$ in register A_SU_CTRL2 enables data receive for the B1-channel and $V_B2_RX_EN = '1'$ in the same register enables data receive for the B2-channel.

Disabled B-channel data means that all bits are forced to '1' on the line.

Figures 5.3 and 5.4 show the composition and decomposition of the S/T frames. B1-, B2-, D- and E-channel data is normally handled by the data flow controller. The HDLC controller as well as the PCM interface deliver data to the S/T interface and receive data from the S/T interface. For this reason, registers A_B1_TX, A_B2_TX, A_D_TX and A_BAC_S_TX as well as A_B1_RX, A_B2_RX, A_D_RX and A_E_RX are normally not written or read from the application software.

Multiframe bits can be handled by the data flow controller (involving registers A_BAC_S_TX and A_E_RX) or manually from the application software with registers A_MS_TX and A_MS_RX.

Table 5.3: Multiframe structure of the Q- and S-bits

	NT-to-TE frame synchronization		TE-to-NT multiframe	NT-to-TE multiframe	
Frame number	F _A -bit	M-bit	Q-bits in F_A bit position *1	S-bits *2	
1	'1'	'1'	Q1	S1	
2	'0'	'0'	'0'	'0'	
3	'0'	'0'	'0'	'0'	
4	'0'	'0'	'0'	'0'	
5	'0'	'0'	'0'	'0'	
6	'1'	'0'	Q2	S2	
7	'0'	'0'	'0'	'0'	
8	'0'	'0'	'0'	'0'	
9	'0'	'0'	'0'	'0'	
10	'0'	'0'	'0'	'0'	
11	'1'	'0'	Q3	S3	
12	'0'	'0'	'0'	'0'	
13	'0'	'0'	'0'	'0'	
14	'0'	'0'	'0'	'0'	
15	'0'	'0'	'0'	'0'	
16	'1'	'0'	Q4	S4	
17	'0'	'0'	'0'	'0'	
18	'0'	'0'	'0'	'0'	
19	'0'	'0'	'0'	'0'	
20	'0'	'0'	'0'	'0'	
1	'1'	'1'	Q1	S1	
2	'0'	'0'	'0'	'0'	

^{*1:} If the Q-bits are not used by a TE, the Q-bits shall be set to '1' (i.e. echoing of the received F_A bits).

^{*2:} The specification [9] defines five subchannels for the S-multiframe. Only subchannel 1 is used from XHFC-2SU. All other subchannels are set to '0'.

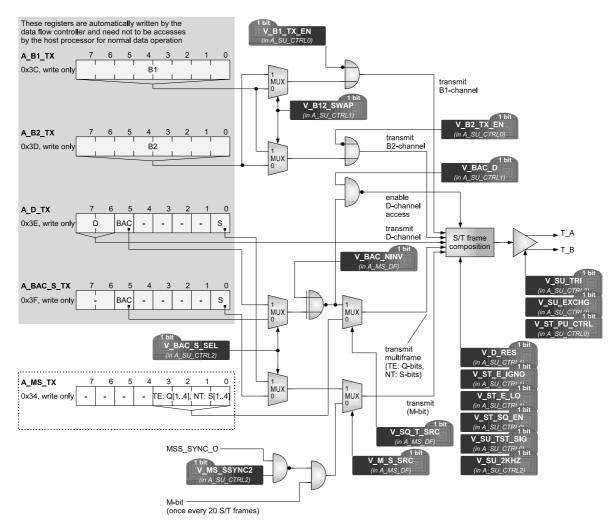
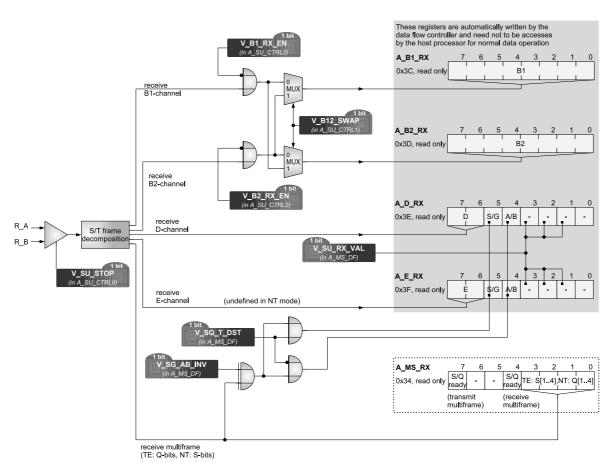


Figure 5.3: S/T frame composition for B1-, B2-, D- and multiframe bits (S/T interface mode, transmit direction)

5.2.5 INFO signals


Signals which are transmitted on the interface line are called *INFO signals*. INFO 0 is defined for both TE-to-NT and NT-to-TE directions. All other INFO signals are either for TE-to-NT signaling (INFO 1, INFO 3) or NT-to-TE signaling (INFO 2, INFO 4). The INFO signals are defined as follows ²:

INFO 0: No signal on line.

- **INFO 1:** Continuous signal at nominal bit rate with a '0011 1111' pattern which has a positive zero first and a negative zero following.
- **INFO 2:** Frames with A-bit and all B-, D- and E-bits in the frame are set to binary zero. The F_A -, N- and L-bits are set according to the normal coding rule.
- **INFO 3:** Synchronised frames with 2 bit offset and operational data on B- and D-channels.
- **INFO 4:** Frames with operational data on B-, D- and E-channels. The A-bit is set to binary one.

²Please see [9] for a detailed description of the INFO signals.

Figure 5.4: S/T frame decomposition for B1-, B2-, D-, E-channel and multiframe bits (S/T interface mode, receive direction)

5.2.6 State machine

A specification conform state machine for TE and NT mode is implemented [9]. So the current Fx or Gx state can be read out of register A_SU_RD_STA. However, it is possible to overwrite the current state by setting bit V_SU_LD_STA in register A_SU_WR_STA.

Activation and deactivation can be initiated by writing bitmap V_SU_ACT in the same register. This bitmap can be used for TE and NT mode and can start activation or deactivation from any state. Even in TE mode it can be used to initiate a deactivation from any state to F3. Such a deactivation should only be initiated if the state machine is not in F6 or F7, of course. Writing '11' (start activation) when the state machine is already activated (G2/G3 or F6/F7), will not change the current state.

Before starting the state machine, register A_SU_CLK_DLY of its S/T interface must be set. The default value is 0x0E for TE and 0x6C for NT mode.

Important!

The S/T state machine is stuck at F0 or G0 after a reset. The interface sends no signal on the S/T line (INFO 0) and is not able to activate it by incoming INFO x in this state. Writing '0' into bit V_SU_LD_STA of register A_SU_WR_STA starts the state machine.

NT mode: The NT state machine does not change automatically from G2 to G3 if the TE side sends INFO 3 frames. This transition must be activated each time by V_G2_G3 in register A_SU_RD_STA or it can permanently be enabled by setting bit V_G2_G3_EN in register A_SU_CTRL1.

Incoming INFO 0 at state F 6 cause a state change to F 3 normally. Sometimes an intermediate state F 7 occurs which stops timer T 3. In this case another state change to F 3 comes up within 1 ms and F 7 can be ignored. V_SU_INFO0 in register A_SU_RD_STA should be checked with every state change from F 6 to F 7. When this bit is set, the state should be checked again after about 1 ms. When it is F 3, the intermediate state F 7 has to be ignored. ³

Tables 5.4 and 5.5 show the S/T interface activation and deactivation layer 1 of the finite state matrix in NT and TE mode.

June 2012 Data Sheet 163 of 367

³It might be useful to start a timer of approximately 1 ms to detect the F6 - F7 - F3 state changes.

Table 5.4: S/T interface activation/deactivation layer 1 matrix for NT mode

State name:	Reset	Deactivated	Pending activation	Active	Pending deactivation
State number:	G 0	G 1	G 2	G3	G4
INFO sent:	INFO 0	INFO 0	INFO 2	INFO 4	INFO 0
Event:					
State machine release *3	G 1	-			
Activate request	start T 1 *1 G 2	start T 1 *1 G 2			start T 1 *1 G 2
Deactivate request	_		start T 2 G 4	start T 2 G 4	
Expiry T 1 *1	_	_	start T 2 G 4	/	_
Expiry T 2 *2	_				G 1
Receiving INFO 0	_	_	_	G 2	G 1
Receiving INFO 1	_	start T 1 *1 G 2	_	/	_
Receiving INFO 3	_	/	stop T 1 *1,4 G 3	_	_
Lost framing		/	/	G2	
Legend: —	No state chang	ge			
/	Impossible sit	uation			

Impossible by the definition of the layer 1 service

^{*1:} Timer T 1 is not implemented and must be implemented in software. T 1 is started with entering G2, runs during G2 state and is stopped when entering G3 or expiry. T1 should expire after 100 ms . . 1000 ms [5].

^{*2:} Timer T 2 prevents unintentional reactivation. Its value is $256 \cdot 125 \,\mu s = 32 \,ms$. This implies that a TE has to recognize INFO 0 and to react on it within this time.

^{*3:} After reset the state machine is fixed to G 0.

^{*4:} Bit V_SU_SET_G2_G3 in register A_SU_WR_STA must be set to allow this transition or V_G2_G3_EN in register A_SU_CTRL1 must be set to allow automatic transition $G2 \rightarrow G3$.

Table 5.5: S/T interface activation/deactivation layer 1 matrix for TE mode

-								
State name: State number:	0 Reset	Sensing F2	ى Deactivated	A Awaiting signal	H Identifying input	9 Synchronized	t Activated	± Lost ∞ framing
INFO sent:	INFO 0	INFO 0	INFO 0	INFO 1	INFO 0	INFO 3	INFO 3	INFO 0
Event:	INFOU	INFOU	INFOU	INFOI	INFO	INFO 3	INFO 3	INFOU
State machine release *1	F2	/	/	/	/	/	/	/
Activate request, receiving any signal	_		F5	-		_		_
receiving INFO 0	_		start T3 *5 F4			_		_
Expiry T 3 *5	_	/	_	F3	F3	_	_	F3
Receiving INFO 0	_	F3	_	_	_	F3	F3	F3
Receiving any signal *2	_	_	_	F5	_	/	/	_
Receiving INFO 2 *3	_	F6	F6	F6	F6	_	F6	F6
Receiving INFO 4 *3	_	F7	stop T3 *5 F 7	stop T3 *	⁵ stop T3 *5	stop T3 *5 F 7	_	stop T3 *5 F 7
Lost framing *4	_	/	/	/	/	F8	F8	_
Legend: —	No state	change						
/	Impossib	le situatio	n					
	Impossib	ole by the	definition of	f the laye	r 1 service			

Impossible by the definition of the layer 1 service

^{*1:} After reset the state machine is fixed to F 0.

^{*2:} This event reflects the case where a signal is received and the TE has not (yet) determined wether it is INFO 2 or INFO 4.

^{*3:} Bit and frame synchronization achieved.

^{*4:} Loss of Bit or frame synchronization.

^{*5:} Timer T 3 is not implemented and must be implemented in software.

5.2.7 Clock synchronization

A detailed view inside the line interface block diagram of Figure 5.1 is shown for the S/T interface mode in Figure 5.5. All clocks are derived from a 6.144 MHz clock which is $f_{\rm SU}/2$. Frame synchronization is accomplished by evaluating the code violations in the S/T frame.

Received data from the pins R_A0/R_A1 and R_B0/R_B1 is passed through the RX data path to the switching buffer (see Figures 3.3 and 3.4 in Section 3.2). A bit clock and a frame clock are derived from the received data stream. These clocks are used to synchronize the RX data path timing to the incoming data stream. The frame clock can be passed for synchronization purposes to the TX data path and to the PCM timing control as well.

The transmit data clock has different sources in TE and NT mode:

NT mode: The 192 kHz bit clock as well as the 8 kHz frame clock are derived from FSYNC in NT mode. This signal is either F0IO input or F1_7 (see register R_SL_SEL7 and Figure 6.5 on page 229).

TE mode: A TE is always taken as synchronization source for ISDN applications because it delivers the clock from the central office switch. Thus both clocks are taken from the RX clock unit.

The state machine takes several signals from the RX data path and the RX clock unit. The TX data path is controlled by the state machine's output signals.

The multiframe transmission can be synchronized to the PCM interface. The MSS controller (multiframe/superframe synchronization controller) delivers the MSS_SYNC_O signal to force the 'start of multiframe' in NT mode. The MSS controller is described in Section 6.6 from page 235.

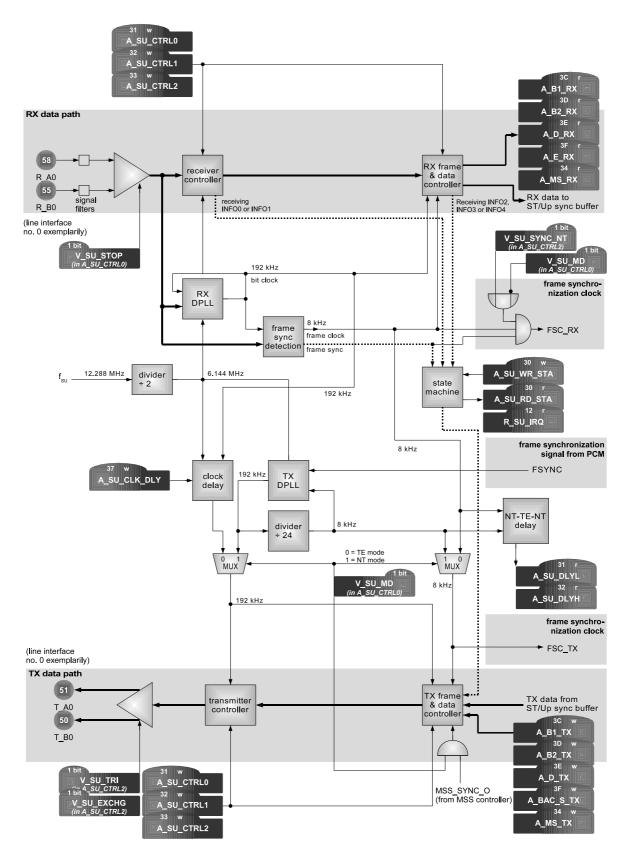


Figure 5.5: S/T clock synchronization

5.2.8 External circuitries

5.2.8.1 External receive circuitry

The standard external receive circuitry for TE and NT mode is shown in Figure 5.6.

Figure 5.6 connects pins R_A0/L_A0 through the transformer to a minus (-) pin of the RJ-45 jack, while pins R_B0/L_B0 are connected to a RJ-45 plus (+) pin. Due to the automatic polarity detection of the XHFC-2SU receiver, it is allowed to swap the pairs R_A0/L_A0 and R_B0/L_B0.

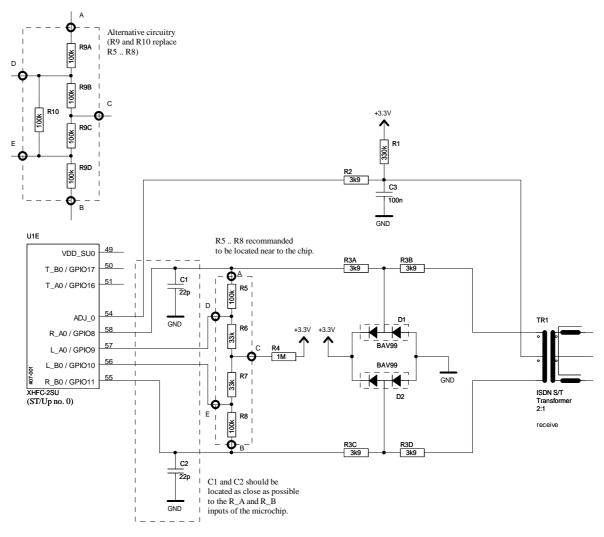


Figure 5.6: External S/T receive circuitry for TE and NT mode

XHFC-2SU has two S/T interfaces. For a not used S/T interface, the level adjustment pin ADJ_0 or ADJ_1 should be left open.

5.2.8.2 External transmit circuitry

The standard external transmit circuitry for TE and NT mode is shown in Figure 5.7.

Figure 5.7 connects pin T_A0 through the transformer to a minus (-) pin of the RJ-45 jack, while pin T_B0 is connected to a RJ-45 plus (+) pin. This is important for interoperability with other devices. Mainly for test purposes, the transmit lines can be swapped internally with V_SU_EXCHG = '1' in register A_SU_CTRL2.

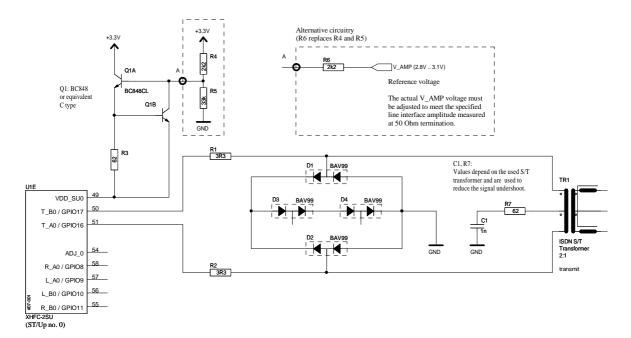


Figure 5.7: External S/T transmit circuitry for TE and NT mode

The signal level of the transmit circuitry has to be adjusted by VDD_SU0/VDD_SU1. The exact voltage of these pins depends on the used transformer and circuitry dimensioning.

5.2.8.3 Transformer and ISDN jack connection

Figure 5.8 and 5.9 show the connection circuitry of the transformer and the ISDN jack in TE mode ⁴. The termination resistors R1 and R2 are optional.

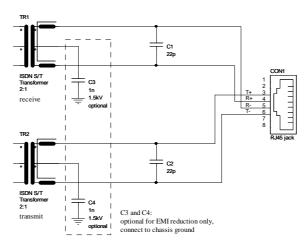
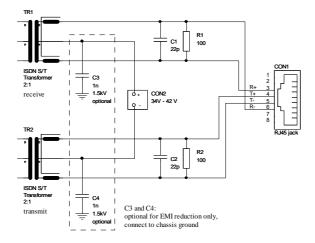
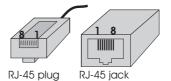




Figure 5.8: Transformer and connector circuitry in TE mode

Figure 5.9: Transformer and connector circuitry in NT mode (shown with optional 100Ω termination, whole bus termination must be 50Ω)

pin 3: TE (+) transmit \rightarrow NT (+) receive, pin 4: NT (+) transmit \rightarrow TE (+) receive, pin 5: NT (-) transmit \rightarrow TE (-) receive, pin 6: TE (-) transmit \rightarrow NT (-) receive.

⁴The ISDN jack RJ-45 has 8 pins and carries two pairs of wires. Standard configuration is

5.2.9 S/T transformers

Customers of Cologne Chip can choose from a variety of S/T transformers for ISDN Basic Rate Interface. All S/T transformers are compatible to the XHFC series of Cologne Chip that fulfill two criteria:

- Turns ratio of 1:2 (line side : chip side)
- Center tap on the chip side (required for Cologne Chip transmitter and receiver circuitries)

Several companies provide *transformers* and *transformer modules* that can be used with our ISDN Basic Rate Interface controllers. Most popular are SMD dual transformer modules with choke for EMI reasons. Part numbers and manufacturers are listed in Table 5.6. A more extensive and regularly updated list can be found on Cologne Chip's website http://www.colognechip.com.

The transformer list has not been compiled under aspects of RoHS compliance. For the current RoHS status of the listed parts, please contact the transformer manufacturers straight.

Table 5.6: S/T transformer part numbers and manufacturers

Bel Fuse Inc., United Kingdom, http://www.belfuse.com					
Type Device	Type Device				
Dual Transformer Module without choke:	Dual Transformer Module with choke:				
2798B (SMD)	APC 48301 (THT)				
2798C (SMD)					
2798D (SMD)					

Pulse Engineering, Inc., United States, http://www.pulseeng.com

Type Device	Type Device	
Single transformer:	Dual Transformer Module without choke:	
T5003 (SMD, PCMCIA)	T5006 (SMD)	
T5020 (SMD)	T5007 (SMD)	
T5023 (SMD)	T5042 (SMD, 3 kV)	
T5024 (SMD, 3 kV)	PE-65495 (THT)	
T5033 (SMD)	PE-65499 (THT)	
T5035 (THT, 3 kV)	PE-65795 (SMD)	
T5036 (SMD, 3 kV)	PE-65799 (SMD)	
PE-64995 (THT)		
PE-64999 (THT)	Dual Transformer Module with choke:	
PE-68992 (THT)	T5012 (THT)	
ST-5069 (SMD)	T5034 (SMD)	
	T5038 (SMD)	

Table 5.6: S/T transformer part numbers and manufacturers

Talema Elektronik GmbH, Germany, http://www.talema.net

Type	Device	Type	Device
Single Transformer:		Dual 7	Fransformer Module with choke:
	ISF-140B1 (THT)		HVM-140C1 (THT)
	ISV-140B1 (THT)		ISM-140C1 (THT)
	ISHF-240B1 (THT, 3 kV)		MUJ-103A-500(SMD, miniature)
	SHJ-240B (SMD, 3 kV)		MUJ-103A-101(SMD, miniature)
	SMJ-140B (SMD)		MUJ-103A-501(SMD, miniature)
	SWJ-140B (SMD)		MUJ-103A-502(SMD, miniature)
			MAJ-403A-470 (SMD)
Dual Transformer Module without choke:			MAJ-403A-101 (SMD)
	MUJ-103A-000 (SMD, miniature)		MAJ-403A-501 (SMD)
			MAJ-403A-502 (SMD)
			MSJ-403A-470 (SMD)
			MSJ-403A-101 (SMD)
			MSJ-403A-501 (SMD)
			MSJ-403A-502 (SMD)
			MHJ-240B1-470 (SMD, 3 kV)
			MHJ-240B1-101 (SMD, 3 kV)
			MHJ-240B1-501 (SMD, 3 kV)
			MHJ-240B1-502 (SMD, 3 kV)
			MHJ-240B1-123 (SMD, 3 kV)

Table 5.6: S/T transformer part numbers and manufacturers

UMEC GmbH, Germany, Taiwan, United States, http://www.umec.de

Type	Device	Type	Device
Single transformer:		Dual T	Fransformer Module without choke:
	UT 20995 (THT)		UT 20495 (THT)
	UT 20999 (THT)		UT 20495-TS (SMD)
	UT 21023 (THT)		UT 20765-00 (SMD, 3 kV)
	UT 21595 (THT)		UT 20795-00TS (SMD)
	UT 28166 (THT)		
	UT 28166-TS (SMD)	Dual 7	Fransformer Module with choke:
	UT 28428-TS (SMD)		UT 20495 CV-TS (SMD)
UT 28729 (THT, 4 kV)			UT 20765-05TS (SMD, 3 kV)
			UT 20765-10TS (SMD, 3 kV)
			UT 20765-50TS (SMD, 3 kV)
			UT 20795-05TS (SMD)
			UT 20795-10TS (SMD)
			UT 20795-50TS (SMD)
			UT 20795-5M-TS (SMD)
			UT 21644S (SMD, miniature)
			UT 28624 (THT)
			UT 28624A (THT)
			UT 28624A-T (SMD)

Vacuumschmelze GmbH & Co. KG, Germany, http://www.vacuumschmelze.com

Device	Type Device
transformer:	Dual Transformer Module without choke:
3-L4021-X066 (THT)	7-M4035-X001 (THT)
3-L4025-X095 (THT)	7-M5014-X001 (SMD, miniature)
3-L4031-X001 (THT)	7-M5026-X001 (SMD)
3-L4097-X029 (THT, 3 kV)	7-M5026-X002 (SMD, 3 kV)
3-L5024-X028 (SMD)	7-M5054-X001 (SMD)
3-L5032-X040 (SMD, 3 kV)	
	Dual Transformer Module with choke:
	7-L5026-X010 (SMD)
	7-L5026-X011 (SMD, 3 kV)
	7-L5026-X017 (SMD)
	7-L5051-X014 (THT)
	7-L5054-X005 (SMD, 3 kV)
	7-L5054-X006 (SMD, 3 kV)
	transformer: 3-L4021-X066 (THT) 3-L4025-X095 (THT) 3-L4031-X001 (THT) 3-L4097-X029 (THT, 3 kV) 3-L5024-X028 (SMD)

Table 5.6: S/T transformer part numbers and manufacturers

Sumida AG, Germany, http://www.sumida-eu.com (formerly known as Vogt electronic AG)

Device	Type	Device
transformer:	Dual 7	Fransformer Module without choke:
503 05 901 00 (SMD)		503 16 504 00 (SMD)
503 10 009 00 (SMD)		503 16 513 00 (SMD, 4 kV)
503 12 001 00 (SMD, PCMCIA)		503 20 981 00 (SMD)
503 20 010 00 (SMD)		503 74 003 00 (SMD, 4 kV)
503 20 019 00 (SMD, 4 kV)		503 74 006 00 (SMD)
543 80 008 00 (THT, 4 kV)		
	Dual 7	Fransformer Module with choke:
		503 16 017 00 (SMD, miniature)
		503 16 501 00 (SMD)
		503 16 502 00 (SMD)
		503 16 505 00 (SMD)
		503 16 506 00 (SMD)
		503 20 985 00 (SMD)
		543 76 006 00 (SMD)
	transformer: 503 05 901 00 (SMD) 503 10 009 00 (SMD) 503 12 001 00 (SMD, PCMCIA) 503 20 010 00 (SMD) 503 20 019 00 (SMD, 4kV)	transformer: Dual 7 503 05 901 00 (SMD) 503 10 009 00 (SMD) 503 12 001 00 (SMD, PCMCIA) 503 20 010 00 (SMD) 503 20 019 00 (SMD, 4kV) 543 80 008 00 (THT, 4kV)

Please note: Cologne Chip cannot take any liability concerning the product names, characteristics and availability. Products can change without notice. Please refer to the manufacturer in case of doubt.

5.3 U_p interface description

5.3.1 Overview

The Universal ISDN Port is able to provide a ping-pong type 2-wire interface according to U_{p0} and U_{pN} specifications [3] known from SIEMENS Corporation and German Electrical and Electronic Manufacturers' Association (ZVEI).

The line interface is a four-wire interface and has separated transmitter and receiver with configurable behaviour. The ISDN data frame structure is handled by hardware. Thus plain data is processed on the host side of the U_p interface.

A specification conform state machine for TE and LT mode is implemented (see Section 5.3.6). This is very similar to the S/T state machine (see Section 5.2.6 on page 163).

The U_p interface uses AMI coding for input and output signals. This pseudo-ternary coding converts logical zeros to $0\,V$ level. Logical ones are coded by alternating positive and negative voltage with $2\,V$ nominal amplitude on the line.

5.3.2 Frame Structure

The U_p frame structure has a length of 250 μ s. Within this period, a transmit phase and a receive phase with 99 μ s length each is placed as shown in Figure 5.10. The 38 bit frame has the same structure for LT-to-TE and TE-to-LT transmissions.

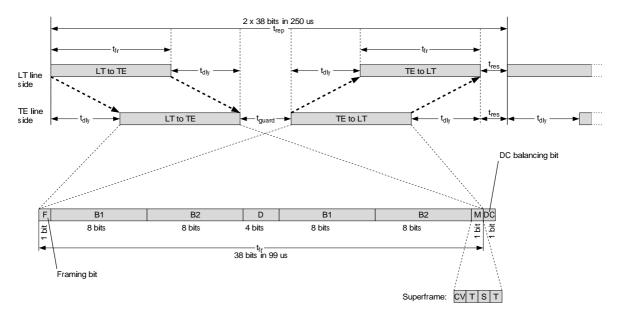


Figure 5.10: U_p interface frame structure

5.3.3 Superframe structure

There is a higher frame structure called *superframe* (also called *M-channel*). A superframe has the length of 4 bits and consists of the bits CV, T and S as shown in Figure 5.10 and Table 5.8. As there is one superframe bit within every frame, a complete superframe is transmitted and received every 1 ms.

Table 5.7: Legend for Figure 5.10

Symbol	min / μs	typ/μs	max / μs	Characteristic
$t_{\rm rep}$		250		Burst repetition period
$t_{ m fr}$		99		Frame time
$t_{ m dly}$	0		20.8	Line delay
$t_{ m guard}$		5.2		Guard time (2 bits)
$t_{\rm res}$	0		41.6	Residual time

The CV-bit is used for the superframe synchronization. It has always the value '1' and produces a code violation.

Superframe data is transferred through the T-bits while the S-bit can be used for service bits. Received bits are stored in register A_MS_RX. When two complete superframes are received, bit V_MS_RX_RDY is set to '1' in the same register. Then the four T-bits in V_MS_RX – received within two superframes – are valid. V_MS_RX_RDY is reset to '0' with every read access to register A_MS_RX. The first received T-bit is stored in V_MS_RX[3], the fourth is stored in V_MS_RX[0].

Superframe data to be transmitted must be stored in bitmap V_MS_TX of register A_MS_TX. Four T-bits must be stored together. They are transmitted with the next two superframes. The first T-bit is V_MS_TX[3] and the fourth is V_MS_TX[0]. When all T-bits are transferred to the output shift register, bit V_MS_TX_RDY in register A_MS_RX changes to '1' to signal 'next data required'. This bit is automatically reset to '0' with a read access to register A_MS_RX.

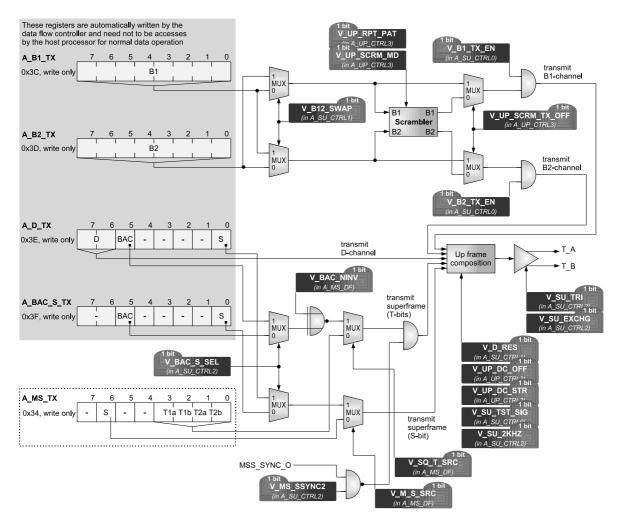
The received service bit S can be read from register V_UP_S_RX. In transmit data direction, the bit value V_UP_S_TX in register A_MS_TX will be send in the next superframes until another value is written into V_UP_S_TX.

Table 5.8: Superframe construction

Number in sequence	Bit name	Meaning	Bit rate	
1	CV	Code violation bit	1 kbit/s	
2, 4	T	Transparent channel bit	it 2 kbit/s	
3	S	Service channel bit	1 kbit/s	

5.3.4 Data transmission

B-channel data on the line interface must be enabled for transmit and receive direction separately.


 $V_B1_TX_EN = '1'$ in register A_SU_CTRL0 enables data transmission for the B1-channel and $V_B2_TX_EN = '1'$ in the same register enables data transmission for the B2-channel.

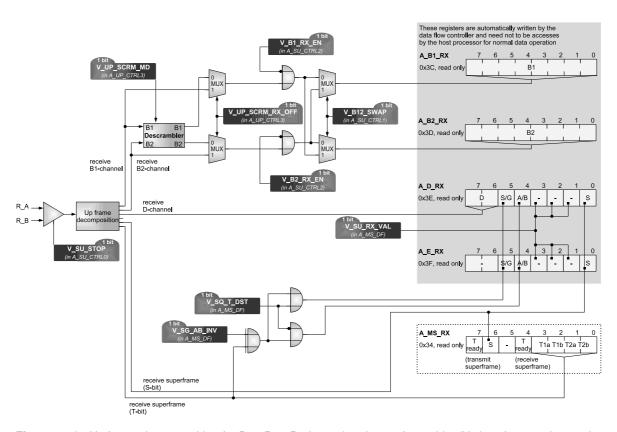
 $V_B1_RX_EN = '1'$ in register A_SU_CTRL2 enables data receive for the B1-channel and $V_B2_RX_EN = '1'$ in the same register enables data receive for the B2-channel.

Disabled B-channel data means that all bits are forced to '1' on the line. Due to the fact that the bit scramblers are functionally arranged in front of the B-channel enable / disable logic (V_B1_TX_EN

and $V_B2_TX_EN$), it is important always to enable the B-channels during U_p operation even if no data is send.

Figure 5.11: U_p frame composition for B1-, B2-, D-channel and superframe bits (U_p interface mode, transmit direction)

Figures 5.11 and 5.12 show the composition and decomposition of the U_p frames. B1-, B2- and D-channel data is normally handled by the data flow controller. The HDLC controller as well as the PCM interface deliver data to the U_p interface and receive data from the U_p interface. For this reason, registers A_B1_TX, A_B2_TX, A_D_TX and A_BAC_S_TX as well as A_B1_RX, A_B2_RX, A_D_RX and A_E_RX 5 are normally not written or read from the application software.


Superframe bits can be handled by the data flow controller (involving registers A_BAC_S_TX and A_E_RX) or manually from the application software with registers A_MS_TX and A_MS_RX. Please note that A_BAC_S_TX contains E-channel data only in S/T interface mode.

5.3.5 INFO signals

Signals which are transmitted on the interface line are called *INFO signals*. INFO 0 is defined for upstream (TE-to-LT) and downstream (LT-to-TE) direction. All other INFO signals are either for

⁵Please note, that A_E_RX does only contain E-channel bits in S/T interface mode.

Figure 5.12: U_p frame decomposition for B1-, B2-, D-channel and superframe bits (U_p interface mode, receive direction)

upstream (INFO 1W, INFO 1, INFO 3) or downstream (INFO 2, INFO 4) direction. The INFO signals are defined as follows [3]:

INFO 0: No signal on line.

INFO 1W: Asynchronous awake signal with a 2 kHz burst rate (every second frame used). The frame has the contents

'F 00010001 00010001 0001 01010100 01011111 1'

with code violation in the framing bit F. F is always '1'.

INFO 1: 4 kHz burst rate (every frame used). The frame has the contents

'F 00010001 00010001 0001 01010100 01011111 M DC'

with code violation in the framing bit F.

INFO 2: 4 kHz burst rate (every frame used). The frame has the contents

'F 00010001 00010001 0001 01010100 01011111 M'

with code violation in the framing bit F.

INFO 3: 4 kHz burst rate (every frame used) with user data in B-, D- and M-channels. The B-channels are scrambled. The framing bit F has no code violation. The DC-bit is used.

INFO 4: 4 kHz burst rate (every frame used) with user data in B-, D- and M-channels. The B-channels are scrambled. The framing bit F has no code violation. The DC-bit is used.

The F-bit polarity (AMI-violation or no AMI-violation) is calculated in relation to the last bit of the preceding frame in the same direction. The DC-balancing bit is included in the F-bit polarity calculation algorithm when it is present.

5.3.6 State machine

A specification conform state machine for TE and LT mode is implemented. So the current Fx or Gx state of the state machine can be read out of register A_SU_RD_STA. However, it is possible to overwrite the state machine by setting bit V_SU_LD_STA in register A_SU_WR_STA.

Activation and deactivation can be initiated by writing bitmap V_SU_ACT in the same register. This bitmap can be used for TE and LT mode and can start activation or deactivation from any state. Even in TE mode it can be used to initiate a deactivation from any state to F3. Such a deactivation should only be initiated if the state machine is not in F6 or F7, of course. Writing '11' (start activation) when the state machine is already activated (G2/G3 or F6/F7), will not change the current state.

Before starting the state machine in TE mode, register A_SU_CLK_DLY of its U_p interface must be set. The default value is 0xF for TE mode.

Please note that in contrast to the S/T interface mode, an U_p device cannot be linked to an already activated U_p line for monitoring e.g., because the device must pass the entire activation sequence.

Tables 5.9 and 5.10 show the U_p interface activation and deactivation layer 1 of the finite state matrix in TE and LT mode. They are adopted from the S/T state machine specification according to ITU-T I.430 [9].

Table 5.9: U_p interface activation/deactivation layer 1 matrix for LT mode

State name:	Reset	Deactivated	Pending activation	Active	Pending deactivation
State number:	G 0	G 1	G2	G3	G4
INFO sent:	INFO 0	INFO 0	INFO 2	INFO 4	INFO 0
Event:					
State machine release *3	G 1				
Activate request	start T 1 *1 G 2	start T 1 *1 G 2	I		start T 1 *1 G 2
Deactivate request	_		start T 2 G 4	start T 2 G 4	
Expiry T 1 *1	_	_	start T 2 G 4	/	_
Expiry T 2 *2	_	_	_	_	G 1
Receiving INFO 0 Receiving INFO 1	_	_	_	G2	G1
or INFO 1W	_	start T 1 *1 G 2	_	/	_
Receiving INFO 3	_	/	stop T 1 *1,4 G 3	_	_
Lost framing	_	/	/	G 2	_
Legend: —	No state chang	ge			

Legend: — No state change
/ Impossible situation
| Impossible by the definition of the layer 1 service

^{*1:} Timer T 1 is not implemented and must be implemented in software. T 1 is started with entering G2, runs during G2 state and is stopped when entering G3 or expiry. T 1 should expire after 100 ms.. 1000 ms [5].

^{*2:} Timer T 2 prevents unintentional reactivation. Its value is $256 \cdot 125 \,\mu s = 32 \,ms$. This implies that a TE has to recognize INFO 0 and to react on it within this time.

^{*3:} After reset the state machine is fixed to G 0.

^{*4:} Bit V_SU_SET_G2_G3 in register A_SU_WR_STA must be set to allow this transition or V_G2_G3_EN in register A_SU_CTRL1 must be set to allow automatic transition $G2 \rightarrow G3$.

Table 5.10: U_p interface activation/deactivation layer 1 matrix for TE mode

State name: State number: INFO sent:	Resect O FO	Sensing F 2	Peactivated Oodul	guings F4 Awaiting INFO IW	Identifying 1 Identifying 2 input	6 Synchronized	F 7 Activated	Oost 6 Framing
Event:								
State machine release *1	F2	/	/	/	/	/	/	/
Activate request, receiving any signal receiving INFO 0	<u> </u>		F5 start T3*5 F4			_		_ _
Expiry T 3 *5	_	/	_	F3	F3	_	_	F3
Receiving INFO 0	_	F3	_	_	_	F3	F3	F3
Receiving any signal *2	_	_	_	F5	_	/	/	_
Receiving INFO 2 *3	_	F6	F6	F6	F6	_	F6	F6
Receiving INFO 4 *3	_	F7	stop T3 *5 F 7	stop T3 *5 F7	stop T3 *5 F 7	stop T3 *5 F 7	_	stop T3 *5 F 7
Lost framing *4		/	/	/	/	F8	F8	_
Legend: — /	•	le situatio	n definition o	f the layer	1 service			

^{*1:} After reset the state machine is fixed to F 0.

^{*2:} This event reflects the case where a signal is received and the TE has not (yet) determined wether it is INFO 2 or INFO 4.

^{*3:} Bit and frame synchronization achieved.

^{*4:} Loss of Bit or frame synchronization.

^{*5:} Timer T 3 is not implemented and must be implemented in software.

Important!

The U_p state machine is stuck at F0 or G0 after a reset. The interface sends no signal on the U_p line and is not able to activate it by incoming INFO x in this state. Writing '0' into bit V_SU_LD_STA of register A_SU_WR_STA starts the state machine.

LT mode: The LT state machine does not change automatically from G2 to G3 if the TE side sends INFO 3 frames. This transition must be activated each time by V_G2_G3 in register A_SU_RD_STA or it can permanently be activated by setting bit V_G2_G3_EN in register A_SU_CTRL1.

5.3.7 Clock synchronization

A detailed view inside the line interface block diagram of Figure 5.1 is shown for the U_p interface mode in Figure 5.13. All clocks are derived from the 12.288 MHz clock f_{SU} . Frame synchronization is accomplished by evaluating the code violations in the U_p frame.

Received data from the pins R_A0/R_A1 and R_B0/R_B1 is passed through the RX data path to the switching buffer. A bit clock and a frame clock are derived from the received data steam. These clocks are used to synchronize the RX data path timing to the incoming data stream. The frame clock can be passed for synchronization purposes to the TX data path and the PCM timing control as well.

The transmit data clock has different sources in TE and LT mode:

LT mode: The 384 kHz bit clock as well as the 8 kHz frame clock are derived from FSYNC in NT mode. This signal is either F0IO input or F1_7 (see register R_SL_SEL7 and Figure 6.5 on page 229).

TE mode: A TE is always taken as synchronization source for ISDN applications because it delivers the clock from the central office switch. Thus both clocks are taken from the RX clock unit.

The state machine takes several signals from the RX data path and the RX clock unit. The TX data path is controlled by the state machine's output signal.

Bit scramblers are inserted into the receive and the transmit data pathes. The scramblers can be switched off with $V_UP_SCRM_RX_OFF = '1'$ (for the receive data path) and $V_UP_SCRM_TX_OFF = '1'$ (for the transmit data path) in register A_UP_CTRL3 . Bit scramblers should only be disabled for test purposes. They shall mandatorily be enabled for normal U_p operation.

The scrambler mode is configurable according to ITU-T V.27 specification [8] or OCTAT-P compatibility [6] with V_UP_SCRM_MD in the same register.

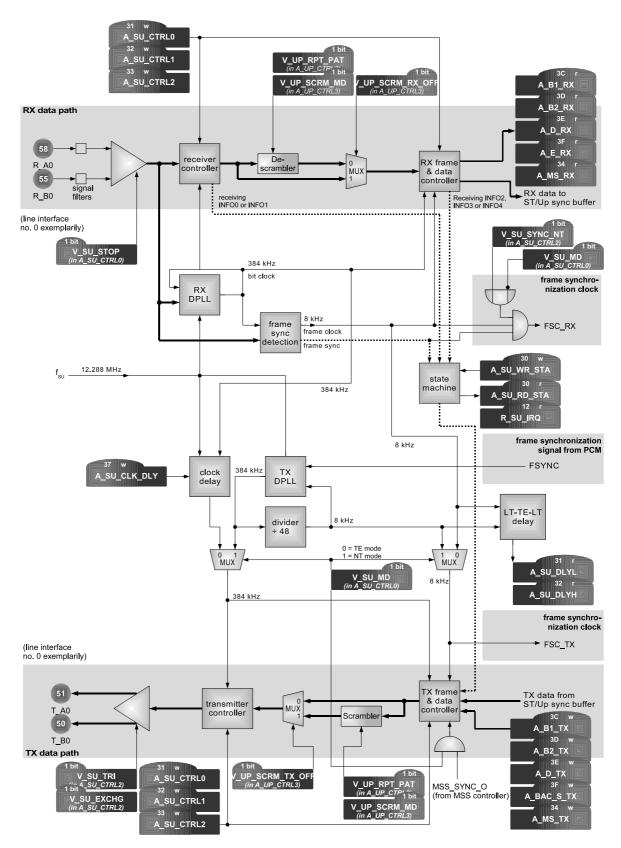
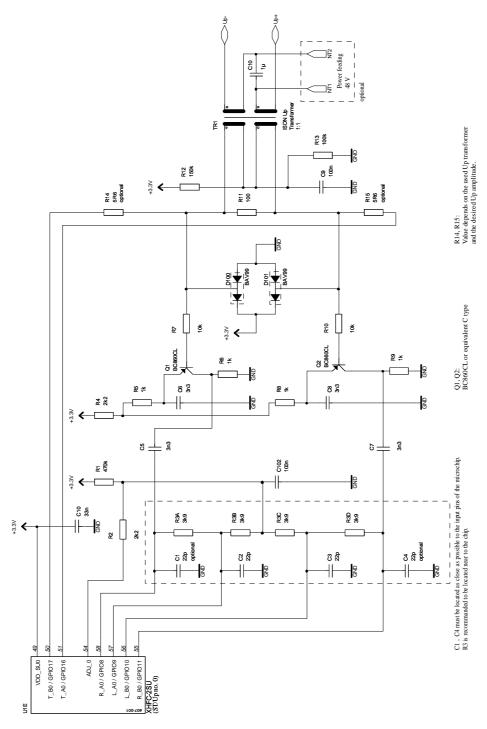



Figure 5.13: Up clock synchronization

5.3.8 External circuitry

Figure 5.14: External U_p circuitry for TE and LT mode

5.3.9 U_p transformers

Customers of Cologne Chip can choose from a variety of U_p transformers for two-wire ISDN U_p interface (U_{p0}/U_{pN}) . All U_p transformers are compatible to the XHFC series of Cologne Chip that fulfill two criteria:

- Turns ratio of 1:1
- Dual winding on line side (required for power feeding)

Several companies provide transformers that can be used with our ISDN Basic Rate Interface controllers. Part numbers and manufacturers are listed in Table 5.11. Please ask our support team for more information.

The transformer list has not been compiled under aspects of RoHS compliance. For the current RoHS status of the listed parts, please contact the transformer manufacturers straight.

Table 5.11: Up transformer part numbers and manufacturers

UMEC GmbH, Germany, Taiwan, United States, http://www.umec.de
Type Device
Single transformer: UT 21434A-TS (SMD)
Vacuumschmelze GmbH & Co. KG, Germany, http://www.vacuumschmelze.com
Type Device
Single transformer: 3-M5024-X008 (SMD)
Sumida AG, Germany, http://www.sumida-eu.com (formerly known as Vogt electronic AG)
Type Device
Single transformer 503 10 903 00 (SMD)

Please note: Cologne Chip cannot take any liability concerning the product names, characteristics and availability. Products can change without notice. Please refer to the manufacturer in case of doubt.

5.4 Common features of the S/T and U_p interfaces

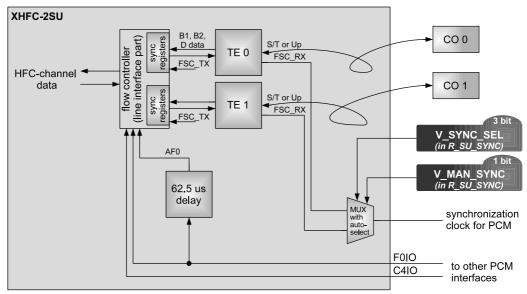
5.4.1 Direct data access for test purposes

Data accesses from the host processor are normally write operations to the FIFOs or read operations from the FIFOs. For test purposes it is also possible to access directly internal data registers. These registers

- A_B1_TX, A_B2_TX, A_D_TX and A_BAC_S_TX in transmit data direction and
- A_B1_RX, A_B2_RX, A_D_RX and A_E_RX in receive data direction

can only be read or written during non-processing phase of the data flow processor. This is indicated with V_PROC = '0' in register R_STATUS. During processing phase (V_PROC = '1'), read values can be invalid and written values might be overwritten by the data flow processor.

Interrupt capability


Every line interface can cause an interrupt when a state change occurs. State changes can be read from V_SU0_IRQ..V_SU1_IRQ in register R_SU_IRQ for each line interface separately. Both bits in R_SU_IRQ are cleared after reading the register.

Any '1' in these bits causes an interrupt if the associated mask bit V_SU0_IRQMSK..V_SU1_IRQMSK in register R_SU_IRQMSK enables the interrupt. Register R_SU_IRQ can be read even if interrupts are disabled with V_SU0_IRQMSK..V_SU1_IRQMSK = '00' and must be polled to watch the interrupt status in this case.

5.4.2 Clock synchronization with several TEs connected to different CO switches

Both TEs of the XHFC-2SU line interfaces can be interconnected to different central offices (CO). These have different clock phases and, typically, slightly different clock frequencies. An example of this szenario is illustrated in Figure 5.15. XHFC-2SU is able to synchronize both line interfaces as it is described in this section.

TE: Terminal Equipment (S/T or Up interface in TE mode)

CO: Central office

Figure 5.15: Synchronization scenario with TEs connected to several central office switches

The sychronization registers of Figure 5.15 are shown in detail in Figure 5.16. Received and transmitted data is always buffered twice to achieve a synchronization on both sides, the HFC-channel and the line interface. The line interface data is always synchronous to its FSC pulse.

HFC-channel data is latched either by the F0IO signal or by the delayed AF0 signal. If there is a central clock supply from an external PLL, it can be used to provide the timing for XHFC-2SU as shown in Figure 5.15. In the other case, the internal PLL can be used as master PLL of the ISDN system.

The window detection block changes it's output signal when the phase offset between FSC_TX and F0 is smaller than approximately $25\,\mu s$ (guard window). So the phase offset between FSC_TX and F0 is always $25\,\mu s \dots 100\,\mu s$.

Timing without frequency drift

The timing characteristics of two TEs with a phase offset and the signals F0IO and AF0 are shown in Figure 5.17. In this example TE0 is synchronization source for the PLL. Thus the timing offset between FSC_TX_0 and F0IO is $62.5\,\mu s$ (caused by the PLL). The figure shows one sample transmit data flow and one sample receive data flow on TE0 and TE1 each. In fact, both data transmissions happen every $125\,\mu s$.

Figure 5.17 is divided into three parts. The upper and lower part show the line interface oriented signals of TE 0 and TE 1 respectively. In the middle part, HFC-channel oriented signals are shown

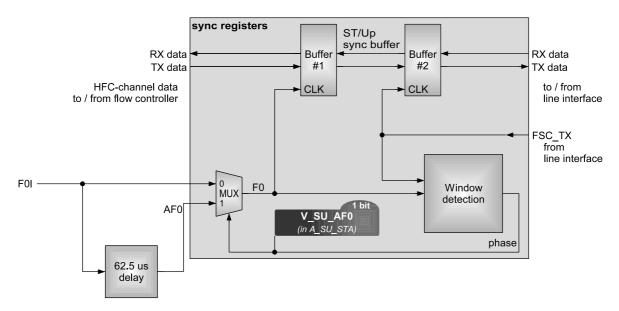
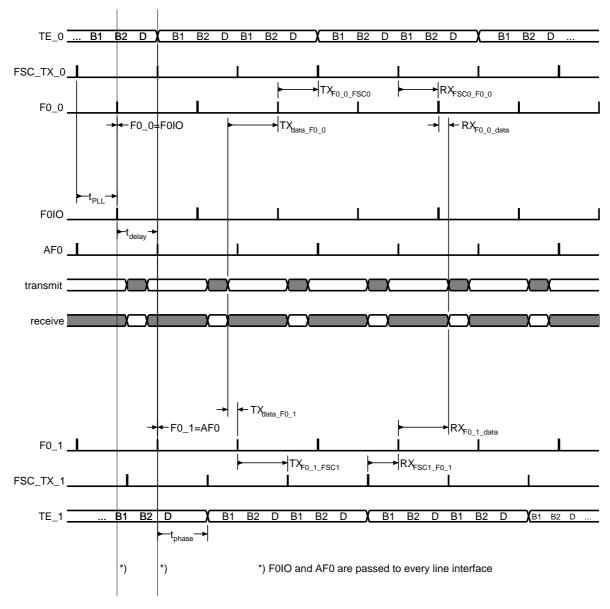



Figure 5.16: Synchronization registers (detail of Figure 5.15)

Table 5.12: Symbols of Figures 5.17

Symbol	Characteristic			
$t_{ m PLL}$	PLL-generated frame pulse offset between FSC_TX_0 and F0IO (62.5 μ s)			
$t_{ m delay}$	Frame pulse delay between F0IO and AF0 (62.5 μ s)			
t _{phase}	Frame offset between interface TE 0 and TE 1			
TX _{data_F0_0}	Time from transmit data valid to next F0_0 pulse			
TX _{F0_0_FSC0}	Time from F0_0 pulse to next FSC_TX_0 pulse			
RX _{FSC0_F0_0}	Time from FSC_TX_0 pulse to next F0_0 pulse			
RX _{F0_0_data}	Time from F0_0 pulse to receive data valid			
TX _{data_F0_1}	Time from transmit data valid to next F0_1 pulse			
TX _{F0_1_FSC1}	Time from F0_1 pulse to next FSC_TX_1 pulse			
RX _{FSC1_F0_1}	Time from FSC_TX_1 pulse to next F0_1 pulse			
RX _{F0_1_data}	Time from F0_1 pulse to receive data valid			

Figure 5.17: Transmit and receive data transmission examples of two TEs with phase offset (see explanation in the text)

which are common for both line interfaces.

A PLL generates the FoIO signal from the FSC pulse of the synchronization source with $t_{PLL} = 62.5 \,\mu s$. AFO has a fixed 62.5 μs delay to FoIO. The pseudo signals *transmit* and *receive* in Figure 5.17 represent the valid and invalid states of the HFC-channel data, strictly speaking input data of buffer #1 in transmit direction and output data from buffer #1 in receive direction.

As TE 0 is the synchronization source in this example, FSC_TX_0 is the reference signal for the PLL to generate the F0IO signal. A data transmission from TE 0 has no choice of synchronization signals. Buffer #1 gets the data byte with a F0IO pulse and buffer #2 takes it with the next FSC_TX_0 pulse.

In receive direction, the incoming data byte is stored in buffer #2 first with the FSC_TX_0 pulse. After $RX_{FSC0_F0_0}$, buffer #1 takes the data byte where it becomes valid for the HFC-channel.

TE 1 gets the transmit data from the HFC-channel with the F0_1 pulse which comes $TX_{\text{data_F0_1}}$ after data became valid. The internal data transfer of each ST/U_p interface is controlled either by F0IO or by AF0. In this example F0_1 = AF0 is shown. $TX_{\text{F0_1_FSC1}}$ after F0_1, the FSC_TX_1 pulse stores the data in buffer #2 so that the data byte is available at the line interface.

Received data is first stored in buffer #2 with the FSC_TX_1 pulse. After $RX_{FSC1_F0_1}$ buffer #1 takes the data byte and it receives the HFC-channel.

For the TE which acts as synchronization source, the clock pulses of buffer #1 and #2 have always a 62.5 μ s delay. Unsynchronized ST/U_p interfaces have clock pulses of buffer #1 and #2 that are delayed 25 μ s. . 100 μ s. The value depends on the phase offset t_{phase} between the synchronization source and the unsynchronized interface.

Timing with frequency drift

When there is a frequency drift between FSC_TX_0 and FSC_TX_1, the window detection block changes it's output level from time to time and the synchronization multiplexer output shown in Figure 5.16 switches to the other clock signal. When this happens, a data error might happen.

Figure 5.18 shows the synchronization process for $f_{FSC_TX_1} > f_{FSC_TX_0}$ in transmit data direction. FSC_TX_0 is assumed to be the synchronization signal which is the source for F0IO. F0_1 is either F0IO or AF0. In this case FSC_TX_1 is too fast which leads to a *byte doubling* in case of transmission error.

Every time, when the detection window reaches the FSC_TX_1 pulse, F0_1 jumps to the alternative signal. Every second jump a data error occurs as shown with byte 3 which is transmitted twice.

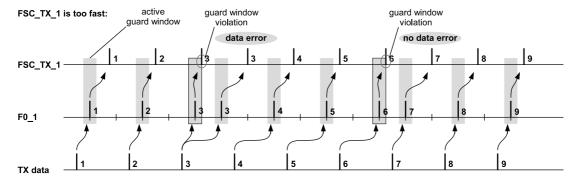


Figure 5.18: Data transmission with $f_{FSC_TX_1} > f_{FSC_TX_0}$ (i.e. too fast FSC_TX from unsynchronized TE)

Figure 5.19 shows the synchronization process for $f_{FSC_TX_1} < f_{FSC_TX_0}$ in transmit data direction. Again, FSC_TX_0 is assumed to be the synchronization signal. In this case FSC_TX_1 is too slow which leads to a *byte skip* in case of transmission error.

Every time, when the detection window reaches the FSC_TX_1 pulse, F0_1 jumps to the alternative signal. Every second jump an error occurs as shown with the byte pair 3 and 4, where byte 3 is not transmitted.

The shown examples consider only the transmit data direction. A similar effect exists in receive data direction, of course. A too fast FSC_TX_1 leads to *byte skip* errors and a too slow FSC_TX_1 causes *byte doubling* errors from time to time.

The time between two errors is given by

$$T_{
m error} = rac{1}{f_{
m FSC_TX_0}} \cdot rac{1 + \Delta f_{
m rel}}{\Delta f_{
m rel}} pprox rac{125\,\mu{
m s}}{\Delta f_{
m rel}} \ \ {
m for} \ \Delta f_{
m rel} \ll 1$$

with the precise frame clock $f_{FSC_TX_0} = 8 \, \text{kHz}$ and the relative frequency error

$$\Delta f_{\rm rel} = \frac{|f_{\rm FSC_TX_1} - f_{\rm FSC_TX_0}|}{f_{\rm FSC_TX_0}} \ . \label{eq:deltafine}$$

For example, with $\Delta f_{\rm rel} = 0.01 \, \rm ppm = 10^{-8}$ the error-to-error time is $T_{\rm error} = 208 \, \rm minutes$.

Frequency jitter

Even if both TEs have exactly the same frequency, there might be a F0-jump as well. Due to FSC jitter, the synchronization multiplexer can switch to the alternative signal. But this will happen only one time. Then, the guard window is centered between two consecutive FSC pulses and is far away from another jump condition. This single-jump condition might cause a byte error or not. It depends on the question, which one of the four jump situations shown in Figures 5.18 and 5.19 occurs and therefore it is a random event.

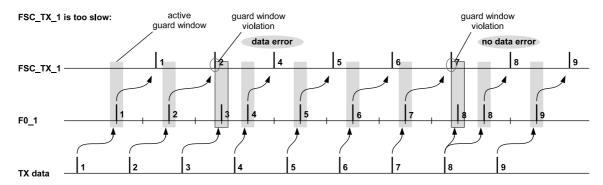


Figure 5.19: Data transmission with $f_{FSC_TX_1} < f_{FSC_TX_0}$ (i.e. too slow FSC_TX from unsynchronized TE)

5.4.3 Combined S/T and U_p circuitry

An external circuitry of the Universal ISDN Port can be set up which can be used for both S/T and U_p interface mode. This circuitry requires only one S/T transformer module which is used for U_p operating mode as well. The circuitry description is available on request.

5.5 Register description

Please note!

The name fragment SU of registers and bitmaps indicates those registers and bitmaps which are valid in both S/T and U_p interface mode. SU means 'ST/ U_p '.

The name fragments ST or UP are used when a register or bitmap is either valid in S/T or U_p interface mode.

5.5.1 Write only registers

R_SU_SEL	(w)	(Reset group: H, 0, 3)	0x16
----------	-------	------------------------	------

S/T or Up interface selection register

This register is used to select an S/T or Up interface. Before a line interface array register can be accessed, this index register must specify the desired line interface number.

	_		
Bits	Reset value	Name	Description
10	0	V_SU_SEL	Single line interface selection '000' = ST/Up interface 0 '001' = ST/Up interface 1 '010' = ST/Up interface 2 '011' = ST/Up interface 3
2	0	(reserved)	Must be '0'.
3	0	V_MULT_SU	multiple line interface selection All line interfaces are selected together. This is only useful for write access. '0' = interface selection by V_SU_SEL '1' = select all line interfaces for write accesses
74	0	(reserved)	Must be '0000'.

$A_SU_WR_STA$ [ST/Up] (w) (Reset group: H, 0, 3) 0x30

ST/Up state machine register

This register is used to set a new state. The current state can be read from register A_SU_RD_STA.

Bits	Reset value	Name	Description
30	0	V_SU_SET_STA	Binary value of the new state (NT/LT: Gx, TE: Fx) V_SU_LD_STA must also be set to load the state.
4	1	V_SU_LD_STA	Load the new state '1' = load the prepared state (V_SU_SET_STA) and stops the state machine. This bit needs to be set for a minimum period of 5.21 µs and must be cleared by software. '0' = enable the automatic state machine (V_SU_SET_STA is ignored). Note: After writing an invalid state, the state machine goes to deactivated state (G1, F2).
65	0	V_SU_ACT	Start activation / deactivation '00' = no operation '01' = no operation '10' = start deactivation '11' = start activation These bits are automatically cleared after reaching the activated / deactivated state.
7	0	V_SU_SET_G2_G3	Allow G2 to G3 transition '0' = no operation '1' = allows transition from G2 to G3 in NT/LT mode This bit is automatically cleared after the transition and has no function in TE mode.

Control register of the selected line interface, register $\boldsymbol{0}$

Before writing this array register the line interface must be selected by register R_SU_SEL.

efore writing this array register the line interface must be selected by register R_SU_SEL.				
Bits	Reset value	Name	Description	
0	0	V_B1_TX_EN	B1-channel transmit '0' = B1 send data disabled (permanent '1's sent when the line interface is activated) '1' = B1 send data enabled Note: When the bit scrambler is activated in Up line interface mode (default operation mode), this bit must be set to '1' even if the B1-channel is not in use.	
1	0	V_B2_TX_EN	B2-channel transmit '0' = B2 send data disabled (permanent '1's sent when the line interface is activated) '1' = B2 send data enabled Note: When the bit scrambler is activated in Up line interface mode (default operation mode), this bit must be set to '1' even if the B2-channel is not in use.	
2	0	V_SU_MD	Line interface mode '0' = TE mode '1' = NT/LT mode	
3	0	V_ST_D_LPRIO	D-channel priority '0' = high priority 8/9 '1' = low priority 10/11 Note: This bit is only used for line interfaces in S/T mode. It is ignored in Up interface mode.	
4	0	V_ST_SQ_EN	S/Q bits transmission '0' = S/Q bits disabled '1' = S/Q bits (multiframe) enabled Note: This bit is only used for line interfaces in S/T mode. It is ignored in Up interface mode.	
5	0	V_SU_TST_SIG	Send test signal '0' = normal operation '1' = send test signal The test signal depends on the selected line interface mode and V_SU_2KHZ in register A_SU_CTRL2: S/T interface mode: Test signal is 96 kHz (alternating '0's) or 2 kHz (one alternating '0' per frame) Up interface mode: Test signal is 192 kHz (alternating '1's) or 2 kHz (one alternating '1' per frame)	

(continued on next page)

(continued from previous page)

Bits	Reset value	Name	Description
6	0	V_ST_PU_CTRL	End of pulse control The end of pulse edge of the transmit signal can be adjusted in S/T interface mode. The programming value of V_ST_PULSE in register A_ST_CTRL3 specifies the end of pulse edge. '0' = no end of pulse control '1' = end of pulse control enabled Note: This bit is only used for line interfaces in S/T mode. It is not used in Up interface mode and must be '0'.
7	0	V_SU_STOP	Power down '0' = external receiver activated '1' = power down, external receiver disabled

SU_CT	RL1 [ST/U	[p]	(w)	(Reset group: H, 0, 3)	0x3
ntrol re	gister of tl	ne selected line interface	e, registe	r1	
fore writ	ing this ar	ray register the line interf	ace must	be selected by register R_SU_SEL.	
Bits	Reset value	Name		Description	
0	0	V_G2_G3_EN		Force automatic transition from G2 to C3 = V_SU_SET_G2_G3 in register A_SU_WR_STA must be set again for transition from G2 to G3 contract transitions from G2 to G3 are always and V_SU_SET_G2_G3 is ignored	every
1	0	(reserved)		Must be '0'.	
2	0	V_D_RES		D-channel reset O' = normal operation O' = D-channel is reset and its bits are f in transmit direction	forced to '
3	0	V_ST_E_IGNO		Ignore E-channel data This bit is only used for line interfaces is mode. D-channel data is immediately seinterface mode. To' = normal operation To' = D-channel always sends data regar received E-channel bit Note: This bit is only used in TE mode	end in Up
				ignored in NT mode.	and is
4	0	V_ST_E_LO		Force E-channel to low (only in NT mode) '0' = normal operation, E-channel bits e received D-channel data '1' = E-channel bits are forced to '0' Note: This bit is only used for line inter S/T mode. It is ignored in Up interface	rfaces in
5	0	(reserved)		Must be '0'.	
6	0	V_BAC_D		BAC-bit disables D-channel transmit	

Control register of the selected line interface, register 2

Before writing this array register the line interface must be selected by register R_SU_SEL.

Bits	Reset value	Name	Description
0	0	V_B1_RX_EN	Enable B1-channel receive '0' = B1 receive bits are forced to '1' '1' = normal operation
1	0	V_B2_RX_EN	Enable B2-channel receive '0' = B2 receive bits are forced to '1' '1' = normal operation
2	0	V_MS_SSYNC2	Multiframe/superframe single synchronization pulse The multiframe/superframe synchronization pulse can be configured to occur only once when this bit is set to '1'. S/T interface mode: '0' = normal multiframing bit M is transmitted (once every 20 S/T frames) '1' = single multiframing bit can be transmitted Up interface mode: '0' = normal T-bit is transmitted in Up superframe '1' = single T-bit = '0' can be transmitted at T-bit position in the Up superframe (normal T-bit sources must be '1') Note: When this bit is set to '1', usually also V_MS_SSYNC1 has to be set in register R_MSS1.
3	0	V_BAC_S_SEL	Multiframe/superframe bit source selection This bit has different meaning for line interfaces in S/T or Up mode: S/T interface mode: Source selection of multiframe S/Q-bits and multframing bit M Up interface mode: Source selection of superframe S- and T-bits '0' = bits come from register A_BAC_S_TX '1' = bits come from D-channel register A_D_TX Note: Further source selection is available with register A_MS_DF.
4	0	V_SU_SYNC_NT	8 kHz synchronization pulses of the line interface path are generated even in NT mode. '0' = pulses are only generated in TE mode '1' = pulses are generated in TE and NT mode

(continued on next page)

(continued from previous page)

Bits	Reset value	Name	Description
5	0	V_SU_2KHZ	Select test signal frequency '0' = transmit 96 kHz (S/T interface mode) or 192 kHz (Up interface mode) test signal '1' = transmit 2 kHz test signal The test signal must be switched on with V_SU_TST_SIG = '1' in register A_SU_CTRL0.
6	0	V_SU_TRI	Line interface ouput buffer tristated '0' = normal operation '1' = set output buffer into tristate mode (i.e. transmitter is switched off)
7	0	V_SU_EXCHG	Exchange transmit output buffers Change of the polarity of the line interface output pins. This is equal to an external crossing of the two transmit pins.

 $A_MS_TX [ST/Up]$ (w) (Reset group: H, 0, 3) 0x34

Multiframe/superframe transmit register

Bits	Reset value	Name	Description
30	0	V_MS_TX	Multiframe/superframe bits The meaning of this bitmap depends on the selected line interface mode: S/T interface mode: S/Q bits to be transmitted in the multiframe. Bits [30] are Q bits [Q1,Q2,Q3,Q4] in TE mode and S bits [S1,S2,S3,S4] in NT mode. Up interface mode: T bits to be transmitted in the superframe (M-channel). Bits [30] are T bits [T1a,T1b,T2a,T2b].
54	0	(reserved)	Must be '00'.
6	0	V_UP_S_TX	S-bit of the Up superframe S-bit to be transmitted in the superframe (M-channel). The S-bit can be read from registers A_D_TX or A_BAC_S_TX alternatively. Note: This bit is only used for line interfaces in Up interface mode. It must be '0' in S/T interface mode.
7	0	(reserved)	Must be '0'.

A_ST_CTRL3 [ST/Up]	(\mathbf{w}) (R	deset group: H, 0, 3)	0x35
--------------------	-------------------	-----------------------	------

Control register of the selected line interface, register 3

This register is an array register and a multi-register.

Before writing this array register the line interface must be selected by register R_SU_SEL. Afterwards the multi-register selection is required with bit V_ST_SEL = '0' in this register.

Note: This register is only used in S/T interface mode and should be 0xF8. See register A_UP_CTRL3 when the line interface is in Up mode.

Bits	Reset value	Name	Description
0	0	V_ST_SEL	Line interface mode selection This bit selects either the S/T or Up mode of the line interface. '0' = line interface is in S/T mode and multi-register A_ST_CTRL3 is selected '1' = line interface is in Up mode and multi-register A_UP_CTRL3 is selected Note: This bit should only be changed after reset.
71	0	V_ST_PULSE	End of pulse control The shape of the pulse end can be adjusted with this bitmap. V_ST_PULSE = 0x7C should be used.

A_UP_CTRL3 [ST/Up]	(w)	(Reset group: H, 0, 3)	0x35
--------------------	-----	------------------------	------

Control register of the selected line interface, register 3

This register is an array register and a multi-register.

Before writing this array register the line interface must be selected by register R_SU_SEL. Afterwards the multi-register selection is required with bit V_UP_SEL = '1' in this register.

Note: This register is only used in Up interface mode. See register A_ST_CTRL3 when the line interface is in S/T mode.

Bits	Reset value	Name	Description
0	0	V_UP_SEL	Line interface mode selection This bit selects either the S/T or Up mode of the line interface. '0' = line interface is in S/T mode and multi-register A_ST_CTRL3 is selected '1' = line interface is in Up mode and multi-register A_UP_CTRL3 is selected Note: This bit should only be changed after reset.
1	0	V_UP_VIO	Up activation after superframe violation '0' = activation is done even without a superframe violation '1' = activation is only done when a superframe violation is found
2	0	V_UP_DC_STR	DC-balancing mode '0' = The DC-balancing bit is only generated when a code violation (CV) has been sent in the M bit position (normal operation) '1' = The DC-balancing bit is always generated as parity bit to achieve a DC-free signal Note: DC-balancing must be enabled with V_UP_DC_OFF = '0' to generate DC-balancing bits
3	0	V_UP_DC_OFF	DC-balancing bit disabled '0' = normal operation '1' = The DC-balancing bit is always '0'
4	0	V_UP_RPT_PAT	Allow repeated patterns of scrambled data '0' = prevent repeated patterns as specified in bit V_UP_SCRM_MD (normal operation) '1' = repeated patterns are not prevented
5	0	V_UP_SCRM_MD	Scrambler / descrambler mode selection '0' = OCTAT-P mode (compatible to Siemens / Infineon Up microchips) '1' = V.27 mode (compatible to ITU-T V.27 specification) Note: V_UP_RPT_PAT must be '0' to prevent repeated patterns.

(continued on next page)

(continued from previous page)

Bits	Reset value	Name	Description
6	0	V_UP_SCRM_TX_OFF	Transmit scrambler disabled The transmit data is not scrambled when this bit is set to '1'. The scrambler is bypassed in this case.
7	0	V_UP_SCRM_RX_OFF	Receive descrambler disabled The receive data is not descrambled when this bit is set to '1'. The descrambler is bypassed in this case.

A_MS_DF [ST/Up]	(w)	(Reset group: $H, 0, 3$)	0x36

Multiframe/superframe data flow configuration register

Before writi	efore writing this array register the line interface must be selected by register R_SU_SEL.				
Bits	Reset value	Name	Description		
0	0	V_BAC_NINV	No BAC-bit inversion '0' = invert BAC-bit '1' = no inversion of BAC-bit		
1	0	V_SG_AB_INV	Invert S/G or A/B bit '0' = normal operation '1' = invert S/G or A/B bit (depending on V_SQ_T_DST)		
2	0	V_SQ_T_SRC	Source of S/Q-bits (S/T multiframe) or T-bits (Up superframe) '0' = S/Q- or T-bits come from bitmap V_MS_TX in register A_MS_TX '1' = S/Q- or T-bits come from BAC-bit of D- or E-channel (depending on V_BAC_S_SEL)		
3	0	V_M_S_SRC	Source of M-bit (S/T multiframing bit) or S-bit (Up superframe) S/T interface mode: The meaning of this bit depends on the selected line interface mode: '0' = multiframing bit M comes from multiframe / superframe controller '1' = multiframing bit M comes from D- or E-channel (depending on V_BAC_S_SEL) Up interface mode: '0' = superframe bit S comes from bit V_UP_S_TX in register A_MS_TX '1' = superframe bit S comes from D- or E-channel (depending on V_BAC_S_SEL)		
4	0	V_SQ_T_DST	Destination of S/Q-bits (S/T multiframe) or T-bits (Up superframe) '0' = received bits are stored as S/G-bit in D- and E-channel registers '1' = received bits are stored as A/B-bit in D- and E-channel registers The unused destination bit is always '1'.		
5	0	V_SU_RX_VAL	Value of unused bits in received D- and E-channel The unused bits [31] in registers A_D_RX and A_E_RX are set to V_SU_RX_VAL.		
76	0	(reserved)	Must be '00'.		

A_SU_CLK_DLY [ST/Up]	(w)	(Reset group: H, 0, 3)	0x37
----------------------	-----	------------------------	------

Clock control register of the line interface module

This register is not initialized after reset. It must be initialized before activating the ST/Up state machine.

Bits	Reset value	Name	Description
30	0	V_SU_CLK_DLY	Line interface clock delay TE mode (S/T or Up): 4 bit delay value to adjust the 2 bit delay between receive and transmit frame. The delay of the external line interface circuitry can be compensated. The lower the value the smaller the delay between receive and transmit direction. The suitable value is 0xE (S/T interface mode) or 0xF (Up interface mode) for normal external circuitries. NT mode (for S/T interface mode only): Data sample point. The lower the value the earlier the input data is sampled. The normal operation value is 0xC. LT mode (for Up interface mode only): This bitmap is not used when the line interface operates in Up mode. The steps are 163 ns for line interfaces in S/T mode and 81 ns for line interfaces in Up mode.
64	0	V_ST_SMPL	Early edge input data shaping (NT mode only) Low pass characteristic of extended bus configurations can be compensated. The lower the value the earlier input data pulses are sampled. The default value is 6 ('110') which means that no compensation is carried out. Step size is 163 ns. Note: This bit is only used for line interfaces in S/T mode. It must be '0' in Up interface mode.
7	0	(reserved)	Must be '0'.

 $A_B1_TX[ST/Up]$ (w) (Reset group: -) 0x3C

Transmit register for the B1-channel data

This register is written automatically by the flow controller and need not be accessed by the user. FIFOs should be used to write data instead.

Before writing this array register the line interface must be selected by register R_SU_SEL.

Bits	Reset value	Name	Description
70		V_B1_TX	B1-channel data byte Data can be written during the non-processing phase (see V_PROC in register R_STATUS).

 $\mathbf{A_B2_TX} [ST/Up] \qquad \qquad (\mathbf{w}) \qquad (Reset group: -) \qquad \mathbf{0x3D}$

Transmit register for the B2-channel data

This register is written automatically by the flow controller and need not be accessed by the user. FIFOs should be used to write data instead.

Bits	Reset value	Name	Description
70		V_B2_TX	B2-channel data byte Data can be written during the non-processing phase (see V_PROC in register R_STATUS).

A_D_TX [ST/Up]	(w)	(Reset group: –)	0x3E
----------------	-----	------------------	------

Transmit register for the D-channel data

This register is written automatically by the flow controller and need not be accessed by the user. FIFOs should be used to write data instead.

Before writing this array register the line interface must be selected by register R_SU_SEL. Data can be written during the non-processing phase (see V_PROC in register R_STATUS).

Bits	Reset value	Name	Description
0		V_D_TX_S	S-bit of the Up superframe The transmitted S-bit of the Up superframe is either taken from V_D_TX_S, V_S_TX or V_MS_TX. When the line interface is in S/T mode, this bit can be used as multiframing bit M.
41		(reserved)	Must be '0000' when written.
5		V_D_TX_BAC	BAC-bit The BAC-bit can be used as S/Q-bit (S/T multiframe) or T-bit (Up superframe). Alternatively, bitmap V_MS_TX in register A_MS_TX can be used for the multiframe/superframe transmission.
76		V_D_TX	D-channel data bits

$A_BAC_S_TX[ST/Up]$ (w) (Reset group: $-$)

BAC-bit and S-bit for multiframe/superframe transmission

This register is written automatically by the flow controller and need not be accessed by the user. FIFOs should be used to write data instead.

Before writing this array register the line interface must be selected by register R_SU_SEL. Data can be written during the non-processing phase (see V_PROC in register R_STATUS).

Bits	Reset value	Name	Description
0		V_S_TX	S-bit of the Up superframe The transmitted S-bit of the Up superframe is either be taken from V_D_TX_S, V_S_TX or V_D_TX_S. When the line interface is in S/T mode, this bit can be used as multiframing M-bit.
41		(reserved)	Must be '0000' when written.
5		V_BAC_TX	BAC-bit The BAC-bit can be used as S/Q-bit (S/T multiframe) or T-bit (Up superframe). Alternatively, bitmap V_MS_TX in register A_MS_TX can be used for the multiframe/superframe transmission.
76		(reserved)	Must be '00' when written.

5.5.2 Read only registers

R_AF0_OVIEW (r) (Reset group: H, 0, 3) **0x13**

Alternate frame synchronization signal overview register

This register reports the status of FSC selection of all line interfaces. FSC can either be the F0IO signal or the AF0 signal. The register value can be stored by the application software to detect any frequency slips. An interrupt can be enabled which indicates a change of this register (see V_SLIP_IRQMSK in register R_MISC_IRQMSK).

Bits	Reset value	Name	Description
0	0	V_SU0_AF0	FSC selection for line interface 0 This bit is equal to A_SU_STA with line interface 0 being selected.
1	0	V_SU1_AF0	FSC selection for line interface 1 This bit is equal to A_SU_STA with line interface 1 being selected.
72		(reserved)	

A_SU_RD_STA [ST/Up]	(r)	(Reset group: H, 0, 3)	0x30
---------------------	--------------	------------------------	------

ST/Up state machine register

This register is used to read the current state. A new state can be set with register A_SU_WR_STA.

Bits	Reset value	Name	Description
30	0	V_SU_STA	ST/Up state Binary value of current state (NT/LT: Gx, TE: Fx)
4	0	V_SU_FR_SYNC	Frame synchronization '0' = not synchronized '1' = synchronized
5	0	V_SU_T2_EXP	Timer T2 expired '1' = timer T2 expired (NT/LT mode only)
6	0	V_SU_INFO0	INFO 0 '1' = receiving INFO 0
7	0	V_G2_G3	G2 to G3 transition allowed '0' = no operation '1' = allows transition from G2 to G3 in NT/LT mode This bit is automatically cleared after the transition and has no function in TE mode.

A_SU_DLYL [ST/Up]	(r)	(Reset group: –)	0x31

NT-TE-NT/LT-TE-LT delay

This register shows the round trip delay and is only valid in NT/LT mode. It is updated once every 250 µs.

Line interface in S/T mode: This register reports the delay between the F-/L-bit transition of the transmit frame to the F-/L-bit transition of the receive frame of a device in NT mode. The resolution is $t_0 = 1/6.144 \,\text{MHz} = 1/32 \,\text{bit length} = 162.8 \,\text{ns}$. The minimum delay is 2 bit times because of the NT/TE frame offset.

Line interface in Up mode: This register reports the *end of transmit frame* to *begin of receive frame* delay of a device in LT mode. The resolution is $t_0 = 1/12.288 \,\text{MHz} = 1/32 \,\text{bit length} = 81.4 \,\text{ns}$. The minimum delay is 2 bit times because of the guard time.

In both line interface modes, the round trip delay is measured within a 10 bit range. The lower 5 bits can be read from this register, the upper 5 bits are stored in register A_SU_DLYH.

Bits	Reset value	Name	Description
40		V_SU_DLYL	Lower part of the round trip delay The lower part of the delay time $t_{dly,l} = t_0 \cdot V_SU_DLYL$. Register A_SU_DLYH must also be read to obtain the whole delay $t_{dly} = t_{dly,l} + t_{dly,h}$. S/T interface mode: $0 = \text{ delay } t_{dly,l} = 0 \text{ ns}$ $1 = \text{ delay } t_{dly,l} = 162.8 \text{ ns}$ $2 = \text{ delay } t_{dly,l} = 325.5 \text{ ns}$ $3 = \text{ delay } t_{dly,l} = 488.3 \text{ ns}$ $31 = \text{ delay } t_{dly,l} = 5045.6 \text{ ns}$ Up interface mode: $0 = \text{ delay } t_{dly,l} = 0 \text{ ns}$ $1 = \text{ delay } t_{dly,l} = 81.4 \text{ ns}$ $2 = \text{ delay } t_{dly,l} = 162.8 \text{ ns}$ $3 = \text{ delay } t_{dly,l} = 244.1 \text{ ns}$
			31 = delay $t_{dly,l} = 2522.8 \text{ns}$
75		(reserved)	

A_SU_DLYH [ST/Up]	(\mathbf{r})	(Reset group: –)	0x32
-------------------	----------------	------------------	------

NT-TE-NT / LT-TE-LT delay

This register shows the round trip delay and is only valid in NT/LT mode. It is updated once every 250 µs.

Line interface in S/T mode: This register reports the delay between the F-/L-bit transition of the transmit frame to the F-/L-bit transition of the receive frame of a device in NT mode. The resolution is $t_0 = 1/6.144 \,\text{MHz} = 1/32 \,\text{bit length} = 162.8 \,\text{ns}$. The minimum delay is 2 bit times because of the NT/TE frame offset.

Line interface in Up mode: This register reports the *end of transmit frame* to *begin of receive frame* delay of a device in LT mode. The resolution is $t_0 = 1/12.288 \,\text{MHz} = 1/32 \,\text{bit length} = 81.4 \,\text{ns}$. The minimum delay is 2 bit times because of the guard time.

In both line interface modes, the round trip delay is measured within a 10 bit range. The lower 5 bits are stored in register A_SU_DLYL, the upper 5 bits can be read from this register. if only this register is read, the resolution is $32 \cdot t_0 = 5.208 \,\mu s$ for a line interface in S/T mode and $32 \cdot t_0 = 2.604 \,\mu s$ for a line interface in Up mode, which is the length of one bit in both cases.

Bits	Reset value	Name	Description
40		V_SU_DLYH	Upper part of the round trip delay The upper part of the delay time $t_{dly,h} = 32 \cdot t_0 \cdot \text{V_SU_DLYH}$. Register A_SU_DLYL can be read to obtain the fractional part of a bit time delay. S/T interface mode: $0 = \text{delay } t_{dly,h} = 0 \mu \text{s}$ $1 = \text{delay } t_{dly,h} = 5.208 \mu \text{s}$ $2 = \text{delay } t_{dly,h} = 10.416 \mu \text{s}$ $3 = \text{delay } t_{dly,h} = 15.625 \mu \text{s}$ $31 = \text{delay } t_{dly,h} = 161.458 \mu \text{s}$
			Up interface mode: $0 = \text{delay } t_{dly,h} = 0 \mu \text{s}$ $1 = \text{delay } t_{dly,h} = 2.604 \mu \text{s}$ $2 = \text{delay } t_{dly,h} = 5.208 \mu \text{s}$ $3 = \text{delay } t_{dly,h} = 7.812 \mu \text{s}$ $31 = \text{delay } t_{dly,h} = 80.729 \mu \text{s}$
75		(reserved)	

A_MS_RX [ST/Up] (r) (Reset group: H, 0, 3			(r) (Reset group: H, 0, 3) 0x3	4
Multiframe/superframe receive register				
Before reading this array register the line interface must be selected by register R_SU_SEL.				
Bits	Reset value	Name Description		
30		V_MS_RX	Multiframe/superframe bits The meaning of this bitmap depends on the selected line interface mode: S/T interface mode: S/Q bits received in the multiframe. Bits [30] are S bits [S1,S2,S3,S4] in TE mode and are Q bits [Q1,Q2,Q3,Q4] in NT mode. Up interface mode: T bits received in two consecutive superframes (M-channel). Bits [30] are T bits [T1a,T1b,T2a,T2b].	
4	0	V_MS_RX_RDY	Received multiframe/superframe ready S/T interface mode: This bit gets '1' when a complete S or Q multiframe has been received and is ready to get read. Up interface mode: This bit gets '1' when two complete T superframes have been received and are ready to get read. Reading this register clears this bit.	d
5		(reserved)		
6		V_UP_S_RX	S-bit of the Up superframe Last received S-bit of the superframe (M-channel) The S-bit is also stored in registers A_D_RX and A_E_RX. Note: This bit is only used for line interfaces in Umode. It is undefined in S/T interface mode.	
7	0	V_MS_TX_RDY	Transmitted multiframe/superframe ready S/T interface mode: This bit gets '1' when new Soor Q-bits can be written into register A_MS_TX Up interface mode: This bit gets '1' when a set of new T-bits can be written into register A_MS_TX Writing to register A_MS_TX clears this bit.	f

 $A_SU_STA [ST/Up]$ (Reset group: H, 0, 3) 0x35

Status register of the line interface

Before reading this array register the line interface must be selected by register R_SU_SEL.

Note: Only bit V_SU_AF0 is used for line interfaces in either S/T or Up mode. All other bits of this register are only used in S/T interface mode.

Bits	Reset value	Name	Description
0	0	V_ST_D_HPRIO9	Current D-channel priority state if high priority is selected When high D-channel priority is selected with V_ST_D_LPRIO = '0' in register A_SU_CTRLO, this bit reports the current access priority, i.e. the number of '1's before a D-channel access is allowed. '0' = 8 bits '1' '1' = 9 bits '1' Note: This bit is only valid in S/T interface mode.
1	0	V_ST_D_LPRIO11	Current D-channel priority state if low priority is selected When low D-channel priority is selected with V_ST_D_LPRIO = '1' in register A_SU_CTRLO, this bit reports the current access priority, i.e. the number of '1's before a D-channel access is allowed. '0' = 10 bits '1' '1' = 11 bits '1' Note: This bit is only valid in S/T interface mode.
2	0	V_ST_D_CONT	D-channel contention This bit reports a difference between D- and E-channel. '0' = no contention occured '1' = contention occured in the last frame Note: This bit is only valid in S/T interface mode.
3	0	V_ST_D_ACT	D-channel active This bit has the value '1' when the D-channel is just transmitting data. Note: This bit is only valid in S/T interface mode.
64		(reserved)	

(continued on next page)

(continued from previous page)

Rife	Reset value	Name	Description
7	0	V_SU_AF0	FSC selection The frame synchronisation clock can either be the F0IO input signal or the AF0 signal which is F0IO delayed for $62.5\mu s$. This bit reports the current selection and can be stored by the application software to detect changes. An interrupt can be enabled which indicates a change of this bit (see V_SLIP_IRQMSK in register R_MISC_IRQMSK). '0' = F0IO used '1' = AF0 used This bit is also available in the overview register R_AF0_OVIEW.

A_B1_RX [ST/Up]	(\mathbf{r})	(Reset group: –)	0x3C
------------------------	----------------	------------------	------

Receive register for the B1-channel data

This register is read automatically by the flow controller and need not be accessed by the user. FIFOs should be used to read data instead.

Bits Reset value	Name	Description
70	V_B1_RX	B1-channel data byte In activated state data is valid after a F0IO or AF0 pulse and can be read during the non-processing phase (see V_PROC in register R_STATUS). Register value is 0xFF in deactivated state.

A_B2_RX [ST/Up]	(\mathbf{r})	(Reset group: –)	0x3D
------------------------	----------------	------------------	------

Receive register of the B2-channel data

This register is read automatically by the flow controller and need not be accessed by the user. FIFOs should be used to read data instead.

Rits	Reset value	Name	Description
70	\		B2-channel data byte In activated state data is valid after a F0IO or AF0 pulse and can be read during the non-processing phase (see V_PROC in register R_STATUS). Register value is 0xFF in deactivated state.

A_D_RX [ST/Up]	(\mathbf{r})	(Reset group: –)	0x3E
----------------	----------------	------------------	------

Receive register for the D-channel data

This register is read automatically by the flow controller and need not be accessed by the user. FIFOs should be used to read data instead.

Before reading this array register the line interface must be selected by register R_SU_SEL. Data is valid after a F0IO or AF0 pulse and can be read during the non-processing phase (see V_PROC in register R_STATUS).

Bits	Reset value	Name	Description
0		V_D_RX_S	S-bit of the Up superframe Last received S-bit of the superframe (M-channel). The S-bit is also stored in registers A_E_RX and A_MS_RX. Note: This bit is only used for line interfaces in Up mode. It is undefined in S/T interface mode.
31		(reserved)	A read access to these unused bits returns the value of V_SU_RX_VAL in register A_MS_DF.
4		V_D_RX_AB	A/B-bit When V_SQ_T_DST = '1', V_D_RX_AB contains either the last received S/Q-bit of the S/T multiframe or the last received T-bit of the Up superframe. V_D_RX_AB is constant '1' when V_SQ_T_DST = '0'. The A/B-bit can also be read from register A_E_RX.
5		V_D_RX_SG	S/G-bit When V_SQ_T_DST = '0', V_D_RX_SG contains either the last received S/Q-bit of the S/T multiframe or the last received T-bit of the Up superframe. V_D_RX_SG is constant '1' when V_SQ_T_DST = '1'. The S/G-bit can also be read from register A_E_RX.
76		V_D_RX	D-channel data bits Data is valid after a F0IO or AF0 pulse and can be read during the non-processing phase (see V_PROC in register R_STATUS).

ı	A_E_RX [ST/Up]	(r)	(Reset group: –)	0x3F
ı	A_E_IIX 01/0	(1)	(Reset group.)	OAGI

Receive register for the E-channel data

This register is read automatically by the flow controller and need not be accessed by the user. FIFOs should be used to read data instead.

Before reading this array register the line interface must be selected by register R_SU_SEL. Data is valid after a F0IO or AF0 pulse and can be read during the non-processing phase (see V_PROC in register R_STATUS).

Bits	Reset value	Name	Description
0		V_E_RX_S	S-bit of the Up superframe Last received S-bit of the superframe (M-channel). The S-bit is also stored in registers A_D_RX and A_MS_RX. Note: This bit is only used for line interfaces in Up mode. It is undefined in S/T interface mode.
31		(reserved)	A read access to these unused bits returns the value of V_SU_RX_VAL in register A_MS_DF.
4		V_E_RX_AB	A/B-bit When V_SQ_T_DST = '1', V_E_RX_AB contains either the last received S/Q-bit of the S/T multiframe or the last received T-bit of the Up superframe. V_E_RX_AB is constant '1' when V_SQ_T_DST = '0'. The A/B-bit can also be read from register A_D_RX.
5		V_E_RX_SG	S/G-bit When V_SQ_T_DST = '0', V_E_RX_SG contains either the last received S/Q-bit of the S/T multiframe or the last received T-bit of the Up superframe. V_E_RX_SG is constant '1' when V_SQ_T_DST = '1'. The S/G-bit can also be read from register A_D_RX.
76		V_E_RX	E-channel data bits Data is valid after a F0IO or AF0 pulse and can be read during the non-processing phase (see V_PROC in register R_STATUS).

Chapter 6

PCM interface

 Table 6.1: Overview of the XHFC-2SU PCM interface registers

Write only	y registers:		Read only	registers:	
Address	Name	Page	Address	Name	Page
0x10	R_SLOT	253	0x18	R_F0_CNTL	271
0x14	R_PCM_MD0	254	0x19	R_F0_CNTH	271
0x15	R_SL_SEL0	255	0x1D	R_SL_MAX	271
0x15	R_SL_SEL1	256	0x28	R_CI_RX	272
0x15	R_SL_SEL7	256	0x29	R_GCI_STA	273
0x15	R_MSS0	257	0x2A	R_MON_RX	273
0x15	R_PCM_MD1	259			
0x15	R_PCM_MD2	261	Read/wri	te registers:	
0x15	R_MSS1	263	Address	Name	Page
0x15	R_SH0L	264		1 (uiiic	- ugc
0x15	R_SH0H	264	0xD0	A_SL_CFG	274
0x15	R_SH1L	264			
0x15	R_SH1H	265			
0x17	R_SU_SYNC	266			
0x28	R_CI_TX	267			
0x29	R_GCI_CFG0	268			
0x2A	R_GCI_CFG1	270			
0x2B	R_MON_TX	270			

6.1 PCM interface function

XHFC-2SU can operate in PCM master mode or PCM slave mode. This is selected with V_PCM_MD in register R_PCM_MD0.

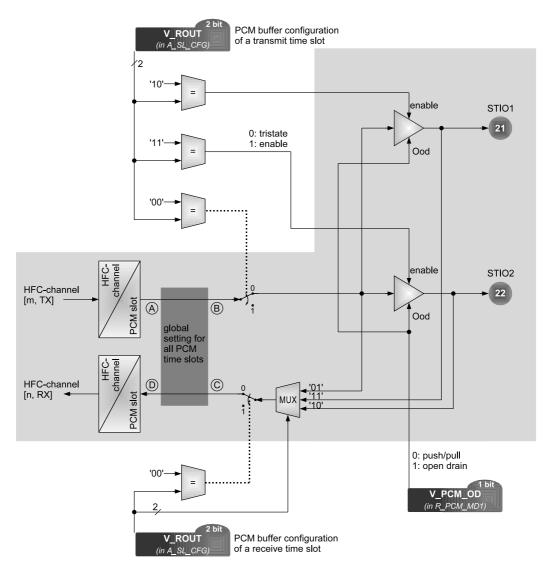
The PCM data rate is programmable for PCM master mode as shown in Table 6.2. F0IO has always a frequency of 8 kHz. Each time slot has a width of eight bits.

V_PCM_DR C4IO clock Number of in register Data rate Name R_PCM_MD1 output time slots '00' 4.096 MHz 32 2 MBit/s PCM30 '01' $8.192\,\mathrm{MHz}$ 4 MBit/s PCM64 64 16.384 MHz 8 MBit/s PCM128 '10' 128 1.536 MHz 0.75 MBit/s '11' 12

Table 6.2: PCM master mode

When PCM slave mode is selected, the number of PCM time slots is derived from the C4IO input frequency and V_PCM_DR is ignored. Any frequency

$$f(C4IO) = n \cdot 128 \text{ kHz}$$
 with $n = 1..128$


is allowed and leads to n PCM time slots. F0IO must always have a frequency of 8 kHz.

XHFC-2SU has two PCM data pins STIO1 and STIO2 which can both be input or output. Data direction can be selected for every time slot independently.

6.2 PCM data flow

The PCM data flow is shown in Figure 6.1. The input and output behavior has to be programmed with bitmap V_ROUT in array register A_SL_CFG[SLOT]. Every time slots has its own configuration.

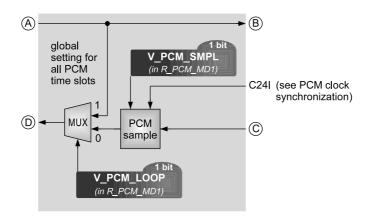


Figure 6.1: *PCM* data flow for transmit and receive time slots (see Figure 6.2 for additional setting of all PCM time slots between (A)..(D))

The PCM output behavior is always setup from transmit slots. V_ROUT = '00' disables the PCM output, i.e. both output buffers are tristated and no data is transferred from the HFC-channel to the PCM module within this time slot. Any other value of V_ROUT enables the data transmission from the HFC-channel:

- V_ROUT = '10' enables the STIO1 output buffer.
- V_ROUT = '11' enables the STIO2 output buffer.
- Finally, V_ROUT = '01' disables both output buffers but enables the data transmission from the HFC-channel. This setting in connection with the corresponding setting of the PCM input data path is used to loop data internally without influencing the PCM bus.

Figure 6.2: Global setting for all PCM time slots to set up an internal PCM loop (detail of Figure 6.1), normally used for test loop setup

PCM input data selects one of three data sources:

- V_ROUT = '10' receives data from STIO2.
- V_ROUT = '11' receives data from STIO1.
- V_ROUT = '01' is used for an internal data loop.

The data transfer to the receive HFC-channel can be disabled with V_ROUT = '00'.

A corresponding transmit/receive pair of PCM time slots is typically programmed with the same value for V_ROUT in both directions. Table 6.3 summarizes these settings.

Table 6.3: PCM data flow programming with the same value of V_ROUT in corresponding transmit and receive time slots

V_ROUT	Data transmission from/to the HFC-channel *1	STIO1 I/O path *2	STIO2 I/O path *2	Description
'00'	disabled	tristated	tristated	PCM time slot not used
'01'	enabled	tristated	tristated	internal data loop
'10'	enabled	output	input	bidirectional data transfer
'11'	enabled	input	output	bidirectional data transfer

^{*1:} PCM data flow configuration of a receive time slot

Figure 6.1 shows the PCM data flow which can be programmed for each PCM time slot individually. Global settings to the PCM data flow are avaliable between A.. D as shown in Figure 6.2. When $V_{PCM_LOOP} = '1'$ in register R_{PCM_MD1} , the PCM data is looped internally.

Please note, that it is not allowed to set $V_PCM_OD = '1'$ in register R_PCM_MD1 when an internal PCM loop is activated with either $V_ROUT = '01'$ in register A_SL_CFG or $V_PCM_LOOP = '1'$ in register R_PCM_MD1 .

^{*2:} PCM data flow configuration of a transmit time slot

6.3 PCM initialization

After hardware, global software or PCM reset the PCM interface starts an initialization sequence to set all A_SL_CFG registers of the PCM time slots to the reset value 0. This is even done if no valid C4IO and F0IO signals exist, which might occur in PCM slave mode. C4IO and F0IO input signals are ignored during PCM initialization.

The initialization process is indicated with V_PCM_INIT = '1' in register R_STATUS. This bit changes to '0' when the initialization sequence is finished.

6.4 PCM timing

6.4.1 Mode selection

The PCM interface of XHFC-2SU can operate either in slave mode or master mode. Slave mode is the default selection after XHFC-2SU reset.

To configure XHFC-2SU as PCM bus master, bit V_PCM_MD in register R_PCM_MD0 must be set to '1'. C4IO and F0IO signals are generated from XHFC-2SU in this case and both pins have output characteristic.

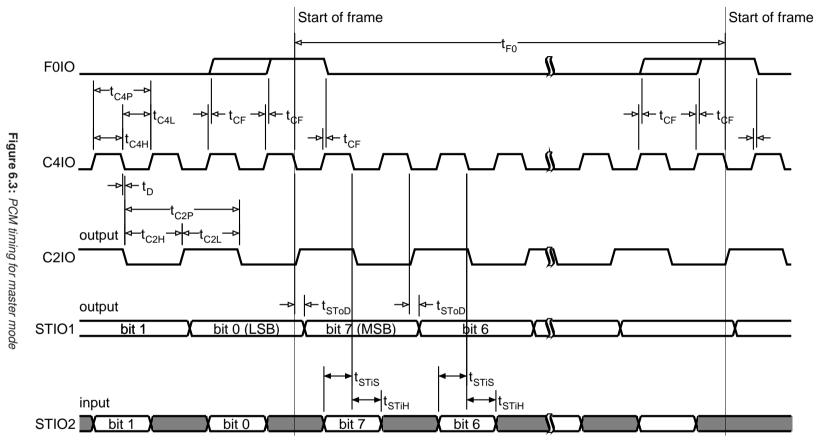
Slave mode is selected with V_PCM_MD = '0'. C4IO and F0IO are input pins in slave mode. External clocks must be connected to F0IO and also to either C4IO (when V_C2I_EN = '0' in register R_PCM_MD2) or C2IO (when V_C2I_EN = '1') in PCM slave mode because these signals are used from the ST/U_p interface and the flow controller as well (see Figure 6.5 on page 229, signal C4I is required).

6.4.2 Master mode

Figure 6.3 shows the timing diagram for PCM master mode. The timing characteristics are specified in Table 6.4. STIO1 is shown as data output and STIO2 as data input of XHFC-2SU. However, both pins can change their I/O characteristic with every PCM time slot.

The F0IO pulse is one C4IO pulse long with the default value V_F0_LEN = '0' in register R_PCM_MD0. F0IO starts one C4IO clock earlier if bit V_F0_LEN = '1'. These two pulse length are shown in Figure 6.3. The F0IO pulse can also be lengthened to indicate the start of a multiframe or superframe (see Section 6.6.4 on page 238).

6.4.3 Slave mode


Figure 6.4 shows the timing diagram for PCM slave mode. The timing characteristics are specified in Table 6.5. STIO1 is shown as data output and STIO2 as data input of XHFC-2SU. However, both pins can change their I/O characteristic with every PCM time slot.

The F0IO pulse is expected to be one C4IO pulse long with the default value $V_F0_LEN = '0'$ in register R_PCM_MD0 . F0IO is expected to start one C4IO clock earlier if bit $V_F0_LEN = '1'$.

If the ST/U_p interfaces are synchronized from C4IO in NT/LT mode, the frequency stability must be at least $\pm 10^{-4}$.

Data Sheet

XHFC-2SU

STIO1 is shown as data output and STIO2 as data input. However, both pins can change their I/O characteristic with every PCM time slot.

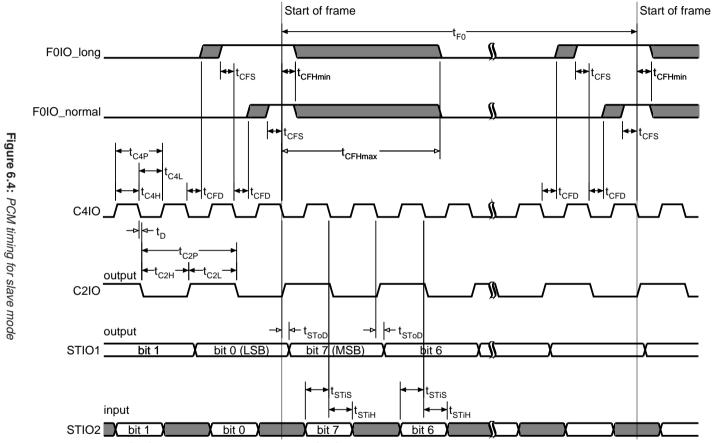


Table 6.4: Symbols of PCM timing for master mode in Figure 6.3 (All values with 50 pF load. Larger load capacitance will increase output delays.)

Symbol	min / ns	typ/ns	max / ns	Characteristic
$t_{\rm C}$				Basic C4IO pulse width (not shown in the timing diagram)
		122.070		4.096 MHz C4IO clock for 2 MB/s
		61.035		8.192 MHz C4IO clock for 4 MB/s
		30.518		16.384 MHz C4IO clock for 8 MB/s
t _{adj}		20.345		Adjust time is half a period of 24.576 MHz clock (not shown in the timing diagram)
t_{C4H}	$t_{\rm C}-6-t_{\rm adj}$		$t_{\rm C}+6$	C4IO high width for 2 MBit/s and 4 MBit/s
	$4/3 \cdot t_{\rm C} - 6 - t_{\rm adj}$		$4/3 \cdot t_{\rm C} + 6$	C4IO high width for 8 MBit/s
$t_{ m C4L}$	$t_{\rm C}-6$		$t_{\rm C}+6+t_{\rm adj}$	C4IO low width for 2 MBit/s and 4 MBit/s
	$2/3 \cdot t_{\rm C} - 6$		$2/3 \cdot t_{\rm C} + 6 + t_{\rm adj}$	C4IO low width for 8 MBit/s
t_{C4P}	$2 \cdot t_{\rm C} - 6 - t_{\rm adj}$		$2 \cdot t_{\rm C} + 6 + t_{\rm adj}$	C4IO clock period
$t_{\rm C2H}$	$2 \cdot t_{\rm C} - 6 - t_{\rm adj}$		$2 \cdot t_{\rm C} + 6 + t_{\rm adj}$	C2IO output high width
$t_{\rm C2L}$	$2 \cdot t_{\rm C} - 6 - t_{\rm adj}$		$2 \cdot t_{\rm C} + 6 + t_{\rm adj}$	C2IO output low width
$t_{\rm C2P}$	$4 \cdot t_{\rm C} - 6 - t_{\rm adj}$		$4 \cdot t_{\rm C} + 6 + t_{\rm adj}$	C2IO output clock period
$t_{ m F0}$	124994	125000	125006	F0IO cycle time without adjustment
	$124994 - t_{adj}$		$125006 + t_{\rm adj}$	1 half clock adjustment
	$124994 - 2 \cdot t_{\text{adj}}$		$125006 + 2 \cdot t_{\text{adj}}$	2 half clocks adjustment
	$124994 - 3 \cdot t_{\text{adj}}$		$125006 + 3 \cdot t_{\text{adj}}$	3 half clocks adjustment
	$124994 - 4 \cdot t_{\rm adj}$		$125006 + 4 \cdot t_{\text{adj}}$	4 half clocks adjustment
$t_{ m D}$	3	5	8	C4IO
$t_{\rm CF}$	0.5		8	C4IO _ to F0IO _ or C4IO _ to F0IO _
$t_{ m STiS}$	10			Data valid to C4IO
$t_{ m STiH}$	10			Data valid to C4IO hold time
$t_{ m SToD}$	2		10	STIO output delay from C4IO ☐

Data Sheet

XHFC-2SU

STIO1 is shown as data output and STIO2 as data input. However, both pins can change their I/O characteristic with every PCM time slot.

Table 6.5: Symbols of PCM timing for slave mode in Figure 6.4 (All values with 50 pF load. Larger load capacitance will increase output delays.)

Symbol	min / ns	typ/ns	max / ns	Characteristic
$t_{ m C}$				Basic C4IO pulse width (not shown in the timing diagram)
		122.070		4.096 MHz C4IO clock for 2 MB/s
		61.035		8.192 MHz C4IO clock for 4 MB/s
		30.518		16.384 MHz C4IO clock for 8 MB/s
t_{C4H}	20	t_C		C4IO high width
t_{C4L}	20	t_C		C4IO low width
t_{C4P}		$2 \cdot t_{\rm C}$		C4IO clock period
$t_{\rm C2H}$		$2 \cdot t_C$		C2IO output high width
$t_{\rm C2L}$		$2 \cdot t_C$		C2IO output low width
$t_{\rm C2P}$		$4 \cdot t_C$		C2IO output clock period
$t_{\rm F0}$		125000		F0IO cycle time
$t_{ m D}$	3	5	8	C4IO to C2IO delay
t_{CFS}	15	t_C		F0IO
t_{CFHmin}	15	t_C		F0IO ☐ to C4IO ☐ hold time
t_{CFHmax}	15	t_C	100000	F0IO high time after start of frame
t_{CFD}	15	t_C		C4IO to F0IO delay
$t_{ m STiS}$	10			Data valid to C4IO \(\section \) setup time
$t_{ m STiH}$	10			Data valid to C4IO \ hold time
$t_{ m SToD}$	2		10	STIO output delay from C4IO ⁻L

6.5 PCM clock synchronization

6.5.1 Overview

The PCM clock synchronization is shown in Figure 6.5. It is associated with the line interface clock synchronization which is shown in Figures 5.5 (page 167) and 5.13 (page 183) and with the MSS controller (shown in Figure 6.10 on page 236).

6.5.2 Manual or automatic synchronization source selection

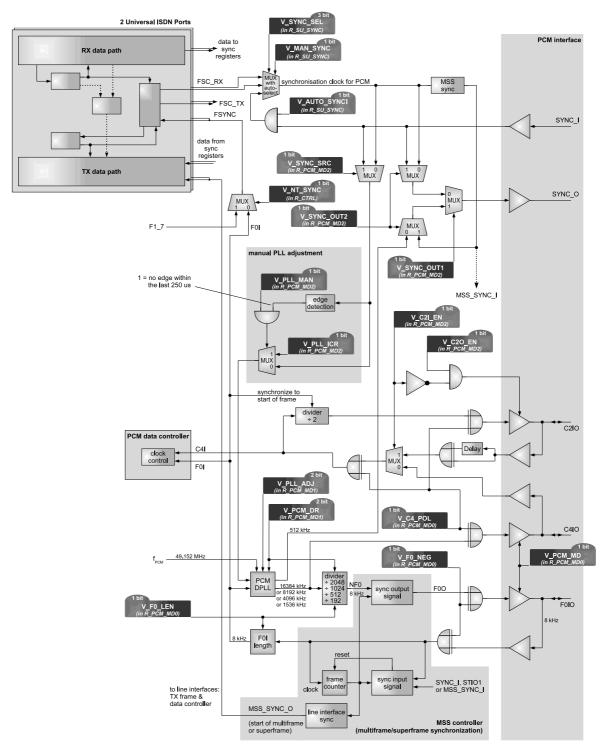
Any line interface in TE mode can be chosen as synchronization source with an appropriate value in bitmap V_SYNC_SEL of register R_SU_SYNC. Alternatively, an automatic selection can be enabled with V_MAN_SYNC = '0' in the same register (reset default). The actual synchronization source can be read from V_RD_SYNC_SRC in register R_BERT_STA. If synchronization is lost on this TE, the next interface in TE mode with active synchronization is automatically selected.

When the automatic selection doesn't find a synchronization source, the SYNC_I pulse can alternatively be taken as synchronization source. This must be enabled with $V_AUTO_SYNCI = '1'$ in register R_SU_SYNC .

6.5.3 PLL programming for FOIO generation

C4IO is adjusted from the PCM DPLL (see Figure 6.5) during the last PCM time slot to synchronize the PCM interface with the ST/U_p interface. ¹ The maximum number of edge adjustments during one 125 μ s cycle can be configured in the range 1..4 by the bitmap value V_PLL_ADJ in register R_PCM_MD1. This automatic adjustment is enabled with V_PLL_MAN = '0' in register R_PCM_MD2.

V_PLL_MAN = '1' switches into manual adjustment mode. In this case, the adjustment direction is specified in V_PLL_ICR of register R_PCM_MD2. The number of edge adjustments which is specified in V_PLL_ADJ is carried out within the last PCM time slot every 125 µs. This manual adjustment does not stop before V_PLL_MAN is reset to automatic mode. By default, the C4IO clock is adjusted four times for one half clock cycle. This can be reduced to one adjustment of a half clock cycle (see R_PCM_MD1 register). This is useful if a non XHFC series ISDN controller is connected as slave in NT mode to the PCM bus. The synchronization source can be selected by the R_PCM_MD2 register settings.


6.5.4 Manual PLL adjustment

In normal operation mode, the synchronization input signal is passed from the V_SYNC_SRC controlled multiplexer to the PCM DPLL as shown in Figure 6.5. For this V_PLL_MAN has to be '0' in register R_PCM_MD2 .

The PLL output frequency can manually be adjusted if no synchronization source is available. This software controlled PLL adjustment is enabled with V_PLL_MAN = '1'. The V_SYNC_SRC controlled multiplexer must feed a 8 kHz signal in any case.

¹C4IO adjustment is only in operation when the PCM DPLL receives both 8 kHz reference clocks.

Figure 6.5: PCM clock synchronization (For details on the Universal ISDN Port see Figures 5.5 and 5.13, for details on the MSS controller see Figure 6.10)

The time of the signal edges can be increased or reduced in the last time slot of the PCM frame. V_PLL_ICR = '0' results in a frequency reduction while V_PLL_ICR = '1' leads to a frequency increase. The number of adjusted edges is specified in the range 1..4 with bitmap V_PLL_ADJ in register R_PCM_MD1.

V_PLL_MAN must be set back to '0' to stop the frequency regulation of the synchronization input signal.

6.5.5 C2IO signal

The C2IO signal (pin 18) can either be configured to input or output characteristic.

C2IO is used as an output signal when V_C2O_EN = '1' and V_C2I_EN = '0' in register R_PCM_MD2.

C2IO output signal is derived from C4IO by a frequency divider. In fact, there is an additional building block (not shown in Figure 6.5) which ensures a specific phase relation at the start of a frame. According to the timing diagrams in Figures 6.3 and 6.4, C2IO has its rising edge at the start of a frame. From this follows that C4IO has a falling edge with every edge of C2IO.

6.5.6 SYNC_O and FSC_RX synchronization signals

The 'frame synchronization detection' blocks shown in Figures 5.5 (page 167) and 5.13 (page 183) deliver a 8 kHz frame clock FSC_RX which can be routed to the SYNC_O synchronization output pin. FSC_RX signal is available when a frame synchonization is detected (INFO 2 or INFO 4) and it does not depend on the state machine's condition.

The normal FSC_RX pulse is high for one bit length. This is $5.208\,\mu s$ in S/T interface mode or $2.604\,\mu s$ in U_p interface mode. For S/T multiframe 2 synchonization or U_p superframe 3 synchronization, the start of every multiframe or superframe is indicated with a lengthened pulse with $7.5\,b$ it width. This is $39\,\mu s$ every 40th pulse in S/T interface mode or $19.5\,\mu s$ every 8th pulse in U_p interface mode.

The rising edges of FSC_RX have a distance of 125 μ s and are adjusted once every 250 μ s with ± 163 ns. The rising edge is stable as long as the chosen TE port receives valid INFO 2 or INFO 4 even if the S/T or U_p state machine is forced into a deactivated state F0, F2, F3, F4, F5, G0, G12, or G2. FSC_RX is low otherwise.

During XHFC-2SU reset, SYNC_O pin drives an active low signal.

6.5.7 Synchronous 512 kHz output signal

SYNC_O frequency can either be 8kHz, which is mostly used, or 512kHz. The 512kHz clock is synchronous to the frame clock as it is generated from the DPLL as shown in Figure 6.5.

When XHFC-2SU operates in PCM slave mode, which means that F0IO is used as clock input, SYNC_O should not issue 512 kHz. This would lead to a closed loop with the internal DPLL and an external PCM master PLL. A closed loop with two PLLs might be instable and can lose the nominal frequency.

²A complete S/T multiframe takes 20 S/T frames with 250 µs each. Therefore, a multiframe has a length of 5 ms in total.

³A complete U_p superframe takes 4 U_p frames with 250 µs each. Therefore, a superframe has a length of 1 ms in total.

6.5.8 Application examples for XHFC-2SU synchronization schemes

Flexible synchronization schemes can be implemented with the clock pins SYNC_I and SYNC_O of XHFC-2SU. Some important application examples are shown in this section.

As ISDN is based on a synchronous network, all devices must be synchronized to one synchronizing source. This is the central office (for S/T) or PBX (for U_p), typically.

When multiple XHFC-2SU are used within a system, all ST/U_p and PCM clocks must be synchronized to a single synchronization source. When an ST interface operates in TE mode and is connected to the central office, the synchronization source is obtained from the central office. A U_p interface in TE mode is typically synchronized to a PBX clock.

6.5.8.1 An existing system with internal PCM bus has to be expanded by ISDN interfaces

When an existing system has to be expanded by ISDN interfaces, there are two solutions as shown in Figures 6.6 and 6.7.

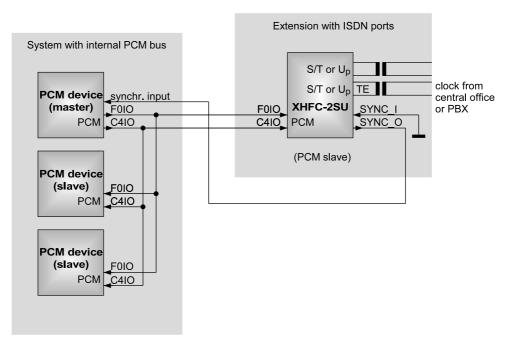


Figure 6.6: Expanding an existing system with ISDN ports (XHFC-2SU as PCM slave)

The existing system can keep the PCM master when there is a synchronization input (Figure 6.6). This must be connected to pin SYNC_O of XHFC-2SU to synchronize the whole system to the clock derived from the received ISDN signal.

SYNC_O is either derived from the central office or the DPLL of XHFC-2SU is free-running. In both cases, XHFC-2SU is the synchronization source for the whole system.

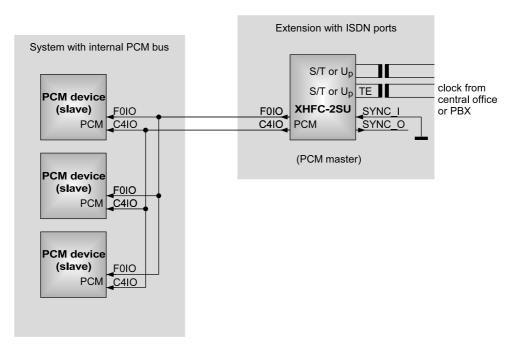


Figure 6.7: Expanding an existing system with ISDN ports (XHFC-2SU as PCM master)

When there is no synchronization input available at the existing system, XHFC-2SU must operate as PCM master and all other PCM devices in the system must be PCM slaves (Figure 6.7). Again, XHFC-2SU is the synchronization source for the whole system.

6.5.8.2 Application with multiple XHFC-2SU

Multiple XHFC-2SU can be interconnected to build up a multi ISDN port application. The SYNC_O /SYNC_I pins must be connected to a daisy chain. Two solutions are shown in Figures 6.8 and 6.9, depending on the PCM master requirements.

Figure 6.8 shows an example where any XHFC-2SU can be in TE mode. The synchronization signals are daisy chained. The last XHFC-2SU must be in PCM master mode. This assures that the FoIO/C4IO connections feed the synchronized clock to all devices.

Figure 6.9 shows an example where any XHFC-2SU can be in TE mode again. Now, the SYNC_O/SYNC_I daisy chain is looped back so that the loop is closed. For this reason, the FOIO/C4IO connections are optional due to the application needs. An arbitrary XHFC-2SU can be in PCM master mode.

Nevertheless, it is recommended to interconnect all devices with the F0IO/C4IO clocks for more flexible application capability.

Figure 6.8: Multiple XHFC-2SU synchronized with an open loop of SYNC_O/SYNC_I

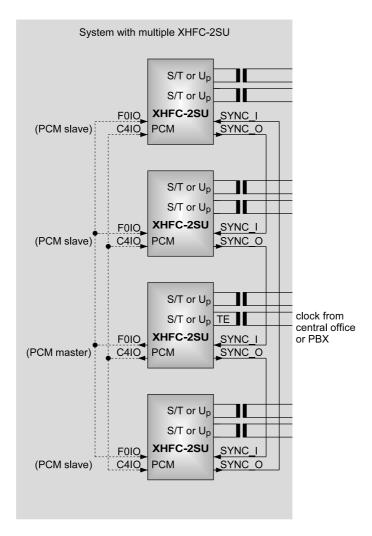


Figure 6.9: Multiple XHFC-2SU synchronized with an closed loop of SYNC_O/SYNC_I

6.6 Multiframe/superframe synchronization to the PCM interface

6.6.1 Overview

The multiframes (S/T) or superframes (U_p) of the ST/ U_p interfaces can be synchronized to the PCM interface. Furthermore, the transmit/receive ping pong is synchronized in U_p mode. Figure 6.10 shows the block diagram of the MSS controller (multiframe/superframe synchronization controller). The controller consists of four parts which are explained from Sections 6.6.2 to 6.6.5.

The basic concept of the MSS controller can be described as follows:

- An internal synchronization pulse is generated and delivered to the PCM interface for F0IO pulse width modification as well as to the line interface to force the 'start of multi-frame' superframe' in transmit direction.
- The internal synchronization pulse is generated from a frame counter which can be synchronized to an external synchronization pulse.

6.6.2 Frame counter

The frame counter is the central unit of the MSS controller. The counter is incremented with every FolO input pulse and operates as a ring counter in the range 0..39.

A counter reset is initiated with a detected synchronization input signal. The frame counter is synchronized to the synchronization source with the first counter reset signal. From now on, the frame counter value is used

- to generate a modified F0IO pulse (if enabled) and
- to synchronize the multiframe/superframe transmission with the MSS_SYNC_O signal (if enabled and if the line interface operates in NT/LT mode, see Figure 5.5 on page 167 and Figure 5.13 on page 183)

to the external synchronization source.

The synchronization pulse detection can be configured with several parameters. This is explained in Section 6.6.3.

It is also possible to disable the synchronization pulse detection. There are no counter reset signals in this case. The frame counter is free-running without a synchronization input signal. However, synchronization pulses MSS_SYNC and the modified F0IO output are generated to synchronize the multiframe / superframe transmission with the PCM interface. The chip operates as a synchronization source for the 'start of multiframe / superframe' condition in this case.

6.6.3 Synchronization input signal

The MSS controller can synchronize the multiframe / superframe transmission to an external synchronization signal. This functionality must be enabled with V_MSS_SRC_EN = '1' in register R_MSS0. Any detected synchronization pulse leads to a frame counter reset.

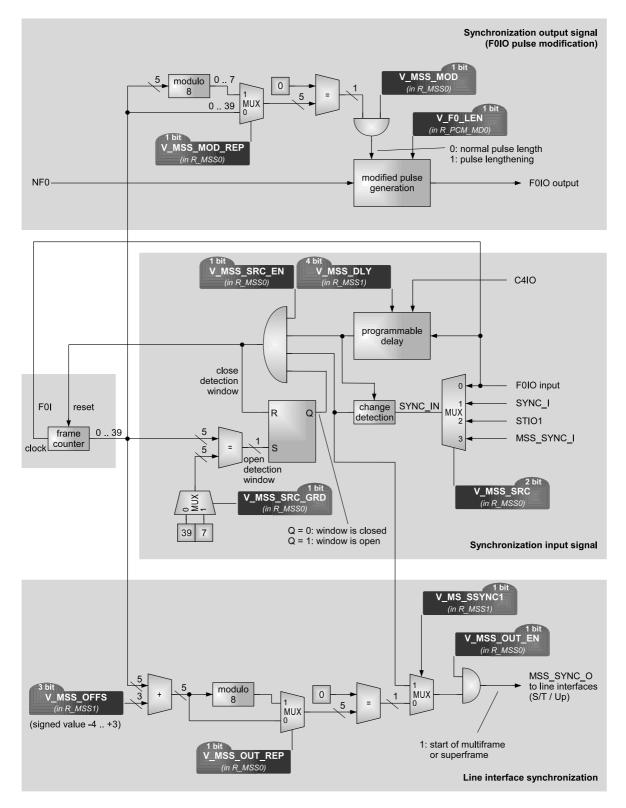


Figure 6.10: Multiframe/superframe synchronization to the PCM interface

The synchronization signal is obtained either from the F0IO, SYNC_I, STIO1 or MSS_SYNC_I signal. This can be selected with bitmap V_MSS_SRC in register R_MSS0. The source signal can be delayed by a multiple of C4IO clocks to adjust the incoming signal characteristics to the detection function. For this, V_MSS_DLY in register R_MSS1 can be set to a value in the range 0..15 C4IO clocks.

It is possible to use an active '1' or active '0' signal for synchronization. Only the change of the signal compared with the value in the previous PCM frame generates the synchronization signal.

After a synchronization pulse has reset the frame counter, the detection window is closed and the next synchronization pulse cannot be generated until the frame counter reaches the value 39 ($V_MSS_SRC_GRD = '0'$ in register R_MSS0) or 7 ($V_MSS_SRC_GRD = '1'$). The detection window is opened as soon as the selected counter value has been reached. This procedure avoids an oversynchronization. $V_MSS_SRC_GRD$ should be set to '0' when at least one in einterface operates in S/T mode. The value $V_MSS_SRC_GRD = '1'$ is recommended when both line interfaces operate in U_p mode.

The frame counter is synchronized to the synchronization input signal when the following conditions are fulfilled at the same time:

- 1. The synchronization detection is enabled, i.e. V_MSS_SRC_EN = '1'.
- 2. The detection windows is open, i.e. Q = '1'.
- 3. The programmable delay is passed.
- 4. The selected input signal has changed from the previous frame.

The delay time t_{DLY} is specified in Figure 6.11 and Table 6.6. Its maximum value is $t_{\text{DLY},\text{max}} = 16 \cdot t_{\text{C4P}}$.

If the synchronization pulse is received on the data input line STIO1, it can be any bit within the first PCM time slot. V_MSS_DLY must have an even value in this case to ensure that the *change detection* time matches with the bit cells. $V_MSS_DLY = 0$ selects the first bit of the time slot 0 while $V_MSS_DLY = 14$ selects the last bit.

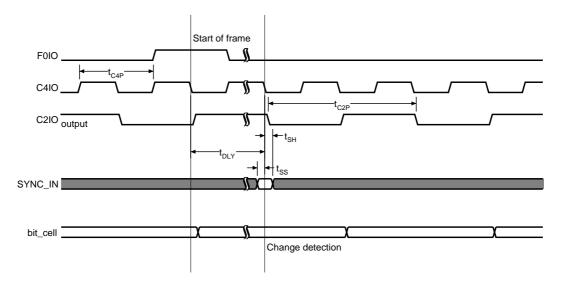


Figure 6.11: Timing specification of the SYNC_IN change detection

Table 6.6: Symbols of the SYNC_IN change detection timing specification in Figure 6.11

Symbol	min / ns max / ns	Characteristic
t_{C4P}		C4IO clock period (depends on the selected PCM data rate)
$t_{\rm C2P}$		C2IO clock period
$t_{ m DLY}$	Programmable synchronization pulse delay from start of frame	
		$t_{\mathrm{DLY}} = (V_MSS_DLY + 1) \cdot t_{\mathrm{C4P}}$
$t_{\rm SS}$	10	Synchronization pulse valid to F_SYNC
t_{SH}	10	Synchronization pulse valid to $F_SYNC \supset hold$ time

6.6.4 Synchronization output signal (F0IO pulse modification)

The start of a multiframe or superframe is indicated by a F0IO pulse which has a different length than usual.

In principle, the length of the F0IO pulse is arbitrary. The F0IO signal is used for PCM frame synchronization only on the first falling edge of C4IO. The F0IO high time has a typical length of one C4IO pulse (V_F0_LEN = '0') or two C4IO pulses (V_F0_LEN = '1') as described in Section 6.4.2.

The F0IO high time can be lengthen by another C4IO pulse width to indicate the multi-frame/superframe synchronization signal. This must be enabled with V_MSS_MOD = '1' in register R_MSS0. The repetition rate of the synchronization pulse is once every 40th PCM frame if V_MSS_MOD_REP = '0' in register R_MSS0. V_MSS_MOD_REP = '1' selects a repetition rate of once every 8th PCM frame.

Figure 6.12 shows all different FoIO pulses in PCM master mode. Table 6.7 summarizes the bit values which must be set to achieve these pulses.

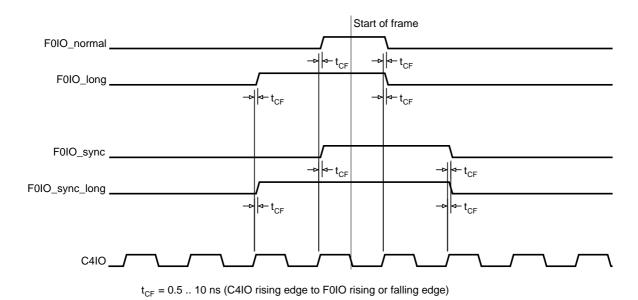


Figure 6.12: F0IO pulse modification

Table 6.7: Selection of the F0IO pulse characteristic (see also Figure 6.12)

Pulse	V_F0_LEN in register R_PCM_MD0	V_MSS_MOD in register R_MSS0	Description
F0IO_normal	'0'	'0'	normal F0IO pulse
F0IO_long	'1'	'0'	F0IO starts one C4IO period earlier (early leading edge)
F0IO_sync	'0'	'1'	F0IO pulse is lengthened by one C4IO pulse every 8th or 40th frame, F0IO_normal otherwise (delayed trailing edge)
F0IO_sync_long	'1'	'1'	FOIO starts one C4IO period earlier and is lengthened by one C4IO pulse every 8th or 40th frame, FOIO_long otherwise (combined early leading edge and delayed trailing edge)

6.6.5 Line interface synchronization

The signal MSS_SYNC_O for the multiframe/superframe synchronization is delivered to the ST/U_p interfaces. It must be enabled with $V_MSS_OUT_EN = '1'$ in register R_MSS0. $V_MSS_OUT_EN = '0'$ leads to an unsynchronized transmission of the multiframe/superframe structure.

The repetition rate can be specified to be either every 40th or 8th PCM frame with bit $V_MSS_OUT_REP$ in register R_MSS0 . Only line interfaces in U_p mode can be feed with a 8 PCM frame repetition rate. The repetition rate of once every 40 PCM frames must be chosen in S/T mode. This is a suitable selection for a line interface in U_p mode as well.

As there is a delay between F0IO and the line interface output, it is possible to adjust the line interface synchronization with a signed offset of -4..+3 F0IO pulses. This can also be used to fulfill requirements which might occur with a special application where the chip is connected to another ISDN device.

6.7 External CODECs

Up to two external CODECs can be connected to the PCM interface. XHFC-2SU has two CODEC enable signals F1_0 and F1_1. An external CODEC has to be assigned to a PCM time slot via bitmaps V_SL_SEL1 and V_SL_SEL0 in registers R_SL_SEL1 and R_SL_SEL0.

The shape signals can be programmed. The last bit determines the inactive level by which non-inverted and inverted shape signals can be programmed. Every external CODEC can choose one of the two shape signals with bits V_SH_SEL1 and V_SH_SEL0 in registers R_SL_SEL1 and R_SL_SEL0.

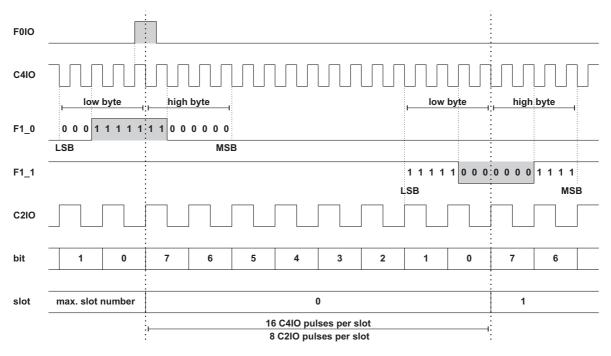


Figure 6.13: Example for two CODEC enable signal shapes

Figure 6.13 shows an example with two external CODECs. Time slot 0 starts with the F0IO pulse. In this example – assuming that PCM30 is configured – F1_0 enables the first CODEC on time slot 0 and shape bytes on R_SH0L and R_SH0H with the following register settings.

Register setup:	
R_PCM_MD0 : V_PCM_IDX = 0	(R_SL_SEL0 register accessible)
R_SL_SEL0 : V_SL_SEL0 = 0x1F	(time slot #0)
: V_SH_SEL0 = 0	(shape bytes R_SH0L and R_SH0H)

XHFC-2SU PCM interface

The second CODEC on time slot 1 and shape bytes on R_SH1L and R_SH1H must be configured as shown below.

```
R_PCM_MD0: V_PCM_IDX = 1 (R_SL_SEL1 register accessible)

R_SL_SEL1: V_SL_SEL1 = 0 (time slot #1)

: V_SH_SEL1 = 1 (shape bytes R_SH1L and R_SH1H)
```

The shown shape signals have to be programmed in reverse bit order by the following register settings.

```
Register setup:
R_PCM_MD0 : V_PCM_IDX = 0xC
                                         (R_SH0L register accessible)
                                         (0xF8 = '1111 \ 1000' \xrightarrow{reverse} '0001 \ 1111')
          : V\_SH0L = 0xF8
                                         (R_SH0H register accessible)
R_PCM_MD0 : V_PCM_IDX = 0xD
R\_SH0H : V\_SH0H = 0x03
                                         (0x03 = '0000\ 0011' \xrightarrow{reverse} '1100\ 0000')
                                         (R_SH1L register accessible)
R_PCM_MD0 : V_PCM_IDX = 0xE
                                         (0x1F = '0001 1111' \xrightarrow{reverse} '1111 1000')
R_SH1L
         : V\_SH1L = 0x1F
R_PCM_MD0 : V_PCM_IDX = 0xF
                                         (R_SH1H register accessible)
                                         (0xF0 = '1111\ 0000' \xrightarrow{reverse} '0000\ 1111')
R_SH1H
          : V\_SH1H = 0xF0
```


6.8 GCI/IOM-2 mode

6.8.1 Overview

XHFC-2SU is equipped with a simple GCI controller ⁴ (also known as IOMTM-2) ⁵ to support interconnection to U-chips, external CODECs or DSPs.

The IOMTM-2 bus is an industrial standard for interconnecting telecommunication microchips considering the requirements of analog applications as well. It has been defined from an international manufacturers group ⁶. The GCI⁷ functionality has been implemented in respect to the IOMTM-2 specification [7].

The interconnection between XHFC-2SU and a GCI device uses four wires, typically:

- C4IO: Double bit rate clock
- F0IO: 8 kHz frame signal
- STIO1: Data from XHFC-2SU to the GCI device (can be swapped with STIO2)
- STIO2: Data from the GCI device to XHFC-2SU (can be swapped with STIO1)

6.8.2 GCI frame structure

The GCI frame has a length of 4 bytes and is located at PCM time slots S...S + 3 with $S = 4 \cdot V_GCI_SL$. GCI uses these PCM time slots in a special way, all other PCM time slots are accessible as usual.

V_GCI_SL must be in the range 0..7 for PCM30, 0..15 for PCM64 or 0..31 for PCM128.

The binary organization of the GCI frame is shown in Figure 6.14. The first two time slots are used for B1- and B2-channel data. The third time slot is occupied by the monitor channel and the last time slot contains D-channel data, command/indication bits and the handshake bits MR and MX.

Figure 6.14 shows the GCI frame from the GCI master's point of view. To distinguish between the handshake bits of the GCI master (transmitter) and the GCI slave (receiver), the handshake bits are indexed like MX_{TX} or MX_{RX} in this document partially.

The PCM slot assigner must be used to allocate any HFC-channel to the first two bytes of the CGI frame. These are B-channels, typically. When the GCI device also carries D-channel data in the GCI time slot #3, the belonging D-channel must be assigned as well. Please note, that these assignments are not automatically done by the GCI controller. Only monitor channel, C/I-channel and handshake bits are automatically assigned and handled from the GCI controller.

⁴GCI = General Circuit Interface

⁵IOMTM-2= ISDN Oriented Modular revision 2, trademark of Infineon Technologies AG

⁶Alcatel (France), Siemens (Germany), Italtel (Italy) and Plessey (UK)

⁷The term GCI is always used in this document and includes IOMTM-2 functionality as well.

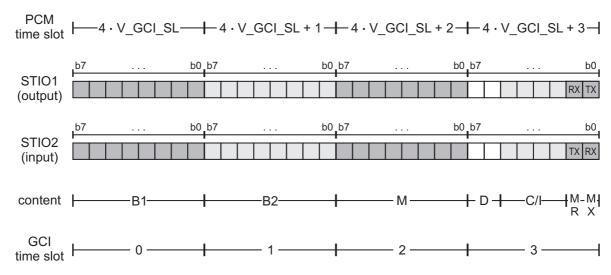


Figure 6.14: Single channel GCI format

Table 6.8: Legend of figure 6.14

Name	Description
B1	B1-channel data
B2	B2-channel data
M	Monitor channel data
D	D-channel data
C/I	Command/indication bits for controlling activation/deactivation and for additional control functions
MR	Handshake bit for the monitor channel (MR _{RX} on STIO1 output and MR _{TX} on STIO2 input)
MX	Handshake bit for the monitor channel (MX_{TX} on STIO1 output and MX_{RX} on STIO2 input)

6.8.3 GCI register programming

6.8.3.1 Enable CGI functionality

The GCI functionality is disabled after XHFC-2SU reset and all time slots of the PCM bus can be assigned to an arbitrary HFC-channel. GCI functionality must be enabled with $V_GCI_EN = '1'$ in register R_GCI_CFG0 .

When CGI functionality is not used, received data on time slots $4 \cdot V_GCI_SL + 2$ and $4 \cdot V_GCI_SL + 3$ are extracted to registers R_MON_RX and R_CI_RX nevertheless. For this reason, the interrupt mask bits V_CI_IRQMSK and $V_MON_RX_IRQMSK$ in register R_MISC_IRQMSK should not be set to '1' to avoid senseless interrupts.

6.8.3.2 Monitor channel

Monitor data for the transmit direction must be written into register R_MON_TX. When the next monitor byte can be written, V_MON_TXR in register R_GCI_STA changes to '1'. Then the next monitor byte can be written into R_MON_TX. A write access to R_MON_TX resets V_MON_TXR to '0'. Before the last monitor byte of a command is written into R_MON_TX, the 'end of command' flag V_MON_END = '1' has to be set in register R_GCI_CFG0.

Furthermore, an interrupt occurs when V_MON_TXR changes to '1' and when the mask bit V_MON_TX_IRQMSK in register R_MISC_IRQMSK is set to '1'. The interrupt event V_MON_TX_IRQ = '1' in register R_MISC_IRQ is set even if the interrupt mask has the value '0'.

If there are no further monitor bytes to be send, the idle pattern 0xFF is transmitted.

A received monitor byte is indicated with V_MON_RXR = '1' in register R_GCI_STA and can be read from register R_MON_RX.

XHFC-2SU can accept either every received monitor byte at once, or after it has been received twice (so-called *double last look criterion*). This can be configured with bit V_MON_DLL in register R_GCI_CFG0. When *double last look criterion* is enabled, the GCI controller waits until a monitor byte has been received twice in two consecutive GCI frames.

The monitor bytes are located in GCI time slot 2 as shown in Figure 6.14. Transmitting and receiving monitor bytes is coordinated by the GCI controller of XHFC-2SU. This procedure is described in detail in Section 6.8.4.

6.8.3.3 Command/indication bits (C/I-channel)

The C/I-channel is used to interchange status information between XHFC-2SU and the connected GCI device. C/I-bits are transmitted continuously in every GCI frame until a new command/indication pattern is present.

Command/indication is used to transmit a command from the GCI master to the connected GCI slave and to receive status information (indication) in opposite direction.

XHFC-2SU transmits the command that is written into bitmap V_GCI_C of register R_CI_TX. When this value is changed, the new command is transmitted in the next GCI time slot 3.

Received indication bits can be read from V_GCI_I . Any change of the indication bits can trigger an interrupt when the interrupt mask bit V_CI_IRQMSK is set to '1' in register R_MISC_IRQMSK . The interrupt event $V_CI_IRQ =$ '1' in register R_MISC_IRQ is set even if the interrupt mask has the value '0'.

The GCI controller does not interpret the C/I-bits. Indication bits must be processed from the host processor.

GCI devices that do not operate on D-channel data, can expand the C/I-channel from 4 bit to 6 bit. XHFC-2SU can be configured to transmit and receive 4 bit (V_MON_CI6 = '0' in register V_MON_CI6) as well as 6 bit (V_MON_CI6 = '1') C/I-channel length.

6.8.3.4 Examples for GCI frame embedding in the PCM data structure

Figure 6.15 shows a typical application where XHFC-2SU is both PCM master and GCI master (most application cases, standard configuration). This means:

- XHFC-2SU feeds PCM clocks C4IO and F0IO
- GCI frame output on STIO1
- GCI frame input on STIO2

The programming procedure for this application example is shown in Table 6.9. Please note that not mentioned bitmap values of the GCI relevant registers remain in their reset state.

GCI time slot 2 does not need to be programmed because the monitor byte is automatically assigned to this time slotwhen GCI is enabled. C/I-channel and handshake bits MX and MR are also automatically assigned to their time slot.

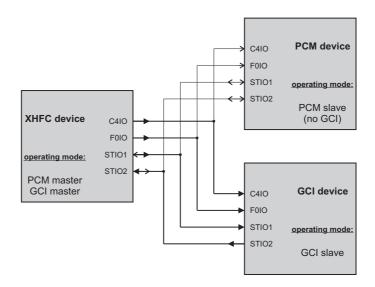


Figure 6.15: GCI application example 1 (XHFC-2SU is PCM master and GCI master)

The second application example shown in Figure 6.16 has only one difference to the first example: XHFC-2SU is configured to PCM slave mode. This means that the PCM clocks are generated from a PCM device in master mode. So the programming procedure is equal to Table 6.9 except that "set PCM to master" has to be changed to "set PCM to slave" (V_PCM_MD = '0').

The last application example 3 shows XHFC-2SU operating in GCI slave mode. XHFC-2SU is PCM slave and GCI slave which means:

- GCI master feeds PCM clocks C4IO and F0IO
- GCI frame input on STIO1
- GCI frame output on STIO2

The programming procedure is shown in Figure 6.17. GCI slave mode is configured with the shown settings for V_GCI_SWAP_TXHS, V_GCI_SWAP_RXHS and V_GCI_SWAP_STIO in register R_GCI_CFG0. Again, not mentioned bitmap values of the GCI relevant registers remain in their reset state.

Please note that register programming must be handled by the host processor connected to the XHFC-2SU microprocessor interface even if XHFC-2SU operates as GCI slave. This includes the monitor data handling as well as the C/I processing.

Table 6.9: Programming procedure for application example 1 according to Figure 6.15 (XHFC-2SU is PCM master and GCI master)

Register	Bit	Value	Function	
R_GCI_CFG1	V_GCI_SL	X	Select PCM time slot group for the GCI frame (PCM time slots $4x 4x + 3$)	
R_PCM_MD0	V_PCM_MD	'1'	set PCM to master	
R_SLOT	V_SL_NUM	4 <i>x</i>	select first GCI time slot $4x$	
R_SLOT	V_SL_DIR	'0'	select transmit data direction	
A_SL_CFG	V_ROUT	'10'	set STIO1 to output characteristic	
A_SL_CFG	V_CH_SDIR	'0'	assign transmit HFC-channel	
A_SL_CFG	V_CH_SNUM	<i>y</i> ₁	assign HFC-channel y_1 to the selected time slot (normally B1-channel)	
R_SLOT	V_SL_DIR	'1'	select receive data direction	
A_SL_CFG	V_ROUT	'10'	set STIO2 to input characteristic	
A_SL_CFG	V_CH_SDIR	'1'	assign receive HFC-channel	
A_SL_CFG	V_CH_SNUM	<i>z</i> ₁	assign HFC-channel z_1 to the selected time slot (normally $z_1 = y_1$)	
R_SLOT	V_SL_NUM	4x + 1	select second GCI time slot $4x + 1$	
R_SLOT	V_SL_DIR	'0'	select transmit data direction	
A_SL_CFG	V_ROUT	'10'	set STIO1 to output characteristic	
A_SL_CFG	V_CH_SDIR	'0'	assign transmit HFC-channel	
A_SL_CFG	V_CH_SNUM	<i>y</i> 2	assign HFC-channel y_2 to the selected time slot (normally B2-channel)	
R_SLOT	V_SL_DIR	'1'	select receive data direction	
A_SL_CFG	V_ROUT	'10'	set STIO2 to input characteristic	
A_SL_CFG	V_CH_SDIR	'1'	assign receive HFC-channel	
A_SL_CFG	V_CH_SNUM	<i>z</i> ₂	assign HFC-channel z_2 to the selected time slot (normally $z_2 = y_2$)	
R_SLOT	V_SL_NUM	4x + 3	select fourth GCI time slot $4x + 3$	
R_SLOT	V_SL_DIR	'0'	select transmit data direction	
A_SL_CFG	V_ROUT	'10'	set STIO1 to output characteristic	
A_SL_CFG	V_CH_SDIR	'0'	assign transmit HFC-channel	
A_SL_CFG	V_CH_SNUM	УD	assign HFC-channel y_D to the selected time slot (normally D-channel)	
R_SLOT	V_SL_DIR	'1'	select receive data direction	
A_SL_CFG	V_ROUT	'10'	set STIO2 to input characteristic	
A_SL_CFG	V_CH_SDIR	'1'	assign receive HFC-channel	
A_SL_CFG	V_CH_SNUM	$z_{ m D}$	assign HFC-channel $z_{\rm D}$ to the selected time slot (normally $z_{\rm D}=y_{\rm D}$)	
R_GCI_CFG0	V_GCI_EN	'1'	enable GCI function	

Figure 6.16: GCI application example 2 (XHFC-2SU is PCM slave and GCI master)

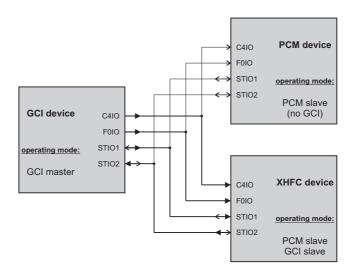
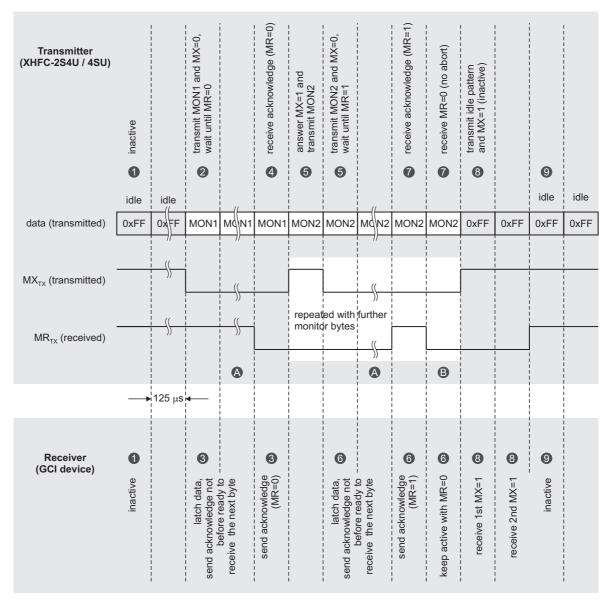


Figure 6.17: GCI application example 3 (XHFC-2SU is PCM slave and GCI slave)

Table 6.10: Programming procedure for application example 3 according to Figure 6.17 (XHFC-2SU is PCM slave and GCI slave)


Register	Bit	Value	Function
R_GCI_CFG1	V_GCI_SL	X	Select PCM time slot group for GCI frame <i>x</i>
R_PCM_MD0	V_PCM_MD	'0'	set PCM to slave
R_SLOT	V_SL_NUM	4 <i>x</i>	select first GCI time slot $4x$
R_SLOT	V_SL_DIR	'0'	select transmit data direction
A_SL_CFG	V_ROUT	'11'	set STIO1 to input characteristic
A_SL_CFG	V_CH_SDIR	'0'	assign transmit HFC-channel
A_SL_CFG	V_CH_SNUM	<i>y</i> ₁	assign HFC-channel y_1 to the selected time slot (normally B1-channel)
R_SLOT	V_SL_DIR	'1'	select receive data direction
A_SL_CFG	V_ROUT	'11'	set STIO2 to output characteristic
A_SL_CFG	V_CH_SDIR	'1'	assign receive HFC-channel
A_SL_CFG	V_CH_SNUM	z_1	assign HFC-channel z_1 to the selected time slot (normally $z_1 = y_1$)
R_SLOT	V_SL_NUM	4x + 1	select second GCI time slot $4x + 1$
R_SLOT	V_SL_DIR	'0'	select transmit data direction
A_SL_CFG	V_ROUT	'11'	set STIO1 to input characteristic
A_SL_CFG	V_CH_SDIR	'0'	assign transmit HFC-channel
A_SL_CFG	V_CH_SNUM	<i>y</i> ₂	assign HFC-channel y_2 to the selected time slot (normally B2-channel)
R_SLOT	V_SL_DIR	'1'	select receive data direction
A_SL_CFG	V_ROUT	'11'	set STIO2 to output characteristic
A_SL_CFG	V_CH_SDIR	'1'	assign receive HFC-channel
A_SL_CFG	V_CH_SNUM	z_2	assign HFC-channel z_2 to the selected time slot (normally $z_2 = y_2$)
R_SLOT	V_SL_NUM	4x + 3	select fourth GCI time slot $4x + 3$
R_SLOT	V_SL_DIR	'0'	select transmit data direction
A_SL_CFG	V_ROUT	'11'	set STIO1 to input characteristic
A_SL_CFG	V_CH_SDIR	'0'	assign transmit HFC-channel
A_SL_CFG	V_CH_SNUM	УD	assign HFC-channel y_D to the selected time slot (normally D-channel)
R_SLOT	V_SL_DIR	'1'	select receive data direction
A_SL_CFG	V_ROUT	'11'	set STIO2 to output characteristic
A_SL_CFG	V_CH_SDIR	'1'	assign receive HFC-channel
A_SL_CFG	V_CH_SNUM	z_{D}	assign HFC-channel z_D to the selected time slot (normally $z_D = y_D$)
R_GCI_CFG0	V_GCI_SWAP_TXHS	'1'	swap handshake bits MR_{TX} and MX_{TX} for GCI transmit direction
R_GCI_CFG0	V_GCI_SWAP_RXHS	'1'	swap handshake bits MR_RX and MX_RX for GCI receive direction
R_GCI_CFG0	V_GCI_SWAP_STIO	'1'	swap STIO1 and STIO2 for monitor channel and C/I
R_GCI_CFG0	V_GCI_EN	'1'	enable GCI function

6.8.4 GCI protocol

6.8.4.1 XHFC-2SU transmit procedure

Monitor bytes are transmitted and received under the control of the handshake bits MX_{TX} and MR_{TX} . The handshake bits are automatically handled by the GCI controller. Figure 6.18 shows the transmit procedure of two monitor bytes.

- A omitted, if the receiver sends acknowledge immediately
- Omitted, if V_MON_SLOW = 0 (high transmission speed)

Figure 6.18: GCI protocol for monitor bytes transmission

- Beginning with idle state, no monitor byte is pending, MX_{TX} and MR_{TX} are both '1'. The monitor byte has the value 0xFF in this state.
- **2** A write access to register R_MON_TX starts the transmit sequence.

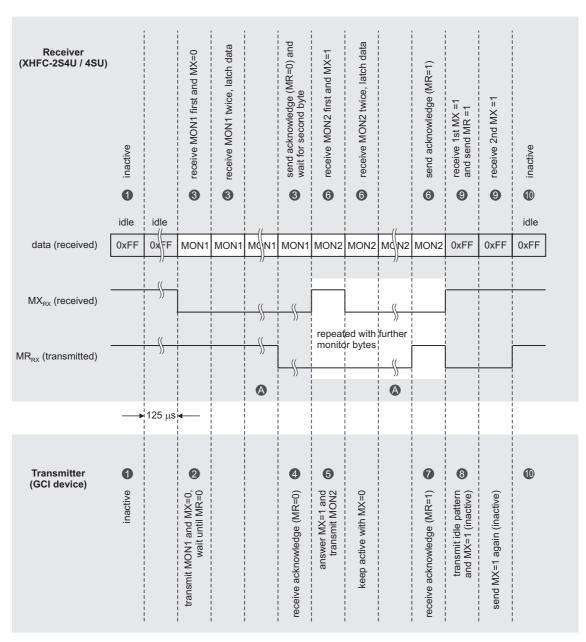
The first monitor byte is transmitted within the next GCI time slot 2 and MX_{TX} is set to '0'. This monitor byte will be transmitted repeatedly in every time slot 2 until the GCI device acknowledges the byte with $MR_{TX} = 0$ '.

As the GCI controller has latched the monitor byte, V_MON_TXR is set to '1'. This means that the host processor can write the next monitor byte into register R_MON_TX.

- 3 The receiver latches the first monitor byte. This can take an arbitrary number of 125 µs cycles. An acknowledge is send when the receiver is ready for the next byte.
- **4** The transmitter gets acknowledge with $MR_{TX} = 0^{\circ}$.
- **5** XHFC-2SU answers to the acknowledge signal with $MX_{TX} = '1'$ for one cycle when a new monitor byte has been written into register R_MON_TX. MX_{TX} is set to '0' afterwards to keep the monitor channel active. The second monitor byte is transmitted at the same time as $MX_{TX} = '1'$ and is stable until a receiver acknowledge is recognized.
- **6** The receiver latches the second monitor byte. This can take an arbitrary number of $125 \,\mu s$ cycles. An acknowledge signal MR_{TX} = '1' is send for one cycle when the receiver is ready for the next byte.
- \bullet The transmitter receives acknowledge with MR_{TX} = '1' for one cycle.
- The procedure shown with the second monitor byte (⑤.. ⑥) can be repeated until the whole message has been send. The last monitor byte has to be marked with V_MON_END = '1'. The marking must be written before the last monitor byte is stored in register R_MON_TX. Then the transmitter terminates the transmission with continuously MX_{TX} = '1'. Idle pattern 0xFF is send. The monitor channel of the transmitter is in inactive state.
- **9** When the receiver reads $MX_{TX} = '1'$ for two cycles, its monitor channel goes to inactive state with $MR_{TX} = '1'$. The monitor channel is in idle state now.

Table 6.11 summarizes the rules for the handshake signals MX_{TX} and MR_{TX} when XHFC-2SU transmits a monitor byte sequence.

Table 6.11: Rules for the handshake signals MX_{TX} and MR_{TX} when XHFC-2SU transmits a monitor byte sequence


MX _{TX}	MR _{TX}	Monitor channel state
'1'	'1'	Idle
'0'	'0'	Transmitter and receiver are both active
'0'	'1' (once)	Acknowledge of the 2 nd and following monitor bytes
<u>'0'</u>	'1' (repeated)	Transmitter waits for acknowledge to the 1st monitor byte
'1' (once)	'0'	Transmitter answers to the acknowledge
'1' (repeated)	'0'	Transmitter terminates the transmission

6.8.4.2 XHFC-2SU receive procedure

The monitor channel is full duplex and operates similar in the opposite direction. XHFC-2SU recognizes idle state with the specified handshake signals and accepts every idle pattern.

Figure 6.19 shows the receive procedure of two monitor bytes with double last look criterion enabled.

A omitted, if the receiver sends acknowledge immediately

Figure 6.19: GCI protocol for monitor bytes receiving

- The monitor channel is idle when $MX_{RX} = '1'$ and $MR_{RX} = '1'$. Any received data pattern is ignored.
- **2** The GCI transmitter sends the first monitor byte with $MX_{RX} = 0$.
- The first monitor byte is received when MX_{RX} = '0'. When the same byte is received again (double last look enabled), it is latched and V_MON_RXR is set to '1'. After R_MON_RX has been read, acknowledge is send in the next 125 μs cycle with MR_{RX} = '0'.
- **4** The transmitter receives acknowledge with $MR_{RX} = '0'$.
- **6** Answer $MX_{RX} = '1'$ for one cycle and send the next monitor byte.
- The next monitor byte is received when MX_{RX} = '1' for one cycle. When the same byte is received again (double last look enabled), it is latched and V_MON_RXR is set to '1'. After R_MON_RX has been read, acknowledge is send in the next 125 µs cycle with MR_{RX} = '1'.
- \bullet The transmitter receives acknowledge with with MR_{RX} = '1' for one cycle.
- **③** The procedure shown with the second monitor byte (**⑤**..**⑦**) can be repeated until the whole message has been send.
 - Assumed that the GCI master finished the message transmission, MX_{RX} is set to '1' and remains in this state.
- **9** When XHFC-2SU receives $MX_{RX} = '1'$ twice, the monitor channel returns to idle state with $MR_{RX} = '1'$. The received byte is no valid monitor byte because MX_{RX} did not return to '0' after one cycle.

The rules for the handshake signals MX_{RX} and MR_{RX} when XHFC-2SU receives a monitor byte sequence are summarized in Table 6.12.

Table 6.12: Rules for the handshake signals MX_{RX} and MR_{RX} when XHFC-2SU receives a monitor byte sequence

MX _{RX}	MR _{RX}	Monitor channel state
'1'	'1'	Idle
<u>'0'</u>	'0'	Transmitter and receiver are both active
'0'	'1' (once)	Receive the 1 st monitor byte, not yet acknowledged
<u>'0'</u>	'1' (repeated)	Receiver terminates the transmission
'1' (once)	'0'	Receiver answers to the acknowledge
'1' (repeated)	'0'	Impossible

6.8.4.3 Receiver abort

The receiver can abort the transmission if data cannot be used or is missing. This is done by MR = '1' for at least 2 cycles. The monitor channel returns to idle state in this case.

When XHFC-2SU operates as GCI master, it can receive an abort message from the GCI slave. This is reported with V_GCI_ABO = '1' in register R_GCI_STA. This bit is reset to '0' with a write access to register R_MON_TX. It is recommended to check V_GCI_ABO every time before writing a new monitor byte.

XHFC-2SU never aborts any message when it is receiver of the monitor channel.

6.9 Register description

6.9.1 Write only registers

R_SLOT	(w)	(Reset group: $H, 0, 2$)	0x10

PCM time slot selection

This register is used to select a PCM time slot. Before a PCM slot array register can be accessed, this index register must specify the desired slot number and data direction. Depending on the V_PCM_DR value in register R_PCM_MD1, either 32, 64 or 128 time slots are available for each data direction.

Bits	Reset value	Name	Description
0	0	V_SL_DIR	PCM time slot data direction '0' = transmit PCM data '1' = receive PCM data
71	0x00	V_SL_NUM	PCM time slot number

(See Section 13 on page 343 for a fault description and workaround of an address decoding problem which concerns this register among others.)

R_	PCM_M	00		(w)	(Reset group: H, 0, 2) 0	x14
PC	M mode,	register (
	Bits	Reset value	Name		Description	
	0	0	V_PCM_MD		PCM bus mode '0' = slave (pins C4IO and F0IO are inputs) '1' = master (pins C4IO and F0IO are outputs) If no external C4IO and F0IO signal is provided this bit must be set for operation.	
	1	0	V_C4_POL		Polarity of C4IO clock '0' = pin F0IO is sampled on negative clock transition of C4IO '1' = pin F0IO is sampled on positive clock transition of C4IO	
	2	0	V_F0_NEG		Polarity of FOIO signal '0' = positive pulse '1' = negative pulse	
	3	0	V_F0_LEN		Duration of FolO signal '0' = active for one C4IO clock (244 ns at 4 MHz '1' = active for two C4IO clocks (488 ns at 4 MHz early leading edge) The specified signal duration is generated in PC master mode and it is expected in PCM slave mode.	Iz,
	74	0	V_PCM_IDX		Index value to select the register at address 1 At address 15 a so-called multi-register is accessible. 0 = R_SL_SEL0 register accessible 1 = R_SL_SEL1 register accessible 2 = not used 3 = not used 4 = not used 5 = not used 6 = not used 7 = R_SL_SEL7 register accessible 8 = R_MSS0 register accessible 9 = R_PCM_MD1 register accessible 0xA = R_PCM_MD2 register accessible 0xB = R_MSS1 register accessible 0xC = R_SH0L register accessible 0xD = R_SH0H register accessible 0xE = R_SH1L register accessible 0xF = R_SH1L register accessible	5

R_SL_SEL0 (w) (Reset group: H, 0, 2) 0x15

Slot selection register for pin F1_0

This multi-register is selected with bitmap V_PCM_IDX = 0 in register R_PCM_MD0.

Note: By setting all 8 bits to '1' pin F1_0 is disabled.

Bits	Reset value	Name	Description
60	0x7F	V_SL_SEL0	PCM time slot selection The selected slot number is V_SL_SEL0 +1 for F1_0. Slot number 0 is selected with the maximum slot number of the selected PCM speed.
7	1	V_SH_SEL0	Shape selection '0' = use shape 0 set by registers R_SH0L and R_SH0H '1' = use shape 1 set by registers R_SH1L and R_SH1H

Important!

For selecting slot 0, the value that has to be written into bitmaps V_SL_SEL0 and V_SL_SEL1 of registers R_SL_SEL0 and R_SL_SEL1 depends on the PCM data rate:

PCM data rate	Value
PCM30	0x1F
PCM64	0x3F
PCM128	0x7F

Please note that time slot 0 for PCM128 can only be used with $V_SH_SEL0 = '0'$ and $V_SH_SEL1 = '0'$ (SHAPE0) in registers R_SL_SEL0 and R_SL_SEL1 .

R_SL_SEL1 (w) (Reset group: H, 0, 2) 0x15

Slot selection register for pin F1_1

This multi-register is selected with bitmap V_PCM_IDX = 1 in register R_PCM_MD0.

Note: By setting all 8 bits to '1' pin F1_1 is disabled.

Bits	Reset value	Name	Description
60	0x7F	V_SL_SEL1	PCM time slot selection The selected slot number is V_SL_SEL1 +1 for F1_1. Slot number 0 is selected with the maximum slot number of the selected PCM speed.
7	1	V_SH_SEL1	Shape selection '0' = use shape 0 set by registers R_SH0L and R_SH0H '1' = use shape 1 set by registers R_SH1L and R_SH1H

R_SL_SEL7 (w) (Reset group: H, 0, 2) **0x15**

Slot selection register for signal F1_7

This multi-register is selected with bitmap V_PCM_IDX = 7 in register R_PCM_MD0.

The F1_7 signal is only internally available. It can be used to shift the synchronization signal for Universal ISDN Ports in NT mode.

Bits	Reset value	Name	Description
60	0x7F	V_SL_SEL7	PCM time slot selection The selected slot number is V_SL_SEL7 +1 for the F1_7 signal. Slot number 0 is selected with the maximum slot number of the selected PCM speed.
7	0	(reserved)	Must be '0'.

R_MSS0 (w) (Reset group: H, 0, 2) **0x15**

$PCM\ multiframe/superframe\ synchronization\ mode,\ register\ 0$

This multi-register is selected with bitmap V_PCM_IDX = 8 in register R_PCM_MD0.

1113 1110101-1	egistei is s	ciected with bitmap v_i oiii_ii	DX = 8 in register R_PCM_MD0.
Bits	Reset value	Name	Description
0	0	V_MSS_MOD	F0IO pulse modification The F0IO pulse duration can be changed to generate the multiframe/superframe synchronization signal. '0' = normal operation '1' = F0IO pulse is lengthened by one C4IO clock to indicate the start of the multiframe/superframe (delayed trailing edge)
1	0	V_MSS_MOD_REP	F0IO modification repetition rate The repetition rate of the modified F0IO signal can be selected. '0' = once every 40 PCM frames '1' = once every 8 PCM frames
2	0	V_MSS_SRC_EN	Enable external multiframe/superframe synchronization signal '0' = disabled '1' = enabled
3	0	V_MSS_SRC_GRD	Synchronization guard count The multiframe/superframe synchronization signal is detected not before 7 or 39 PCM frames. '0' = not before 39 PCM frames '1' = not before 7 PCM frames
4	0	V_MSS_OUT_EN	Enable line interface synchronization signal for the multiframe/superframe '0' = the synchronization signal is disabled '1' = the synchronization signal is passed to the line interfaces
5	0	V_MSS_OUT_REP	Repetition rate of the line interface synchronization signal for the multiframe/superframe The line interface synchronization signal is generated either every 8th or 40th PCM frame. '0' = every 40th PCM frame '1' = every 8th PCM frame (can only be used in pure Up environments)

(continued on next page)

(continued from previous page)

Bits	Reset value	Name	Description
76	0	V_MSS_SRC	Multiframe/superframe synchronization source One of the following signals can be chosen as synchronization source. '00' = pin FOIO '01' = SYNC_I '10' = STIO1 '11' = internal signal MSS_SYNC_I

'_PCM_IDX = 9 in register R_PCM_MD0. Description	
-	
Description	
Must be '0'.	
Characteristic of the PCM output lines '0' = STIO1 and STIO2 have push/pull characteristic '1' = STIO1 and STIO2 have open drain characteristic (pull up resistor required)	
DPLL adjust speed '00' = C4IO clock is adjusted in the last tim the PCM frame 4 times by one clock cycle PCM clock f_{PCM} (81.4 ns all 125 μs, 651 μ'01' = C4IO clock is adjusted in the last tim the PCM frame 3 times by one clock cycle PCM clock f_{PCM} (61.0 ns all 125 μs, 489 μ'10' = C4IO clock is adjusted in the last tim the PCM frame twice by one clock cycle of PCM clock f_{PCM} (40.7 ns all 125 μs, 326 μ'11' = C4IO clock is adjusted in the last tim the PCM frame once by one clock cycle of PCM clock f_{PCM} (20.3 ns all 125 μs, 163 μ	e of the opm) ne slot of the opm)
PCM data rate '00' = 2 MBit/s (C4IO is 4.096 MHz, 32 tir '01' = 4 MBit/s (C4IO is 8.192 MHz, 64 tir '10' = 8 MBit/s (C4IO is 16.384 MHz, 128 slots) '11' = 0.75 MBit/s (C4IO is 1.536 MHz, 12 slots) Every time slot exists in transmit and recedirection.	ne slots time L time
PCM test loop When this bit is set, the PCM output data to the PCM input data internally for all PC slots. Note: When this bit is set (internal PCM left)	CM time
	Characteristic of the PCM output lines '0' = STIO1 and STIO2 have push/pull characteristic '1' = STIO1 and STIO2 have open drain characteristic (pull up resistor required) DPLL adjust speed '00' = C4IO clock is adjusted in the last tin the PCM frame 4 times by one clock cycle PCM clock f_{PCM} (81.4 ns all 125 µs, 651 p'01' = C4IO clock is adjusted in the last tin the PCM frame 3 times by one clock cycle PCM clock f_{PCM} (61.0 ns all 125 µs, 489 p'10' = C4IO clock is adjusted in the last tin the PCM frame twice by one clock cycle PCM clock f_{PCM} (40.7 ns all 125 µs, 326 p'11' = C4IO clock is adjusted in the last tin the PCM frame once by one clock cycle of PCM clock f_{PCM} (20.3 ns all 125 µs, 163 properties) PCM data rate '00' = 2 MBit/s (C4IO is 4.096 MHz, 32 tin '01' = 4 MBit/s (C4IO is 16.384 MHz, 128 slots) '11' = 0.75 MBit/s (C4IO is 1.536 MHz, 12 slots) Every time slot exists in transmit and rece direction. PCM test loop When this bit is set, the PCM output data is to the PCM input data internally for all PC

(continued on next page)

R_PCM_MD1 as well.

(continued from previous page)

Bits	Reset value	Name	Description
7	0	V_PCM_SMPL	PCM receive sample point '0' = sample point at middle of PCM bit cell (normal operation) '1' = sample point at 3/4 of PCM bit cell

_PCM_N	ID2	(w)	(Reset group: H, 0, 2) 0x
CM mod	e, register	2	
nis multi-	register is s	selected with bitmap V_PCM_II	DX = 0xA in register R_PCM_MD0.
Bits	Reset value	Name	Description
0	0	(reserved)	Must be '0'.
1	0	V_SYNC_OUT1	SYNC_O output signal selection V_SYNC_OUT2 is also used for synchronization selection. '0' = SYNC_O signal is either SYNC_I or the received synchronization pulse FSC_RX (see register R_SU_SYNC for synchronization source selection) '1' = SYNC_O signal is either 512 kHz from the PLL or the received multiframe/superframe synchronization pulse
2	0	V_SYNC_SRC	PCM PLL synchronization source selection '0' = line interface (see R_SU_SYNC for further synchronization configuration) '1' = SYNC_I input (8 kHz)
3	0	V_SYNC_OUT2	SYNC_O output signal selection V_SYNC_OUT1 is also used for synchronization selection. '0' = SYNC_O signal is either the received synchronization pulse FSC_RX (see register R_SU_SYNC for synchronization source selection) or 512 kHz from the PLL '1' = SYNC_O signal is either SYNC_I or the received multiframe/superframe synchronization pulse
4	0	V_C2O_EN	Enable C2IO output signal '0' = C2IO output is disabled '1' = C2IO output is enabled when also V_C2I_E = '0'
5	0	V_C2I_EN	Single Clock on C2IO is used as PCM clock (master and slave mode) '0' = PCM data controller gets C4IO input clock '1' = PCM data controller gets C2IO input clock
6	0	V_PLL_ICR	Increase PCM frame time This bit is only valid if V_PLL_MAN is set. '0' = PCM frame time is reduced as selected by bitmap V_PLL_ADJ in register R_PCM_MD1 '1' = PCM frame time is increased as selected by bitmap V_PLL_ADJ in register R_PCM_MD1

(continued on next page)

(continued from previous page)

Bits Reset value	Name	Description
7 0	V_PLL_MAN	Manual PLL adjustment '0' = PCM PLL is automatically adjusted to the SYNC_I signal or to the line interface synchronization pulse (depending on V_SYNC_OUT2 setting) '1' = PCM PLL is manually adjusted according to V_PLL_ICR. This can be used to make synchronization by software if no synchronization source is available. Note: Manual PLL adjustment is automatically disabled when a synchronization pulse is available.

	(w)	(Reset group: H, 0, 2)	0x15
Reset value	Name	Description	
0	V_MSS_OFFS	counter and the generated synchroniza	tion signal is
0	V_MS_SSYNC1	pulse '0' = a repetitive synchronization signal generated every 8 or 40 PCM frames '1' = the multiframe/superframe synchronization signal is directly used (this is no to generate a single MSS_SYNC_O processing to the synchronization of the synchronization signal is directly used (this is no to generate a single MSS_SYNC_O processing the synchronization signal is directly used (this is no to generate a single MSS_SYNC_O processing the synchronization signal generated every 8 or 40 PCM frames	nronization rmally used ulse)
0	V_MSS_DLY	always related to the regular F0IO sign	nal. This
	Reset value 0	Reset value Name V_MSS_OFFS V_MS_SYNC1	Name Description Synchronization source offset The offset between the synchronizatio counter and the generated synchronizatio specified in number of PCM frames. The chosen in the range -4+3. '000' = no offset '001' = 1 PCM frame '010' = 2 PCM frames '101' = 3 PCM frames '100' = -4 PCM frames '101' = -3 PCM frames '110' = -2 PCM frames '111' = -1 PCM frames '0' = a repetitive synchronization signal generated every 8 or 40 PCM frames '1' = the multiframe / superframe synchingut signal is directly used (this is no to generate a single MSS_SYNC_O pinote: When this bit is set to '1', usuall V_MS_SSYNC2 has to be set. Multiframe / superframe delay The position of multiframe / superframalways related to the regular F0IO signal bitmap specifies the delay in number of clock pulses. 0 = 1 C4IO pulse delay

R_SHOL (w) (Reset group: H, 0, 2) **0x15**

CODEC enable signal F1_0, low byte

This multi-register is selected with bitmap V_PCM_IDX = 0xC in register R_PCM_MD0.

Dita	deset alue Na	ame	Description
70 02	×00 V _		Shape bits 70 Every bit is used for 1/2 C4IO clock cycle.

R_SHOH (w) (Reset group: H, 0, 2) 0x15

CODEC enable signal F1_0, high byte

This multi-register is selected with bitmap V_PCM_IDX = 0xD in register R_PCM_MD0.

Rite	Reset value	Name	Description
70	0x00	V_SH0H	Shape bits 158 Every bit is used for 1/2 C4IO clock cycle. Bit 7 of V_SH0H defines the value for the rest of the period.

R_SH1L (w) (Reset group: H, 0, 2) 0x15

CODEC enable signal F1_1, low byte

This multi-register is selected with bitmap $V_PCM_IDX = 0xE$ in register R_PCM_MD0 .

Bits	Reset value	Name	Description
70	0x00	V_SH1L	Shape bits 70 Every bit is used for 1/2 C4IO clock cycle.

R_	SH1H			(w)	(Reset group: H, 0, 2)	0x15			
CC	CODEC enable signal F1_1, high byte								
Thi	is multi-r	egister is	selected with bitm	ap V_PCM_IDX =	0xF in register R_PCM_MD0.				
		Reset							
	Bits	value	Name	Des	scription				
	70	0x00	V_SH1H	Sha	ape bits 158				

the period.

Every bit is used for 1/2 C4IO clock cycle. Bit 7 of V_SH1H defines the value for the rest of

ST/Up synchronization source

This register selects the synchronization source for the internal or external PCM clock PLL.

ins register serects the synchronization source for the internal of external reviewer relations.					
Bits	Reset value	Name	Description		
20	0	V_SYNC_SEL	Synchronization source selection Any line interface or the SYNC_I input signal can be selected as synchronization source. A line interface can be used as synchronization source only if it is in TE mode. '000' = source is line interface 0 '001' = source is line interface 1 '010', '011' = not allowed '100' = source is SYNC_I signal '101''111' = not allowed		
3	0	V_MAN_SYNC	Automatically synchronization source selection '0' = automatic synchronization source selection. A TE which is synchronized to the incoming S/T signal (e.g. state F6 or F7) is chosen as synchronization source and V_SYNC_SEL is ignored. '1' = manual synchronization source selection. V_SYNC_SEL is used for synchronization source. The current synchronization source can be read from V_RD_SYNC_SRC in register R_BERT_STA.		
4	0	V_AUTO_SYNCI	Enable SYNC_I as synchronization signal In addition to the line interface synchronization pulse FSC_RX, SYNC_I can be taken for synchronization. '0' = SYNC_I is not used for synchronization '1' = SYNC_I is automatically used for synchronization if no FSC_RX pulse is detected		
5	0	V_D_MERGE_TX	Both D-channels are taken from one byte in TX direction.		
6	0	V_E_MERGE_RX	Both E-channels are combined into one Byte in RX direction.		
7	0	V_D_MERGE_RX	Both D-channels are combined into one Byte in RX direction.		

R.	_CI_TX			(w)	(Reset group: H, 0, 2)	0x28
C/	I-channe	l of the G	CI interface			
	Bits	Reset value	Name		Description	
	50	0	V_GCI_C		Command bits of the C/I-channel These bits are continuously send in the C/I-channel length can either be 4 bit of according to V_MON_Cl6 setting. Bit ignored when the C/I-channel length is	or 6 bit s [5,4] are
	76	0	(reserved)		Must be '00'.	

R_GCI_CF	G0		(w)	(Reset group: H, 0, 2)	0x29
GCI interf	ace configu	uration, register 0			
Bits	Reset value	Name		Description	
0	0	V_MON_END		End of command flag for the monitor character transmitted monitor command ends after next monitor byte.	
1	0	V_MON_SLOW		Transmission speed of the monitor channel '0' = the next monitor byte is sent immediate after the receive handshake bit gets high '1' = the next monitor byte is sent after a high-to-low transition of the receive handsha	ly
2	0	V_MON_DLL		Enable double last look criterion '0' = a received monitor byte is accepted at o '1' = a monitor byte is accepted only if it is received twice	once
3	0	V_MON_CI6		Expand C/I-channel width to 6 bits '0' = 4 bit C/I-channel '1' = 6 bit C/I-channel (no D-channel transm	ission)
4	0	V_GCI_SWAP_TXHS		Swap handshake bits for transmitted monbytes '0' = normal operation (XHFC-2SU is GCI m '1' = handshake bits MR _{TX} and MX _{TX} are swapped (XHFC-2SU is GCI slave) Note: This bit must be set when XHFC-2SU operates in GCI slave mode. Bits V_GCI_SWAP_RXHS and V_GCI_SWAP_in this register must also be set in this case.	aster)
5	0	V_GCI_SWAP_RXHS		Swap handshake bits for received monitor '0' = normal operation (XHFC-2SU is GCI m '1' = handshake bits MR _{RX} and MX _{RX} are sw (XHFC-2SU is GCI slave) Note: This bit must be set when XHFC-2SU operates in GCI slave mode. Bits V_GCI_SWAP_TXHS and V_GCI_SWAP_ in this register must also be set in this case.	aster) wapped

(continued on next page)

(continued from previous page)

Bits	Reset value	Name	Description
6	0	V_GCI_SWAP_STIO	Swap STIO pins for monitpor bytes and C/I-channel '0' = normal operation (XHFC-2SU is GCI master) '1' = swap STIO1 and STIO2 for monitor bytes and C/I-channel (XHFC-2SU is GCI slave) Note: This bit must be set when XHFC-2SU operates in GCI slave mode. Bits V_GCI_SWAP_TXHS and V_GCI_SWAP_RXHS in this register must also be set in this case.
7	0	V_GCI_EN	Enable GCI interface function When this bit is set to '1', monitor bytes are transmitted and received on GCI time slot 2, C/I-channel and handshake bits are mapped to GCI time slot 3 and I/O direction of the pins STIO1 and STIO2 is configured according to bit V_GCI_SWAP_STIO. GCI time slots are chosen according to the R_GCI_CFG1 selection.

R_	R_GCI_CFG1			(w)	(Reset group: H, 0, 2)	0x2A
GCI interface configuration, register 1						
	Bits	Reset value	Name		Description	
	40	0	V_GCI_SL		Slot group of the GCI interface The GCI interface allocates four PCM to 4·V_GCI_SL4·V_GCI_SL+3. Monto C/I-channel and handshake bits are automapped to their dedicated position. B1-D-channels must be assigned according needs with normal PCM slot assigner programming (registers R_SLOT and A_SL_CFG). 0 = time slots 03 1 = time slots 47 7 = time slots 3235 (normally not use PCM64 and PCM128) 16 = time slots 3235 (normally not use PCM128) 31 = time slots 124127 (normally not for PCM128) 31 = time slots 124127 (normally not pCM128) Note: Normally, GCI requires PCM30 which results in valid bitmap values 0. PCM64 or PCM128 is used with GCI functionality, 015 or 031 can be characteristics.	ed, only for sed, only data rate . 7. When
	75	0	(reserved)		Must be '000'.	

R_	_MON_T	X		(w)	(Reset group: H, 0, 2)	0x2B
M	onitor da	ıta byte				
		.				
	Bits	Reset value	Name		Description	
	70	0	V_MON_TX		Monitor data byte to be transmitted	i

6.9.2 Read only registers

R.	_F0_CN	ΓL		(r)	(Reset group: H, 0, 1)	0x18
FO	OIO pulse	counter, l	ow byte			
	Bits	Reset value	Name	D	escription	
	70	0x00	V_F0_CNTL	T	ow byte (bits 70) of the 125 µs tinnis register should be read first to late register R_F0_CNTH.	

R_	_F0_CN1	ГН		(r)	(Reset group: H, 0, 1)	0x19
FO	010 pulse	counter, l	nigh byte			
	Bits	Reset value	Name	D	escription	
	70	0x00	V_F0_CNTH	T	igh byte (bits 158) of the 125 μs the low byte should be read first (see EFO_CNTL)	

R_SL_	_MAX		(r)	(Reset group: –)	0x1D
Numb	er of PCM tim	ne slots			
Bit	s Reset value	Name	Descr	iption	
7.	0	V_SL_MAX	PCM Maste V_PC 63, 12 Slave	time slots are numbered 0V_er mode: Four values are possibed_DR setting in register R_P(27 or 11) mode: Any value in the range (a) ble due to PCM master configuration.	le due to CM_MD1 (31, 0127 is

R_	_CI_RX			(r)	(Reset group: –) 0x	28
CI	-channel	of the GO	CI interface			
	Bits	Reset value	Name	I	Description	
	50		V_GCI_I	Т ((а	Indication bits of the C/I-channel These bits are continously received in the C/I-channel. C/I-channel length can either be 4 bit or 6 bit according to V_MON_CI6 setting. Bits [5,4] are always '00' when the C/I-channel length is 4 bit.	:
	76		(reserved)			

R_	_GCI_STA	1		(r)	(Reset group: H, 0, 2)	0x29
Sta	atus regis	ter of the	GCI interface			
	Bits	Reset value	Name		Description	
	0	0	V_MON_RXR		Monitor receiver ready A monitor byte has been received and can from register R_MON_RX.	be read
	1	1	V_MON_TXR		Monitor transmitter ready A monitor byte has been send and the next can be written into register R_MON_TX.	byte
	2	1	V_GCI_MX		Status of MX handshake bit This bit shows the current status of the MX handshake bit (normally not used, for test ponly).	
	3		V_GCI_MR		Status of MR handshake bit This bit shows the current status of the MR handshake bit (normally not used, for test ponly).	
	4	0	V_GCI_RX		Receiving monitor byte '0' = monitor byte transmission from GCI of XHFC-2SU is idle '1' = monitor byte transmission from GCI of XHFC-2SU is currently active	
	5	0	V_GCI_ABO		Receiver abort '0' = normal operation '1' = receiver aborted the monitor byte trans	smission
	76		(reserved)			

R.	_MON_R	X		(r)	(Reset group: -)	0x2A
M	lonitor da	ata byte				
	Bits	Reset value	Name	D	escription	
	70		V_MON_RX	R	eceived monitor data byte	

6.9.3 Read/write register

A_SL_CFG [SLOT] (r^*/w) (Reset group: H, 0, 2)	0xD0
--	------

HFC-channel assignment for the selected PCM time slot and PCM output buffer configuration

With this register a HFC-channel can be assigned to the selected PCM time slot. Additionally, the PCM buffers can be configured.

Before writing this array register the PCM time slot must be selected by register R_SLOT.

Bits	Reset value	Name	Description
0	0	V_CH_SDIR	HFC-channel data direction '0' = HFC-channel for transmit data '1' = HFC-channel for receive data
41	0x00	V_CH_SNUM	HFC-channel number (015)
5		(reserved)	Must be '0' when written.
76	0	V_ROUT	PCM output buffer configuration For transmit time slots: '00' = data transmission from HFC-channel disabled, output buffers disabled '01' = loop PCM data internally, output buffers disabled '10' = output buffer for STIO1 enabled '11' = output buffer for STIO2 enabled For receive time slots: '00' = data transmission to HFC-channel disabled, input data is ignored '01' = loop PCM data internally '10' = receive data from STIO2 '11' = receive data from STIO1 Note: When this bitmap is set to '01' (internal PCM loop), it is not allowed to set bit V_PCM_OD in register R_PCM_MD1 as well.

(See Section 2.2.3.2 on page 45 for details on Read* access.)

Chapter 7

Pulse width modulation (PWM) outputs

Table 7.1: Overview of the XHFC-2SU PWM registers

Address	Name	Page
0x1E	R_PWM_CFG	277
0x38	R_PWM0	277
0x39	R_PWM1	278
0x46	R_PWM_MD	278

7.1 Overview

XHFC-2SU has two PWM output lines PWM0 and PWM1 with programmable output characteristic.

The output lines can be configured as open drain, open source and push / pull by setting V_PWM0_MD respectively V_PWM1_MD in register R_PWM_MD.

7.2 Standard PWM usage

The duty cycle of the output signals can be set in registers R_PWM0 and R_PWM1. The register value defines the number of clock periods where the output signal is high during the cycle time

$$T = 256 \cdot \frac{2^{3 \cdot \text{V_PWM_FRQ}}}{f_{\text{SYS}}} \ .$$

The variable duty cycle

$$\frac{t_{\text{high}}}{t_{\text{low}}} = \frac{i}{256 - i}$$
, $i = \text{value of R_PWM0 or R_PWM1}$

of the PWM output pins can be set from 1:255 to 255:1. The register value 0 generates an output signal which is permanently low. The duty cycle 1:1 is achieved with i = 128.

There are always i pulses within the period T. Each pulse-width is a multiple $1/f_{\rm SYS}$. Due to the setup values, different pulse-width might occur. Pulses with longer or shorter width than the mostly appearing width are distributed through the whole period.

The ouput signal of the PWM unit can be used for analog settings by using an external RC filter which generates a voltage that can be adapted by changing the PWM register value.

7.3 Alternative PWM usage

The PWM output lines can be programmed to generate a 16 kHz signal. This signal can be used as analog metering pulse for POTS interfaces. Each PWM output line can be switched to 16 kHz signal by setting V_PWM0_16KHZ or V_PWM1_16KHZ in register R_PWM_CFG. In this case the output characteristic is also determined by the R_PWM_MD register settings.

7.4 Register description

R_	_PWM_C	FG		(w)	(Reset group: H, 0)	0x1E
	Bits	Reset value	Name	De	scription	
	30	0	(reserved)	Mι	ast be '0000'.	
	4	0	V_PWM0_16KHZ	'0' reg	kHz signal on PWM0 = normal PWM output due to the R_P gister setting = 16 kHz output on PWM0	WMO
	5	0	V_PWM1_16KHZ	'0' reg	kHz signal on PWM1 = normal PWM output due to the R_P cister setting = 16 kHz output on PWM1	WM1
	76	0	V_PWM_FRQ	clo '00 '01 '10	e PWM frequency is derived from the each f_{SYS} and can be reduced with this be $f' = PWM$ frequency is $f_{SYS} = PWM$ frequenc	•

R.	_PWM0			(w)	(Reset group: H, 0)	0x38			
M	Modulator register for pin PWM0								
	Bits	Reset value	Name	Desc	ription				
	70	0x00	V_PWM0	The wher 256 c 0x00 0x80	A duty cycle value specifies the number of cloce the output signal of PWM0 is his clock periods cycle, e.g. = no pulse, always low = 1/1 duty cycle = 1 clock period low after 255 cl	gh during a			

R.	_PWM1			(w)	(Reset group: H, 0)	0x39
M	odulator	register f	or pin PWM1			
	Bits	Reset value	Name	D	escription	
	70	0x00	V_PWM1	T w 25 05 05	WM duty cycle ne value specifies the number of clock here the output signal of PWM1 is his 6 clock periods cycle, e.g. 00 = no pulse, always low 80 = 1/1 duty cycle FF = 1 clock period low after 255 cleans	gh during a

R_	_PWM_M	D		(w)	(Reset group: H, 0)	0x46
PV	VM outp	ut mode r	egister			
	Bits	Reset value	Name	Des	scription	
	0	0	(reserved)	Mu	st be '0'.	
	1	0	V_WAK_EN	'0' =	able WAKEUP pin = disable WAKEUP pin = enable WAKEUP pin	
	32	0	(reserved)	Mu	st be '00'.	
	54	0	V_PWM0_MD	'00' '01' '10'	tput buffer configuration for pin = PWM output tristate (disable) = PWM push/pull output = PWM push to 0 only = PWM pull to 1 only	PWM0
	76	0	V_PWM1_MD	'00' '01' '10'	tput buffer configuration for pin = PWM output tristate (disable) = PWM push / pull output = PWM push to 0 only = PWM pull to 1 only	PWM1

Chapter 8

Bit Error Rate Test (BERT)

Table 8.1: Overview of the XHFC-2SU BERT registers

Write only	registers:	Read only registers:			
Address	ess Name Pa		Address	Name	Page
0x1B	R_BERT_WD_MD	284	0x17	R_BERT_STA	285
			0x1A	R_BERT_ECL	285
			0x1B	R_BERT_ECH	286

8.1 BERT functionality

Bit Error Rate Test (BERT) is a very important test for communication lines. The bit error rate should be as low as possible. Increasing bit error rate is an early indication of a malfunction of components or the communication wire link itself.

XHFC-2SU includes a high performance pseudo random bit generator (PRBG) and a pseudo random bit receiver with automatic synchronization capability. The error rate can be checked by the also implemented Bit Error counter (BERT counter).

Please note!

Transparent mode must be selected for Bit Error Rate Test.

8.2 BERT transmitter

The PRBG can be set to a variety of different pseudo random bit patterns. Continous '0', continous '1' or pseudo random bit patterns with one of 6 selectable sequence length's from $2^9 - 1$ bit to $2^{23} - 1$ bit can be configured with bitmap V_PAT_SEQ in register R_BERT_WD_MD. All bit sequences are defined in the ITU-T O.150 [11] and O.151 [10] specifications.

The BERT patterns are passed through the HFC-channel assigner if $V_BERT_EN = '1'$ in register A_FIFO_CTRL[FIFO]. For this reason, either a FIFO-to-ST/ U_p or a FIFO-to-PCM configuration must be selected. Furthermore, the allocated FIFO must be enabled to switch on the data path.

BERT patterns are generated if at least one FIFO has its bit V_BERT_EN set to '1'. When more than one transmit FIFO are using BERT patterns, all these patterns are generated from the same pseudo random generator. They are distributed to the FIFOs in the order of the FIFO processing sequence (see Section 3.2.3 on page 78).

Subchannel processing can be used together with the *Bit Error Rate Test*. Then the number of bits taken from the PRBG is V_BIT_CNT.

Please note!

To test a connection and the error detection capability of the BERT error counter, a BERT error can be generated on the receiver side of an ST/U $_p$ link. Setting bit V_BERT_ERR in register R_BERT_WD_MD generates one wrong BERT bit in the outgoing data stream. V_BERT_ERR is automatically cleared afterwards.

8.3 BERT receiver

The BERT receiver has an automatic synchonization capability. When the incoming bit stream is synchronized with the PRBG, bit V_BERT_SYNC in register R_BERT_STA is set to '1'.

A 16 bit BERT error counter is available in registers R_BERT_ECL and R_BERT_ECH. The low

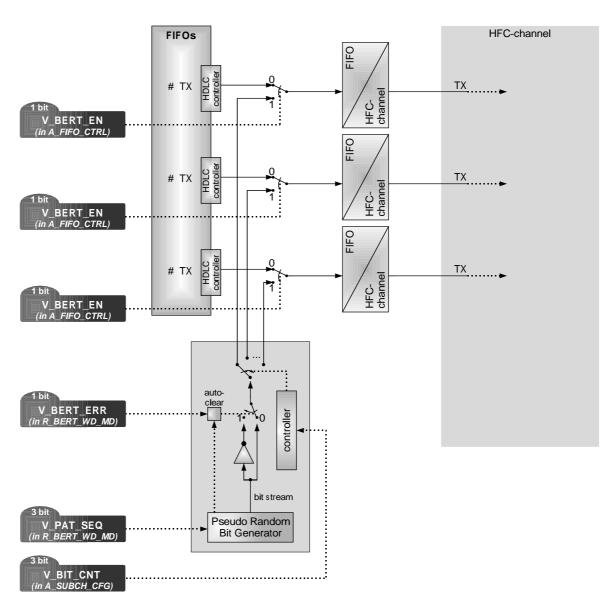


Figure 8.1: BERT transmitter block diagram

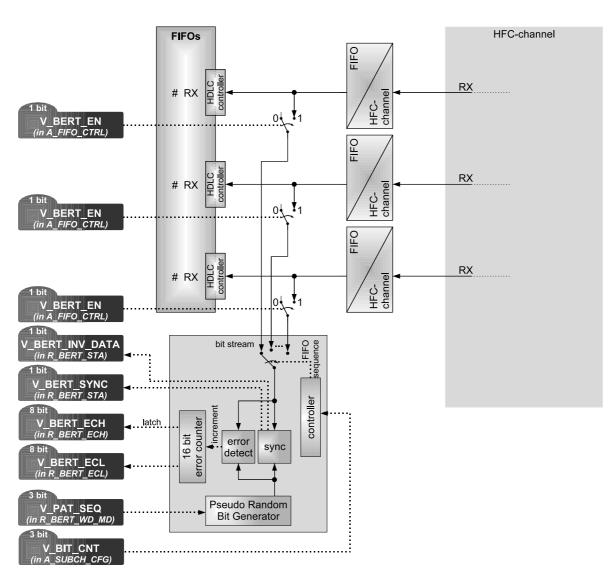


Figure 8.2: BERT receiver block diagram

byte R_BERT_ECL should be read first to latch the high byte. Then the high byte can be read from register R_BERT_ECH. A read access to the low byte R_BERT_ECL clears the 16 bit counter.

The BERT procedure should first wait for the synchronization state. After this, the BERT error counter should be cleared by reading register R_BERT_ECL.

Received BERT data is passed through the HFC-channel assigner if $V_BERT_EN = '1'$ in register A_FIFO_CTRL[FIFO]. For this reason, either a FIFO-to-ST/ U_p or a FIFO-to-PCM configuration must be selected. Furthermore, the allocated FIFO must be enabled to switch on the data path. Received BERT data is stored in the FIFO but it needs not to be read out. Received BERT data is collected from all FIFOs which have $V_BERT_EN = '1'$ in the order of the FIFO processing sequence (see Section 3.2.3 on page 78).

Subchannel processing can be used together with the *Bit Error Rate Test*. Then V_BIT_CNT bits taken passed to the BERT receiver.

Inverted BERT data is automatically detected and can be checked with V_BERT_INV_DATA in register R_BERT_STA.

The automatic synchronization works only if the bit error rate is less than $4 \cdot 10^{-2}$. Synchronization state will not be achieved with a higher error rate. It is lost when many bit errors occur during a short time period. In this case, the re-synchronization starts automatically and a high bit error counter value indicates that a re-synchronization might has happened.

June 2012 Data Sheet 283 of 367

8.4 Register description

8.4.1 Write only registers

R_	_BERT_W	D_MD	(v	(Reset group: H, 0) 0x1B
Bi	t error rat	te test (BE	ERT) and watchdog mode	
	Bits	Reset value	Name	Description
	20	0	V_PAT_SEQ	Continuous '0' / '1' or pseudo random pattern sequence for BERT '000' = continuous '0' pattern '001' = continuous '1' pattern '010' = sequence length $2^9 - 1$ bits '011' = sequence length $2^{10} - 1$ bits '100' = sequence length $2^{15} - 1$ bits '101' = sequence length $2^{20} - 1$ bits '101' = sequence length $2^{20} - 1$ bits '110' = sequence length $2^{20} - 1$ bits, but maximal 14 bits are zero '111' = pseudo random pattern seq. $2^{23} - 1$ Note: These sequences are defined in ITU-T O.150 and O.151 specifications.
	3	0	V_BERT_ERR	BERT error Generates one error bit in the BERT data stream '0' = no error generation '1' = generates one error bit This bit is automatically cleared.
	4	0	(reserved)	Must be '0'.
	5	0	V_AUTO_WD_RES	Automatic watchdog timer reset '0' = watchdog is only reset by V_WD_RES '1' = watchdog is reset after every access to the chip
	6	0	V_WD_EN	Watchdog timer enable '0' = watchdog timer is disabled '1' = watchdog timer is enabled
	7	0	V_WD_RES	Watchdog timer reset '0' = no action '1' = manual watchdog timer reset This bit is automatically cleared.

BERT

8.4.2 Read only registers

R.	_BERT_S	STA		(r)	(Reset group: H, 0, 1)	0x17
Bi	t error ra	ite test sta	itus			
	Bits	Reset value	Name		Description	
	20	0	V_RD_SYNC_SRC		Synchronization source selection Reports which line interface is used as synchronization source. Every line intereither in S/T or Up mode. The SYNC_be used as synchronization source, altered '000' = line interface 0 '001' = line interface 1 '010' = not used '011' = not used '100' = SYNC_I signal '101' '111' = not used	I signal can
	3		(reserved)			
	4	0	V_BERT_SYNC		BERT synchronization status '0' = BERT not synchronized to input data '1' = BERT synchronized to input data	lata
	5	0	V_BERT_INV_DATA		BERT data inversion '0' = BERT receives normal data '1' = BERT receives inverted data	
	76		(reserved)			

R.	R_BERT_ECL			(r)	(Reset group: H, 0, 1)	0x1A
B	ERT erro	r counter,	low byte			
	Bits	Reset value	Name	Γ	Description	
	70	0x00	V_BERT_ECL	T 0 N	Sits 70 of the BERT error counter this register should be read first to late fregister R_BERT_ECH. Note: The BERT counter is cleared after this register.	

R.	R_BERT_ECH			(r)	(Reset group: H, 0, 1) 0x	1B
B	ERT erro	or counter	, high byte			
	Bits	Reset value	Name		Description	
	70	0x00	V_BERT_ECH		Bits 158 of the BERT error counter Note: Low byte should be read first (see register R_BERT_ECL).	r

Chapter 9

Clock, PLL, reset, interrupt, timer and watchdog

Table 9.1: Overview of clock, PLL, reset, timer and watchdog registers

Write only registers:			Read only	Read only registers:			Read/write registers:		
Address	Name Page		Address	Name	Page	Address	Name	Page	
0x00	R_CIRM	305	0x10	R_IRQ_OVIEW	313	0x51	R_PLL_P	322	
0x02	R_CLK_CFG	307	0x11	R_MISC_IRQ	315	0x52	R_PLL_N	322	
0x11	R_MISC_IRQMSK	308	0x12	R_SU_IRQ	316	0x53	R_PLL_S	322	
0x12	R_SU_IRQMSK	309	0x1C	R_STATUS	317				
0x13	R_IRQ_CTRL	310	0x20	R_FIFO_BL0_IRQ	318				
0x1A	R_TI_WD	311	0x21	R_FIFO_BL1_IRQ	319				
0x50	R_PLL_CTRL	312	0x22	R_FIFO_BL2_IRQ	320				
			0x23	R_FIFO_BL3_IRQ	321				
			0x50	R_PLL_STA	321				

9.1 Clock

9.1.1 Clock output

XHFC-2SU supplies a programmable clock output which can be used for source of clocking for any external device. Even a CPU or MCU supervising the whole system in which XHFC-2SU is used can be clocked. The left part of Figure 9.1 shows the block diagram of CLK_OUT generation.

After reset, the clock output frequency

$$f(\mathsf{CLK_OUT}) = \frac{1}{8} f(\mathsf{OSC_OUT})$$

is available at pin CLK_OUT.

Two clock sources are available for f_{SRC} . V_CLK_F1 = '0' in register R_CLK_CFG selects the clock oscillator. Alternatively, pin F1_1 is used as clock source when V_CLK_F1 = '1'.

The clock output frequency depends on the programming bits as follows:

$$f(\mathsf{CLK_OUT}) = \left\{ \begin{array}{ll} f_{\mathsf{SRC}} & \text{;} & \mathsf{V_CLKO_HI} = \text{`1'} \text{ and } \mathsf{V_CLKO_PLL} = \text{`0'} \\ \frac{1}{8} f_{\mathsf{SRC}} & \text{;} & \mathsf{V_CLKO_HI} = \text{`0'} \text{ and } \mathsf{V_CLKO_PLL} = \text{`0'} \\ f_{\mathsf{out}} & \text{;} & \mathsf{V_CLKO_PLL} = \text{`1'} \end{array} \right.$$

V_CLKO_OFF must be '0' to enable the tristate type driver of pin CLK_OUT.

Please note!

All setup bits shown in Figure 9.1 are implemented in a way that there are no glitches on the clocks when register bits change.

9.1.2 Clock distribution

XHFC-2SU uses several internal clock frequencies. They are generated as shown in the right part of Figure 9.1.

The system clock $f_{\rm SYS}$ is derived either from the OSC_OUT clock or from the internal PLL output clock. When the oscillator frequency is either 24.576 MHz or 49.152 MHz, V_CLK_PLL should be left in its reset state '0'. With any other oscillator frequency the internal PLL must be used to generate the required XHFC-2SU clock $f_{\rm SYS}$ and V_CLK_PLL must be set to '1' in register R_CLK_CFG.

Both the line interface clock $f_{\rm SU}$ and the PCM clock $f_{\rm PCM}$ must be set up to achieve 12.288 MHz and 49.152 MHz respectively. This is done with bit V_SU_CLK in register R_CTRL and bitmap V_PCM_CLK in register R_CLK_CFG.

The internal clocks f_{SYS} , f_{SU} and f_{PCM} can be switched off with V_CLK_OFF = '1' in register R_CIRM. Any write access to the host processor interface or a high level at pin WAKEUP restarts the clock distribution.

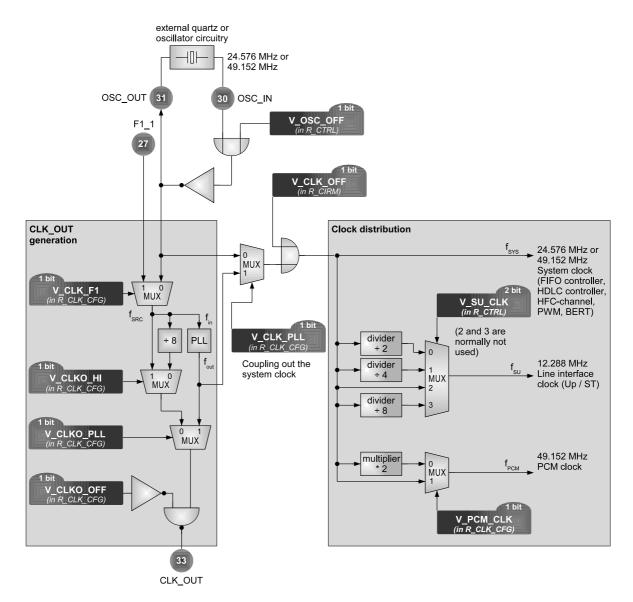


Figure 9.1: CLK_OUT generation and clock distribution

Please note!

The timing specification of the processor interface is based on $t_{SYS} = 1/f_{SYS}$. This must be taken into account if a lower oscillator frequency is used.

Before the PLL is programmed and has reached its locked state, the host processor might wait beween XHFC-2SU accesses.

9.1.3 Clock oscillator circuitry

There are different ways to provide the internal clocks of XHFC-2SU. This section describes the Pierce oscillator circuitry, gives a hint to 3rd overtone oscillator and the usage of crystal oscillator circuitries.

9.1.3.1 Frequency accuracy

ISDN applications need an exact clock frequency. By the ISDN specification a precision of ± 100 ppm is minimum requirement for passing the ISDN type approval. In respect to temperature dependence and ageing behavior a crystal with ± 50 ppm is recommended.

9.1.3.2 Pierce oscillator

A typical clock oscillator circuitry using a 24.576 MHz crystal is shown in Figure 9.2. This Pierce oscillator is very popular for clock generation and is widely known from literature.

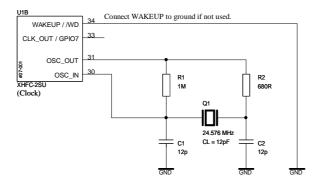


Figure 9.2: Standard XHFC-2SU quartz circuitry

The feedback resistor R1 determines the DC operation point and is typically in the range $100 \, k\Omega ... 10 \, M\Omega$ for CMOS inverters.

The capacitive load C_L of the crystal is given in its data sheet. C1 and C2 should be chosen to fulfill

$$C_{\rm L} = \frac{\text{C1} \cdot \text{C2}}{\text{C1} + \text{C2}} + C_{\rm S}$$

where C_S is the stray capacitance. It is given by the input and output capacitances of the inverter and the shunt capacitance between the crystal terminals. Typically, C1 and C2 are chosen to be equal.

Finally, the resistor R2 is chosen to be roughly equal to the capacitive reactance of C2 at the frequency of oscillation.

$$\mathsf{R2} \sim \frac{1}{2\pi f_{\mathsf{Q1}} \cdot \mathsf{C2}}$$

The minimum value of R2 depends on the recommended power consumption of the crystal. A too small value may damage the crystal or shorten the lifetime. When R2 is too large, the oscillation might not start. As XHFC-2SU has a bufffered inverter between pins OSC_IN and OSC_OUT the value of R2 can be increased. A factor of about 2..3, e.g., is well.

The circuitry shown in Figure 9.2 is based on a crystal with $C_L = 12\,\mathrm{pF}$ and a stray capacitance of $C_S = 6\,\mathrm{pF}$. This leads to

$$C1 = C2 = 2 \cdot (C_L - C_S) = 12 \,\mathrm{pF}$$

and

$$R2 = (1..3) \cdot \frac{1}{2\pi f_{\Omega 1} \cdot G2} = (1..3) \cdot 540\Omega \sim 680\Omega$$
.

Please note!

The here shown dimensioning of the oscillator circuitry is only an example and depends on the used crystal as well as on the particular board design. In general it is recommanded to check oscillation build-up, power consumption of the crystal and the so-called safety factor within the particular design.

The specified drive level should not be put to the extreme to avoid early crystal ageing. Typically, within a good dimensioned circuitry, a low load capacitance C_L is a condition for a low drive level.

9.1.3.3 3rd overtone oscillator

A different oscillator frequency with double frequency 49.152 MHz can be used alternatively. For this a 3rd overtone crystal or a clock oscillator can be used.

9.1.3.4 Crystal oscillator circuitry

It is possible to feed the OSC_IN input of XHFC-2SU with a standard 3.3 V crystal oscillator. The input switching level is close to $V_{\rm DD}/2$ (CMOS level) and XHFC-2SU can accept at least a duty cycle of 45% high/55% low to 55% high/45% low.

9.1.3.5 Several XHFC-2SU with a single oscillator circuitry

When several XHFC-2SU are used within an application, only one oscillator circuitry is required. Pin CLK_OUT can be used to distribute the clock to all XHFC-2SU as shown in Figure 9.3.

R_CLK_CFG: V_CLK_F1 = 0 oscillator input OSC_IN is used : V_CLKO_HI = 1 high frequency, no divider : V_CLKO_PLL = 0 divider output clock or PLL input clock is used : V_CLKO_OFF = 0 clock output pin CLK_OUT is enabled

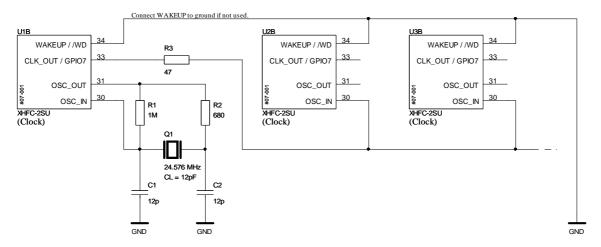


Figure 9.3: Clock distribution with only one quartz circuitry

9.2 Phase locked loop (PLL)

9.2.1 Overview

Depending on the external clock source connected to pin OSC_IN, the internal PLL shown in Figure 9.1 is either required for internal clock generation or it is available for other application needs.

- When a telecommunication quartz with either 24.576 MHz or 49.152 MHz is used, the PLL is not required for f_{SYS} generation. In this case, the PLL is not occupied from XHFC-2SU and it can be used for any other application needs.
- When any other clock frequency is feed in pin OSC_IN, the PLL is required for f_{SYS} generation. f_{SU} and f_{PCM} are derived from f_{SYS} as shown in Figure 9.1.

The internal PLL is a fully digital implementation even though it is commonly seen to be an analog function. This is realized with the new DIGICCTM technology introduced by Cologne Chip 1 .

Technical features:

- Oscillator frequency range 54MHz $\leq f_{\rm OSC} \leq 108$ MHz
- Programmable loop multiplication 5 < N < 255
- Programmable predivider P and post-scaler S with range 1..256 each
- Deterministic clock-to-clock jitter typical 120 ps
- f_{out} duty cycle 40% ... 60%
- No external loop filter or capacity needed
- Very short lock time (worst case 2000 periods of $f_{\rm ref}$)

9.2.2 PLL structure

The PLL consists of a predivider, the PLL circuitry and a post-scaler. This structure is shown in Figure 9.4.

The PLL loop with input frequency f_{ref} and output frequency f_{PLL} has the ratio

$$\frac{f_{\rm PLL}}{f_{\rm ref}} = N$$

with $N = V_PLL_N = 5...255$ (0...4 are not allowed).

The overall frequency ratio

$$\frac{f_{\text{out}}}{f_{\text{in}}} = \frac{N}{P \cdot S}$$

can be adjusted with the predivider and the post-scaler. Both dividers operate in the range 1..256.

¹Detailed information about the DIGICGTM technology and the here used PLL is documented in [1, 2]. It is *not necessary to read these documents* in order to understand this data sheet.

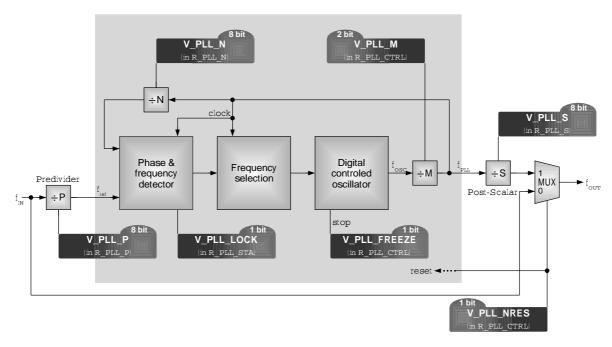


Figure 9.4: PLL block diagram

An additional divider with $M = V_PLL_M + 1 = 1..4$ has effect only inside the PLL circuitry. As the PLL output frequency f_{PLL} is used for internal PLL clock signal, the power consumption can be reduced with lower

 $f_{\rm PLL} = \frac{f_{\rm osc}}{M}$

frequency.

9.2.3 PLL operation

The PLL is disabled after reset and the input frequency f_{in} is directly feed to the output, i.e. $f_{out} = f_{in}$. A '0' to '1' transition of bit V_PLL_NRES in register R_PLL_CTRL starts the PLL beginning with the lowest oscillator frequency. V_PLL_LOCK is '1' when the PLL is locked.

The PLL can be switched into standby mode without loss of current settings with V_PLL_FREEZE = '1' in register R_PLL_CTRL. Then $f_{\text{out}} = 0$ until V_PLL_NRES returns to '0' again. Re-activation takes only few f_{ref} periods. V_PLL_LOCK returns '0' in standby mode.

9.2.4 Supply noise requirements for PLL locking

It is very important to consider that power supply noise of XHFC-2SU has strong influence on the PLL locking. Therefore, if the PLL's output clock needs high accuracy, power supply noise of XHFC-2SU must be very low. Typically it is recommended, that supply noise does not exceeds 10 mV peak-to-peak in this case.

If the PLL output frequency is used to clock devices with low frequency accuracy requirements, power noise does not matter because the long term frequency deviation is always less than 100 ppm. This means, PLL jitter might be poor, but the PLL output frequency is accurate, of course.

Please see electrical characteristics in chapter 11 for more details.

9.2.5 PLL configuration

The PLL has four parameters P, M, N and S to be specified. Tables 9.2 and 9.3 show examples for PLL configuration settings. The parameter tuple (P,M,N,S) is given for often used frequencies. Approximate solutions have additional information about the f_{out} offset in parts per million and absolute value.

If other parameter sets are required, they can be calculated with the formulars given in section 9.2.2. Alternatively, the Cologne Chip support team will help you choosing suitable parameter sets for your application.

Please note!

The ISDN specification provides a clock precision of at least ± 100 ppm. PLL output offset must be added to the crystal precision. This must be taken into account when a PLL configuration setup is chosen from the examples in Tables 9.2 and 9.3.

Table 9.2: PLL setup examples (P, M, N, S) with ISDN related frequencies for \mathbf{f}_{out} , (approximations have additional information about f_{out} offset)

f _{in} (MHz)	f _{out} (MHz) 7.68	12.288	24.576	49.152
1.8432	(1,2,25,6)	(1,2,20,3)	(1,1,40,3)	(3,2,80,1)
	exact	exact	exact	exact
3.579545	(5,1,118,11)	(37,4,254,2)	(37,4,254,1)	(15,2,206,1)
	-33 ppm, -249 Hz	-119 ppm, -1454 Hz	-119 ppm, -2908 Hz	+145 ppm , +7085 Hz
6	(5,2,32,5)	(13,1,213,8)	(13,1,213,4)	(13, 1, 213, 2)
	exact	+38 ppm , +462 Hz	+38 ppm, +924 Hz	+38 ppm, +1847 Hz
7.68	(1,2,5,5)	(1,1,8,5)	(5,4,16,1)	(5,2,32,1)
	exact	exact	exact	exact
10.7	(41,2,206,7)	(31,1,178,5)	(16,1,147,4)	(16, 1, 147, 2)
	+19 ppm , +140 Hz	-22 ppm , -259 Hz	+23 ppm , +563 Hz	+23 ppm, +1125 Hz
12	(5,2,16,5)	(25,1,128,5)	(26,1,213,4)	(26, 1, 213, 2)
	exact	exact	+38 ppm , +924 Hz	+38 ppm, +1847 Hz
12.288	(1,1,5,8)	(1,1,5,5)	(1,1,6,3)	(1,1,8,2)
	exact	exact	exact	exact
14.31818	(53,2,199,7)	(67,4,115,2)	(67,4,115,1)	(67,2,230,1)
	+14 ppm , +102 Hz	-1 ppm , -10 Hz	-1 ppm , -20 Hz	-1 ppm , -39 Hz
16	(5,2,12,5)	(25,1,96,5)	(125,4,192,1)	(83,2,255,1)
	exact	exact	exact	+95 ppm , +4627 Hz
24.576	(2,1,5,8)	(2,1,5,5)	(2,1,6,3)	(2,1,8,2)
	exact	exact	exact	exact
25	(125,2,192,5)	(59,4,58,2)	(59,4,58,1)	(59,2,116,1)
	exact	+12 ppm , +136 Hz	+12 ppm , + 272 Hz	+12 ppm , +543 Hz
32.768	(8,1,15,8)	(2,1,6,8)	(2,1,6,4)	(2,1,6,2)
	exact	exact	exact	exact
33	(25,1,64,11)	(61, 1, 159, 7)	(111,1,248,3)	(143,2,213,1)
	exact	+5 ppm , + 57 Hz	+24 ppm , +577 Hz	+38 ppm , +1847 Hz
48	(5,1,8,10)	(25,1,32,5)	(125,4,64,1)	(125,2,128,1)
	exact	exact	exact	exact
49.152	(4,1,5,8)	(3,1,6,8)	(3,1,6,4)	(3,1,6,2)
	exact	exact	exact	exact
66	(25,1,32,11)	(122,1,159,7)	(205,1,229,3)	(143,1,213,2)
	exact	+5 ppm , +57 Hz	-16 ppm , -391 Hz	+38 ppm, +1847 Hz

Table 9.3: PLL setup examples (P, M, N, S) with ISDN related frequencies for \mathbf{f}_{in} , (approximations have additional information about f_{out} offset)

e (MIII-)	f _{in} (MHz)	12 200	24.577	40 152
Cout (MHz)	7.68	12.288	24.576	49.152
1.8432	(1,2,6,25)	(1, 1, 6, 40)	(2,1,6,40)	(4, 1, 6, 40)
	exact	exact	exact	exact
3.579545	(59, 4, 110, 4)	(10, 1, 67, 23)	(20, 1, 67, 23)	(40, 1, 67, 23)
	+33 ppm , +117 Hz	+1 ppm , +3 Hz	+1 ppm , +3 Hz	+1 ppm , +3 Hz
6	(2, 1, 25, 16)	(16, 1, 125, 16)	(32, 1, 125, 16)	(64, 1, 125, 16)
	exact	exact	exact	exact
7.68	(1,2,5,5)	(1,1,5,8)	(2,1,5,8)	(4,1,5,8)
7,00	exact	exact	exact	exact
10.7	(89,4,248,2)	(89,4,155,2)	(89,2,155,4)	(89, 1, 155, 8)
10.7	+22 ppm, +225 Hz	+22 ppm, +225 Hz	+22 ppm, +225 Hz	+22 ppm, +225 Hz
12	(2,1,25,8)	(16,1,125,8)	(32,1,125,8)	(64, 1, 125, 8)
12	(2,1,23,8) exact	(10, 1, 123, 8) exact	(32, 1, 123, 8) exact	(04, 1, 123, 8) exact
12.288	(1 1 0 5)	(1.1.5.5)	(2.1.5.5)	(2.1.6.9)
12,200	(1,1,8,5) exact	(1,1,5,5) exact	(2,1,5,5) exact	(3,1,6,8) exact
1121010	(50.4.110.1)	(22.1.124.5)	(22.1.67.5)	(46.1.67.5)
14.31818	(59,4,110,1) +33 ppm, +465 Hz	(23, 1, 134, 5) +1 ppm, +12 Hz	(23,1,67,5) + 1 ppm , +12 Hz	(46, 1, 67, 5) +1 ppm, +12 Hz
16	(2,1,25,6) exact	(16,1,125,6) exact	(32,1,125,6) exact	(64, 1, 125, 6) exact
24.576	(5,4,16,1)	(1,1,6,3)	(2,1,6,3)	(3,1,6,4)
	exact	exact	exact	exact
25	(47,4,153,1)	(29,4,59,1)	(29,2,59,2)	(29,1,59,4)
	+35 ppm , +852 Hz	-12 ppm , -276 Hz	-12 ppm , -276 Hz	-12 ppm , -276 Hz
32.768	(5,1,64,3)	(1,1,8,3)	(2,1,8,3)	(3,1,6,3)
	exact	exact	exact	exact
33	(37, 3, 159, 1)	(89, 3, 239, 1)	(89, 1, 239, 2)	(71, 1, 143, 3)
	+99 ppm , + 3244 Hz	-58 ppm , -1888 Hz	-58 ppm , -1888 Hz	-38 ppm , -1240 Hz
48	(2,1,25,2)	(16, 1, 125, 2)	(32, 1, 125, 2)	(64, 1, 125, 2)
	exact	exact	exact	exact
49.152	(5,2,32,1)	(1,1,8,2)	(2,1,8,2)	(3,1,6,2)
	exact	exact	exact	exact
66	(27, 1, 232, 1)	(35, 1, 188, 1)	(89, 1, 239, 1)	(178, 1, 239, 1)
00	-135 ppm, -8889 Hz	+63 ppm, +4115 Hz	-58 ppm, -3776 Hz	-58 ppm, -3776 Hz

9.3 Reset

XHFC-2SU has a level sensitive reset input at pin 15 with active low level. The pins MODE0 and MODE1 must already be stable during reset. The reset pulse must not be shorter than 10 ns.

After reset XHFC-2SU enters an initialization sequence. Its duration depends on the number of FIFOs and has a maximum length of $40 \,\mu s$ with $f_{SYS} = 24.576 \, MHz$. When the initialization process is finished, bit V_BUSY in register R_STATUS changes from '1' to '0'.

PCM initialization takes 149 μ s with $f_{PCM} = 49.152 \,\text{MHz}$. V_PCM_INIT in register R_STATUS has the value '1' during PCM reset phase. It changes to '0' when the PCM initialization has finished.

XHFC-2SU has 4 different software resets which means that the registers are assigned to so-called reset groups.

The FIFO registers, PCM registers and ST/U_p registers belong to reset groups 1..3 and can be reset independently with the bits of register R_CIRM which are listed in Table 9.4.

A global software reset puts all registers of reset group 0 back to their default value and implies reset groups 1..3 as well. It is very similar to the hardware reset, except a few registers which have only hardware reset (see register list from page 21).

The reset bits must be set and cleared by software.

A hardware reset implies all reset groups 0..3, of course.

Reset name Reset group Register bit **Description** Hardware reset Η Hardware reset initiated by /RES input pin. The hardware reset implies reset of all registers of reset groups 0..3 as well. Global Software reset 0 V_SRES The global software reset, which is similar to the hardware reset, restores the default values to the most registers. The global software reset implies reset of all registers of reset groups 1..3 as well. 1 HFC reset Reset for all FIFO registers of XHFC-2SU. V_HFC_RES PCM reset 2 V_PCM_RES Reset for all PCM registers of XHFC-2SU. 3 V_SU_RES Reset for all ST/U_p registers of XHFC-2SU. ST/U_p reset

Table 9.4: XHFC-2SU reset groups

Information about the allocation of the registers to the different reset groups can be found in the register list on pages 22 and 24. Some registers are allocated to more than one reset group, some have only hardware reset, and some have no default value at all.

9.4 Interrupt

9.4.1 Common features

XHFC-2SU is equipped with a maskable interrupt engine. A big variety of interrupt sources can be enabled and disabled. All interrupt events are reported on reading the interrupt status registers independently of masking the interrupts or not. Reading an interrupt status register resets the bits. Interrupt bits which are set during the read access are reported at the next read access of the interrupt status register.

Mask bits are used to enable or disable signal generation on the interrupt pin /INT. Every interrupt bit can be masked individually.

Pin 14 is the interrupt output line. After reset, all interrupts are disabled. The interrupt line must be enabled with V_GLOB_IRQ_EN set to '1' in register R_IRQ_CTRL. The polarity of the interrupt signal can be changed from *active low* to *active high* with bitmap V_IRQ_POL in the same register. Please note, that the interrupt line cannot be shared with active high polarity.

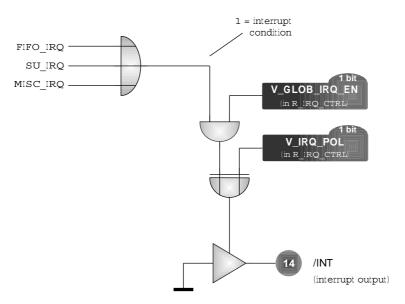
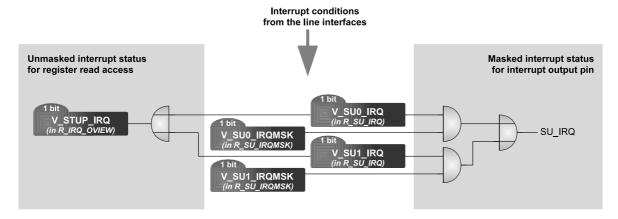


Figure 9.5: Interrupt output

9.4.2 ST/U_p interface interrupt


Every line interface can have its own interrupt capability to indicate a state change condition. The interrupt mask has to be programmed in register R_SU_IRQMSK.

When an ST/U_p interface interrupt occured, the corresponding line interface can be determined by reading register R_SU_IRQ. This register contains the state change condition even if the interrupts are disabled.

9.4.3 FIFO interrupt

FIFO interrupts can be enabled to indicate the status for every FIFO individually.

Figure 9.6: ST/U_p interface interrupt

The interrupt status of all 32 FIFOs can be read from registers R_FIFO_BL0_IRQ ...R_FIFO_BL3_IRQ. All FIFOs are organized in four blocks with 8 FIFOs each. Every block has an overview bit V_FIFO_BL0_IRQ ... V_FIFO_BL3_IRQ in register R_IRQ_OVIEW.

FIFO interrupt status bits in registers R_FIFO_BL0_IRQ..R_FIFO_BL3_IRQ are only set, when V_FIFO_IRQ_EN = '1' in register R_IRQ_CTRL as shown in Figure 9.7.

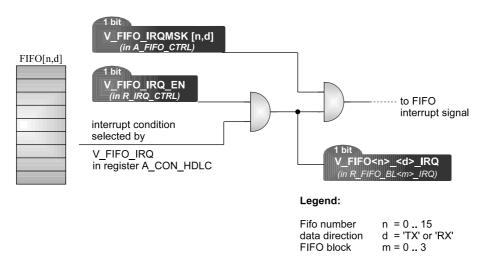


Figure 9.7: Enable FIFO interrupt condition with V_FIFO_IRQ_EN

- **FIFO in transparent mode** (V_HDLC_TRP = '1'): An interrupt occurs due to the setting of V_FIFO_IRQ in register A_CON_HDLC.
- **HDLC mode without mixed interrupt mode** (V_HDLC_TRP = '0' and V_MIX_IRQ = '0'): An interrupt occurs at *end of frame* condition (which leads to a frame counter increment) or after a FIFO underrun condition.
- HDLC mode and mixed interrupt mode (V_HDLC_TRP = '0' and V_MIX_IRQ = '1'):

An interrupt occurs both at *end of frame* condition (which leads to a frame counter increment) or after a FIFO underrun condition and due to the setting of V_FIFO_IRQ in register A_CON_HDLC.

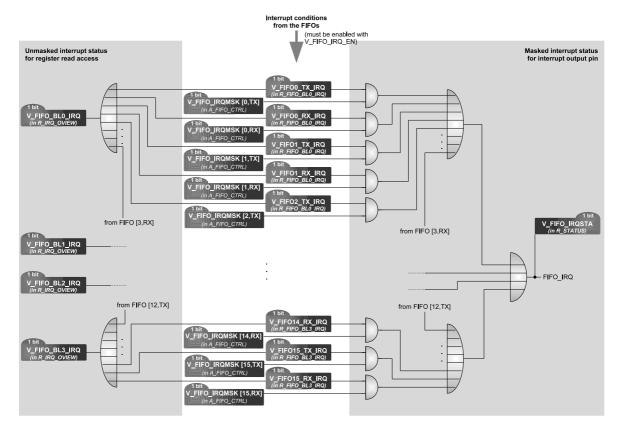


Figure 9.8: FIFO interrupt

9.4.4 Miscelleanous interrupts

Seven miscelleanous interrupts are available to report important XHFC-2SU status. Figure 9.9 shows the block diagram of these interrupt capabilities.

An overview bit V_MISC_IRQ can be read from register R_IRQ_OVIEW.

9.4.4.1 Line interface frequency slip interrupt

The frame synchronization signal can either be the F0IO or the AF0 signal as shown in Figure 5.16 on page 188. The actual selection of a line interface can be read from bit V_SU_AF0 in register A_SU_STA or together for both line interfaces from register R_AF0_OVIEW. Any change of these selections causes an interrupt event when V_SLIP_IRQMSK in register R_MISC_IRQMSK is set to '1'.

The interrupt condition is shown in V_SLIP_IRQ of register R_MISC_IRQ even if the mask bit is not set.

It is recommended to store the R_AF0_OVIEW value by the application software to detect any frequency slips.

Data might be corrupted when a frequency slip occurs. This is explained in detail in section 5.4.2 from page 187.

An unused line interface might trigger interrupts because of the free running 8 kHz frame signal

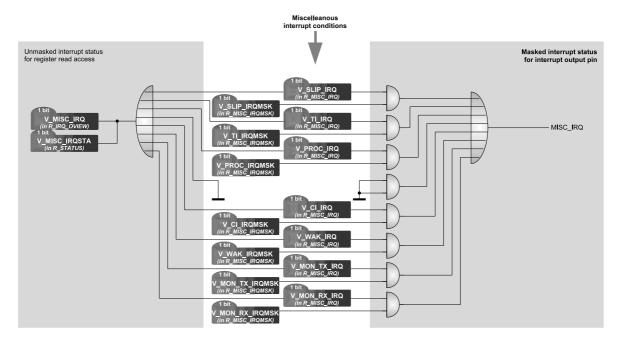


Figure 9.9: Miscelleanous interrupts

FSC_RX. These unwanted interrupt events can be avoided when the unused line interface is switched into NT mode with V_SU_MD = '1' in register A_SU_CTRL0. Moreover, V_SU_SYNC_NT must be in its default state '0' in register A_SU_CTRL2.

9.4.4.2 Timer interrupt

XHFC-2SU includes a timer with interrupt capability. The timer counts F0IO pulses, i.e. it is incremented every $125\,\mu s$.

A timer event is indicated with V_TI_IRQ = '1' in register R_MISC_IRQ. This event generates an interrupt if the mask bit V_TI_IRQMSK is set to '1' in register R_MISC_IRQMSK.

A timer event is generated every $2^{V_EV_TS} \cdot 250 \,\mu s$ where $V_EV_TS = 0..15$ in register R_TI_WD. 16 timer event frequencies are available in the range $250 \,\mu s ... 8.192 \,s$.

9.4.4.3 Processing/non-processing interrupt

XHFC-2SU changes every $125\,\mu s$ from non-processing into processing state. When it returns to non-processing state, this event can be reported with an interrupt.

Bit V_PROC_IRQMSK in register R_MISC_IRQMSK must be set to '1' to enable this interrupt capability. In case of an interrupt, bit V_PROC_IRQ in register R_MISC_IRQ has the value '1'.

This interrupt occurs once in every 125 µs cycle but the distance between two consecutive interrupts changes due to the load of the internal processing machine.

9.4.4.4 Command/indication interrupt (GCI interface)

This interrupt occurs when the received indication bits of the C/I-channel have changed.

9.4.4.5 Wakeup interrupt

The wakeup pin can be enabled with V_WAK_EN = '1' in register R_PWM_MD as shown in Figure 9.10. A high level is stored in V_WAK_IRQ of register R_MISC_IRQ. This bit generates an interrupt if the mask bit V_WAK_IRQMSK = '1' in register R_MISC_IRQMSK.

The wakeup pin can also be used as common external interrupt input, or as general purpose input configurable with or without interrupt capability.

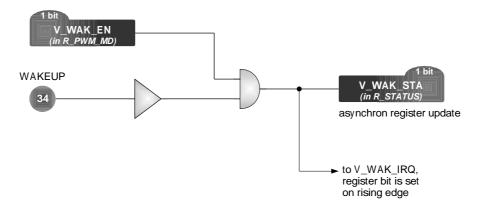


Figure 9.10: Wakeup interrupt

9.4.4.6 Interrupt for GCI monitor byte transmission

The interrupt bit V_MON_TX_IRQ in register R_MISC_IRQ is set to '1' when the next monitor byte can be written into register R_MON_TX.

The interrupt status is reported in V_MON_TX_IRQ of register R_MISC_IRQ even when the mask bit V_MON_TX_IRQMSK in register R_MISC_IRQMSK is not set.

9.4.4.7 Interrupt after GCI monitor byte received

After a monitor byte has been received and stored in register R_MON_RX, an interrupt can be generated.

The interrupt status is reported in V_MON_RX_IRQ of register R_MISC_IRQ even when the mask bit V_MON_RX_IRQMSK in register R_MISC_IRQMSK is not set.

9.5 Watchdog reset

The parallel processor interface of XHFC-2SU includes a watchdog functionality.

A watchdog event generates a low signal at pin /WD. The watchdog timer can either be reset manually or automatically.

- Manual watchdog reset is selected with V_AUTO_WD_RES = '0' in register R_BERT_WD_MD. Then, writing V_WD_RES = '1' in register R_BERT_WD_MD resets the watchdog timer. This bit is automatically cleared afterwards.
- V_AUTO_WD_RES = '1' must be set to switch on the automatically watchdog reset. In this case every access to the chip clears the watchdog timer.

The watchdog counter is incremented every 2 ms. An event occurs after $2^{V_WD_TS} \cdot 2$ ms where $V_WD_TS = 0..15$ in register R_TI_WD. This leads to a watchdog event frequency from 2 ms to 65 536 s.

9.6 Register description

9.6.1 Write only registers

R_	CIRM			(w) (Reset group: H) 0x00			
In	Interrupt and reset register						
	l reset bi pending.		egister must be cleared	by software. It is not allowed to write any register while reset			
	Bits	Reset value	Name	Description			
	0	0	V_CLK_OFF	Global clock enable/disable '0' = all internal clocks (f_{SYS} , f_{SU} and f_{PCM}) are enabled '1' = all internal clocks are disabled This bit is reset at every write access to XHFC-2SU or with a wake-up signal on pin WAKEUP.			
	1	0	V_WAIT_PROC	Additional /WAIT signal after write access The wait signal gets low with every access to a register when a preceding write access is internally not yet completed. '0' = normal /WAIT signal '1' = additional /WAIT signal This bit should be set if timing problems occur with fast processors.			
	2	0	V_WAIT_REG	Additional /WAIT signal during internal busy phase The wait signal gets low with every access to a register if a preceding change FIFO, increment FIFO or reset FIFO operation has activated an internal busy phase. '0' = normal /WAIT signal '1' = additional /WAIT signal during busy phase This bit can be set when busy polling (wait until not busy) is not used by the software.			
	3	0	V_SRES	Global software reset (reset group 0) This reset sets alls registers of reset group 0 to their default value. It includes also the reset of all registers of reset groups 13. The selected I/O address (CIP) remains unchanged. The reset is active until the bit is cleared. '0' = deactivate reset '1' = activate reset			

(continued on next page)

(continued from previous page)

Bits	Reset value	Name	Description
4	0	V_HFC_RES	HFC reset (reset group 1) Sets all FIFO and HDLC registers to their initial values. The reset is active until the bit is cleared. '0' = deactivate reset '1' = activate reset
5	0	V_PCM_RES	PCM reset (reset group 2) Sets all PCM registers to their initial values. The reset is active until the bit is cleared. '0' = deactivate reset '1' = activate reset
6	0	V_SU_RES	Line interface reset (reset group 3) Sets all registers of both line interfaces to their initial values. The reset is active until the bit is cleared. '0' = deactivate reset '1' = activate reset
7	0	(reserved)	Must be '0'.

R_	$\textbf{R_CLK_CFG} \hspace{1cm} (w) \hspace{1cm} (\text{Reset group: H})$					
Cl	ock confi	guration 1	register			
	Bits	Reset value	Name	Description		
	0	0	V_CLK_PLL	Clock source selection '0' = CLK_OUT clock is derived from oscillator input OSC_IN '1' = CLK_OUT clock is derived from PLL output		
	1	0	V_CLKO_HI	High/low frequency selection for clock output When CLK_OUT clock is derived from oscillator input OSC_IN or F1_1 alternatively, the signal can either directly be passed to the CLK_OUT pin (high frequency) or the frequency can be divided by 8 (low frequency). '0' = low frequency, divider by 8 '1' = high frequency, no divider		
	2	0	V_CLKO_PLL	Source selection for clock output '0' = either OSC_IN or F1_1 signal is passed to CLK_OUT '1' = PLL output clock is passed to CLK_OUT		
	43	0	(reserved)	Must be '00'.		
	5	0	V_PCM_CLK	Clock of the PCM module '0' = $f_{PCM} = 2 \cdot f_{SYS}$ '1' = $f_{PCM} = f_{SYS}$ PCM clock must be set up to 49.152 MHz.		
	6	0	V_CLKO_OFF	Clock output enable / disable '0' = clock output pin CLK_OUT is enabled '1' = clock output pin CLK_OUT is disabled (tristate)		
	7	0	V_CLK_F1	Pin selection for PLL input frequency The selected pin is used for PLL input frequency as well as for CLK_OUT signal. '0' = oscillator input OSC_IN is used '1' = F1_1 input pin is used		

R_MISC_IRQMSK	(w)	(Reset group: H)	0x11

Miscellaneous interrupt mask register

Any miscellaneous interrupt can be enabled with bit value '1' individually.

'0' means that the interrupt is not used for generating a signal on the interrupt pin 14. The interrupt status can be read from register R_MISC_IRQ nevertheless.

Bits	Reset value	Name	Description
0	0	V_SLIP_IRQMSK	Interrupt mask of the line interface frequency slip
1	0	V_TI_IRQMSK	Timer interrupt mask
2	0	V_PROC_IRQMSK	Processing/non-processing transition interrupt mask (every 125 µs)
3	0	(reserved)	Must be '0'.
4	0	V_CI_IRQMSK	Command/indication interrupt mask
5	0	V_WAK_IRQMSK	Wakeup interrupt mask
6	0	V_MON_TX_IRQMSK	Transmit monitor byte interrupt mask
7	0	V_MON_RX_IRQMSK	Receive monitor byte interrupt mask

R_SU_IRQMSK	(w)	(Reset group: H, 0, 3)	0x12

State change interrupt mask register of the line interfaces

The line interface interrupt can be enabled with bit value '1' for every interface individually. '0' means that the interrupt is not used for generating a signal on the interrupt pin 14. The interrupt status can be read from register R_SU_IRQ nevertheless.

Bits	Reset value	Name	Description
0	0	V_SU0_IRQMSK	Interrupt mask of line interface 0 '1' = V_SU0_IRQ in register R_SU_IRQ is used for interrupt generation
1	0	V_SU1_IRQMSK	Interrupt mask of line interface 1 '1' = V_SU1_IRQ in register R_SU_IRQ is used for interrupt generation
72	0	(reserved)	Must be '00 0000'.

R.	_IRQ_CT	RL		(w)	(Reset group: H, 0)	0x13
In	terrupt (control reg	gister			
	Bits	Reset value	Name	Des	cription	
	0	0	V_FIFO_IRQ_EN	'0' = '1' = Not capa inte V_F	O interrupt all FIFO interrupts disabled all FIFO interrupts enabled e: This bit enables or disables the inability of all FIFOs together. Each interrupt can be masked individually were represented in the register of the register of the register of the register.	FIFO
	21	0	(reserved)	Mus	st be '00'.	
	3	0	V_GLOB_IRQ_EN	The '0' =	bal interrupt signal enable interrupt line is pin 14. disable enable	
	4	0	V_IRQ_POL	'0' =	arity of interrupt signal active low signal active high signal	
	75	0	(reserved)	Mus	st be '000'.	

R_TI_WD			(w) (Reset group: H, 0)	0x1A
Timer and v	watchdog	control register		
Bits	Reset value	Name	Description	
30	0	V_EV_TS	Timer event after $2^n \cdot 250 \mu\text{s}$ $0 = 250 \mu\text{s}$ $1 = 500 \mu\text{s}$ 2 = 1 ms 3 = 2 ms 4 = 4 ms 5 = 8 ms 6 = 16 ms 7 = 32 ms 8 = 64 ms 9 = 128 ms $0 \times A = 256 \text{ms}$ $0 \times B = 512 \text{ms}$ $0 \times C = 1.024 \text{s}$ $0 \times C = 2.048 \text{s}$ $0 \times C = 4.096 \text{s}$ $0 \times C = 8.192 \text{s}$	
74	0	V_WD_TS	Watchdog event after $2^n \cdot 2 \text{ ms}$ 0 = 2 ms 1 = 4 ms 2 = 8 ms 3 = 16 ms 4 = 32 ms 5 = 64 ms 6 = 128 ms 7 = 256 ms 8 = 512 ms 9 = 1.024 s 0xA = 2.048 s 0xB = 4.096 s 0xC = 8.192 s 0xE = 32.768 s 0xF = 65.536 s	

R_	R_PLL_CTRL			(w)	(Reset group: H)	0x50
PI	LL contro	ol register				
	Bits	Reset value	Name	Desci	ription	
	0	0	V_PLL_NRES	'0' = I to PL '1' = I	reset (active low) PLL reset, PLL disabled, input c L output PLL enabled, a '0' to '1' transition beginning with the lowest oscilla	n starts the
	1	0	V_PLL_TST	'0' = t	test input test state disabled, normal operatest state enabled	ion
	42	0	(reserved)	Must	be '000'.	
	5	0	V_PLL_FREEZE	'0' = r	standby mode normal PLL operation PLL is in standby mode, no outp	ut clock
	76	0	V_PLL_M	The o	lator divider programming values oscillator output signal is divided L_M+1.	

9.6.2 Read only registers

FIFO interrupt overview register

This register gives an overview of all XHFC-2SU interrupt conditions.

Every bit value '1' indicates that an interrupt has occured. Interrupt conditions are only used for generating a signal on the interrupt pin 14 if the belonging mask bit is set to '1'.

Reading this overview register does not clear any interrupt status bit.

Bits	Reset value	Name	Description
0	0	V_FIFO_BL0_IRQ	Interrupt overview of FIFO block 0 FIFO block 0 consists of transmit FIFOs 03 and receive FIFOs 03. The exact FIFO can be determined by reading register R_FIFO_BLO_IRQ. '0' = No FIFO interrupt occured '1' = At least one FIFO interrupt is pending.
1	0	V_FIFO_BL1_IRQ	Interrupt overview of FIFO block 1 FIFO block 1 consists of transmit FIFOs 47 and receive FIFOs 47. The exact FIFO can be determined by reading register R_FIFO_BL1_IRQ. '0' = No FIFO interrupt occured '1' = At least one FIFO interrupt is pending.
2	0	V_FIFO_BL2_IRQ	Interrupt overview of FIFO block 2 FIFO block 2 consists of transmit FIFOs 811 and receive FIFOs 811. The exact FIFO can be determined by reading register R_FIFO_BL2_IRQ. '0' = No FIFO interrupt occured '1' = At least one FIFO interrupt is pending.
3	0	V_FIFO_BL3_IRQ	Interrupt overview of FIFO block 3 FIFO block 3 consists of transmit FIFOs 1215 and receive FIFOs 1215. The exact FIFO can be determined by reading register R_FIFO_BL3_IRQ. '0' = No FIFO interrupt occured '1' = At least one FIFO interrupt is pending.

(continued on next page)

(continued from previous page)

Bits	Reset value	Name	Description
4	0	V_MISC_IRQ	Miscellaneous interrupt overview All miscellaneous interrupts of register R_MISC_IRQ are 'ored'. '0' = No miscellaneous interrupt occured '1' = At least one miscellaneous interrupt is pending. This bit has always the same value as V_MISC_IRQSTA in register R_STATUS. Reading register R_MISC_IRQ clears the miscellaneous interrupt bits.
5	0	V_STUP_IRQ	Line interface interrupt overview '0' = No line interface interrupt occured '1' = At least one line interface interrupt is pending. Reading register R_SU_IRQ clears the line interface interrupt bits.
76		(reserved)	

R_MISC_IRQ	(\mathbf{r})	(Reset group: H, 0, 1)	0x11
------------	----------------	------------------------	------

Miscellaneous interrupt status register

This register reports miscellaneous interrupt events. Reading this register clears the bits. These bits are not masked by register R_MISC_IRQMSK, i.e. they show interrupt conditions even if the interrupt is disabled.

Bits	Reset value	Name	Description
0	0	V_SLIP_IRQ	Interrupt status of the line interface frequency slip This interrupt occurs when the frame synchronization pulse of any line interface switches from F0IO to AF0 or reverse. The current FSC signal selection can be read from V_SU_AF0 in register A_SU_STA for the selected line interface or it can be read from the overview register R_AF0_OVIEW for both line interfaces. A change can happen from time to time if two TEs operate on slightly different frame synchronization clocks. Data might be destroyed in these cases.
1	0	V_TI_IRQ	Timer interrupt status '1' = timer elapsed
2	0	V_PROC_IRQ	Processing/non-processing transition interrupt status '1' = XHFC-2SU has changed from processing to non-processing phase (every 125 µs). Note: The current processing/non-processing status can be read from V_PROC in register R_STATUS.
3		(reserved)	
4	0	V_CI_IRQ	Command/indication interrupt status '1' = received indication bits changed
5	0	V_WAK_IRQ	Wakeup interrupt status '1' = a wakeup signal at pin WAKEUP occured
6	0	V_MON_TX_IRQ	Transmit monitor byte interrupt status '1' = the next monitor byte can be written
7	0	V_MON_RX_IRQ	Receive monitor byte interrupt status '1' = monitor byte received

R_SU_IRQ (r) (Reset group: H, 0) **0x12**

State change interrupt status register of the line interfaces

This register reports state changes of the line interfaces. Reading this register clears the bits. These bits are not masked by register R_SU_IRQMSK, i.e. they show state change conditions even if the interrupt is disabled.

Bits	Reset value	Name	Description
0	0	V_SU0_IRQ	Interrupt status of line interface 0 '1' = a state change occurred in line interface 0
1	0	V_SU1_IRQ	Interrupt status of line interface 1 '1' = a state change occured in line interface 1
72		(reserved)	

R_	R_STATUS (r) (Reset group: $H, 0, 3$)				0x1C	
Xŀ	IFC-2SU s	status reg	ister			
	Bits	Reset value	Name		Description	
	0		V_BUSY		BUSY/NOBUSY status '0' = XHFC-2SU is not busy, all accesses allowed '1' = XHFC-2SU is BUSY after initialisi reset, increment <i>F</i> -counter or change Fl	ng FIFO
	1		V_PROC		Processing/non-processing status '0' = XHFC-2SU has finished the process during the 125 µs cycle '1' = XHFC-2SU is in processing phase (125 µs cycle) Note: The processing/non-processing can be notified with an interrupt (see V_PROC_IRQ in register R_MISC_IRC	(once every
	2		(reserved)			
	3	0	V_LOST_STA		LOST error (frames have been lost) This means that XHFC-2SU did not produce that in 125 µs. So data may be corrupte Bit V_RES_LOST of register A_INC_I must be set to reset this bit.	d.
	4		V_PCM_INIT		PCM module initialization '0' = initialization sequence is finished '1' = initialization sequence is in progre hardware reset, global software reset or Note: The PCM clocks F0IO and C4IO ignored during initialization.	PCM reset)
	5		V_WAK_STA		Wakeup status This bit contains the current value of pin when V_WAK_EN = '1' in register R_F	
	6	0	V_MISC_IRQSTA		Miscellaneous interrupt overview All miscellaneous interrupts of register R_MISC_IRQ are 'ored'. '0' = No miscellaneous interrupt occure '1' = At least one miscellaneous interrup pending This bit has always the same value as V_MISC_IRQ in register R_IRQ_OVIE Reading register R_MISC_IRQ clears to miscellaneous interrupt bits.	ot is

(continued on next page)

(continued from previous page)

Bits	Reset value	Name	Description
7		V_FIFO_IRQSTA	Any FIFO interrupt All enabled FIFO interrupts in registers R_FIFO_BL0_IRQR_FIFO_BL3_IRQ are 'ored'. '0' = No FIFO interrupt is pending '1' = At least one FIFO interrupt is pending.

R_FIFO_BL0_IRQ	(\mathbf{r})	(Reset group: H, 0, 1)	0x20
----------------	----------------	------------------------	------

Interrupt status register for FIFO block 0

This register reports the interrupt status of FIFO block 0. A bit is set to '1' when an interrupt event occures.

Reading this register clears the bits. These bits are not masked by V_FIFO_IRQMSK in register A_FIFO_CTRL, i.e. they show the FIFO conditions even if the interrupt is disabled. But it is important to enable FIFO interrupts globally with $V_FIFO_IRQ_EN = '1'$ in register R_IRQ_CTRL .

The interrupt condition can be configured for every FIFO individually (see bitmap V_FIFO_IRQ in register V_FIFO_IRQ and bit V_MIX_IRQ in register V_MIX_IRQ).

Bits	Reset value	Name	Description
0	0	V_FIFO0_TX_IRQ	FIFO[0,TX] interrupt status
1	0	V_FIFO0_RX_IRQ	FIFO[0,RX] interrupt status
2	0	V_FIFO1_TX_IRQ	FIFO[1,TX] interrupt status
3	0	V_FIFO1_RX_IRQ	FIFO[1,RX] interrupt status
4	0	V_FIFO2_TX_IRQ	FIFO[2,TX] interrupt status
5	0	V_FIFO2_RX_IRQ	FIFO[2,RX] interrupt status
6	0	V_FIFO3_TX_IRQ	FIFO[3,TX] interrupt status
7	0	V_FIFO3_RX_IRQ	FIFO[3,RX] interrupt status

Interrupt status register for FIFO block 1

This register reports the interrupt status of FIFO block 1. A bit is set to '1' when an interrupt event occures.

Reading this register clears the bits. These bits are not masked by V_FIFO_IRQMSK in register A_FIFO_CTRL, i.e. they show the FIFO conditions even if the interrupt is disabled. But it is important to enable FIFO interrupts globally with V_FIFO_IRQ_EN = '1' in register R_IRQ_CTRL.

The interrupt condition can be configured for every FIFO individually (see bitmap V_FIFO_IRQ in register V_FIFO_IRQ and bit V_MIX_IRQ) in register V_MIX_IRQ).

Bits	Reset value	Name	Description
0	0	V_FIFO4_TX_IRQ	FIFO[4,TX] interrupt status
1	0	V_FIFO4_RX_IRQ	FIFO[4,RX] interrupt status
2	0	V_FIFO5_TX_IRQ	FIFO[5,TX] interrupt status
3	0	V_FIFO5_RX_IRQ	FIFO[5,RX] interrupt status
4	0	V_FIFO6_TX_IRQ	FIFO[6,TX] interrupt status
5	0	V_FIFO6_RX_IRQ	FIFO[6,RX] interrupt status
6	0	V_FIFO7_TX_IRQ	FIFO[7,TX] interrupt status
7	0	V_FIFO7_RX_IRQ	FIFO[7,RX] interrupt status

R_FIFO_BL2_IRQ	(r)	(Reset group: H, 0, 1)	0x22
11_1 11 0_BLL_111Q	(*)	(Reset group. 11, 0, 1)	OXE

Interrupt status register for FIFO block 2

This register reports the interrupt status of FIFO block 2. A bit is set to '1' when an interrupt event occures.

Reading this register clears the bits. These bits are not masked by V_FIFO_IRQMSK in register A_FIFO_CTRL, i.e. they show the FIFO conditions even if the interrupt is disabled. But it is important to enable FIFO interrupts globally with V_FIFO_IRQ_EN = '1' in register R_IRQ_CTRL.

The interrupt condition can be configured for every FIFO individually (see bitmap V_FIFO_IRQ in register V_FIFO_IRQ and bit V_MIX_IRQ in register V_MIX_IRQ).

Bits	Reset value	Name	Description
0	0	V_FIF08_TX_IRQ	FIFO[8,TX] interrupt status
1	0	V_FIFO8_RX_IRQ	FIFO[8,RX] interrupt status
2	0	V_FIFO9_TX_IRQ	FIFO[9,TX] interrupt status
3	0	V_FIFO9_RX_IRQ	FIFO[9,RX] interrupt status
4	0	V_FIFO10_TX_IRQ	FIFO[10,TX] interrupt status
5	0	V_FIFO10_RX_IRQ	FIFO[10,RX] interrupt status
6	0	V_FIFO11_TX_IRQ	FIFO[11,TX] interrupt status
7	0	V_FIFO11_RX_IRQ	FIFO[11,RX] interrupt status

R_FIFO_BL3_IRQ (r) (Reset group: H, 0, 1) **0x23**

Interrupt status register for FIFO block 3

This register reports the interrupt status of FIFO block 3. A bit is set to '1' when an interrupt event occures.

Reading this register clears the bits. These bits are not masked by V_FIFO_IRQMSK in register A_FIFO_CTRL, i.e. they show the FIFO conditions even if the interrupt is disabled. But it is important to enable FIFO interrupts globally with $V_FIFO_IRQ_EN = '1'$ in register R_IRQ_CTRL.

The interrupt condition can be configured for every FIFO individually (see bitmap V_FIFO_IRQ in register V_FIFO_IRQ and bit V_MIX_IRQ).

Bits	Reset value	Name	Description
0	0	V_FIFO12_TX_IRQ	FIFO[12,TX] interrupt status
1	0	V_FIFO12_RX_IRQ	FIFO[12,RX] interrupt status
2	0	V_FIFO13_TX_IRQ	FIFO[13,TX] interrupt status
3	0	V_FIFO13_RX_IRQ	FIFO[13,RX] interrupt status
4	0	V_FIFO14_TX_IRQ	FIFO[14,TX] interrupt status
5	0	V_FIFO14_RX_IRQ	FIFO[14,RX] interrupt status
6	0	V_FIFO15_TX_IRQ	FIFO[15,TX] interrupt status
7	0	V_FIFO15_RX_IRQ	FIFO[15,RX] interrupt status

R.	_PLL_ST	Ά		(r)	(Reset group: H)	0x50
Pl	LL status	register				
	Bits	Reset value	Name	Desc	ription	
	60		(reserved)			
	7	0	V_PLL_LOCK	'0' = 1	lock status PLL is unlocked or in standby mod PLL is locked	le
					· · · · · · · · · · · · · · · · · · ·	ie

9.6.3 Read/write registers

R.	_PLL_P			(r/w)	(Reset group: H)	0x51
PI	LL prediv	vider prog	ramming value			
	Bits	Reset value	Name	Desc	ription	
	70	0	V_PLL_P	The	livider programming value divisor of the predivider is V_PL ap value 0 has the meaning of 25	

(See Section 13 on page 343 for a fault description and workaround of an address decoding problem which concerns this register among others.)

R_	_PLL_N			(r/w)	(Reset group: H)	0x52
PI	LL loop f	actor				
	Bits	Reset value	Name	Descr	ription	
	70	0	V_PLL_N	The lo	factor programming value pop factor is V_PLL_N. 04 are not allowed.	

(See Section 13 on page 343 for a fault description and workaround of an address decoding problem which concerns this register among others.)

R.	_PLL_S			(r/w)	(Reset group: H)	0x53
PI	LL post-s	caler prog	gramming value			
	Bits	Reset value	Name	Desc	ription	
	70	0	V_PLL_S	The o	scaler programming value livisor of the post-scaler is V_Pl ap value 0 has the meaning of 25	

Chapter 10

General purpose I/O pins (GPIO)

Table 10.1: Overview of the XHFC-2SU general purpose I/O registers

Write only registers:			Read only registers:		
Address	Name	Page	Address	Name	Page
0x40	R_GPIO_OUT1	328	0x40	R_GPIO_IN1	335
0x42	R_GPIO_EN1	329	0x45	R_GPIO_IN2	335
0x44	R_GPIO_SEL_BL	329	0x48	R_GPIO_IN0	336
0x45	R_GPIO_OUT2	330			
0x47	R_GPIO_EN2	330			
0x48	R_GPIO_OUT0	331			
0x4A	R_GPIO_EN0	332			
0x4C	R_GPIO_SEL	333			

10.1 GPIO functionality

XHFC-2SU has up to 20 general purpose I/O (GPIO) pins. 12 pins are shared with the line interfaces and every unused ST/U_p interface makes six additional GPIO pins available. Eight further pins are shared with PCM, PWM and clock functions and are individually selectable as GPIO.

Every pin listed in Table 10.2 has three functions. A detailed GPIO block diagram is shown in Figure 10.1. For GPIO8, e.g., the following configurations are available:

• GPIO selection bit V_GPIO_SEL0 = '0' in register R_GPIO_SEL:

The line interface function (1st pin function) is selected for interface #0. GPIO8 output is disabled within a group of six pins (2nd pin functions GPIO8..GPIO11, GPIO16 and GPIO17 are not available).

• GPIO selection bit V_GPIO_SEL0 = '1' in register R_GPIO_SEL and GPIO enable bit V_GPIO_EN8 = '0' in register R_GPIO_EN1:

The line interface function (1st pin function) is disabled for interface #0. GPIO functionality is enabled for a group of six pins (2nd pin function). GPIO8 ouput is disabled, i.e. the output driver is tristated.

• GPIO selection bit V_GPIO_SEL0 = '1' in register R_GPIO_SEL and GPIO enable bit V_GPIO_EN8 = '1' in register R_GPIO_EN1:

The line interface function (1st pin function) is disabled for interface #0. GPIO functionality is enabled for a group of six pins (2nd pin function). GPIO8 ouput is enabled.

The GPIO input functionality is always enabled, i.e. registers R_GPIO_IN0 and R_GPIO_IN1 can always be read.

GPIO 0..7 are implemented in the same way with the exception that the selection bits in register R_GPIO_SEL switch only one pin from first to second function.

Unused GPIO pins should be configured as output ports. This sets the level of the input buffer – which is always active at the same pin – to a stable level and avoids floating input effect.

10.2 **GPIO** output voltage

As the output drivers of the ST/U_p interfaces are supplied from an external source, the GPIO output voltage of these pins is influenced by this external source as well.

Yet it is recommended to connect the VDD_SU0 and VDD_SU1 pins of unused ST/U_p interfaces to VDD .

For a few applications a GPIO output voltage different from VDD might be useful. In this case the external voltage must not exceed 3.6 V. Table 10.2 shows the allocation of power supply pins to the GPIO output drivers.

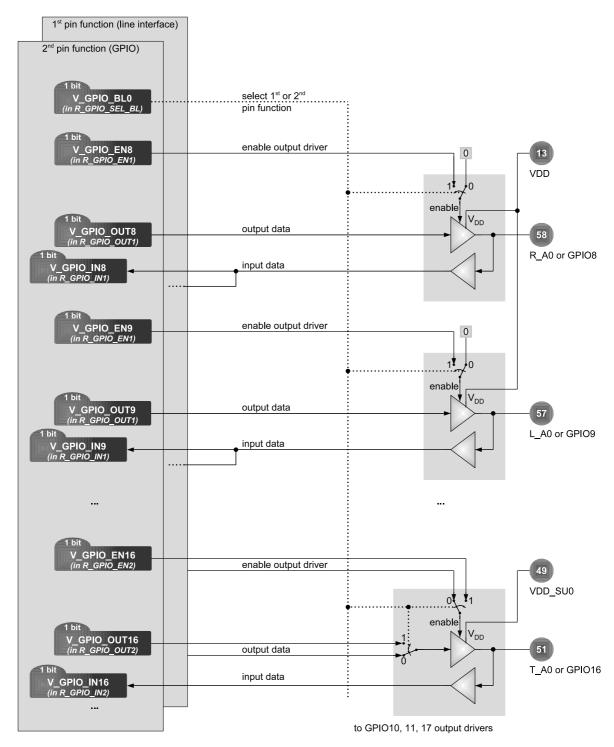


Figure 10.1: GPIO block diagram (GPIO8, GPIO9 and GPIO16 exemplarily)

Table 10.2: GPIO pins

Pin number	GPIO pin	GPIO byte	Shared with (1st function)	Output driver power supply
36	GPIO0	0	PWM0	VDD
35	GPIO1	0	PWM1	VDD
28	GPIO2	0	F1_0	VDD
27	GPIO3	0	F1_1	VDD
21	GPIO4	0	STIO1	VDD
22	GPIO5	0	STIO2	VDD
16	GPIO6	0	SYNC_O	VDD
33	GPIO7	0	CLK_OUT	VDD
58	GPIO8	1	R_A0	VDD
57	GPIO9	1	L_A0	VDD
56	GPIO10	1	L_B0	VDD
55	GPIO11	1	R_B0	VDD
42	GPIO12	1	R_B1	VDD
41	GPIO13	1	L_B1	VDD
40	GPIO14	1	L_A1	VDD
39	GPIO15	1	R_A1	VDD
51	GPIO16	2	T_A0	VDD_SU0
50	GPIO17	2	T_B0	VDD_SU0
47	GPIO18	2	T_B1	VDD_SU1
46	GPIO19	2	T_A1	VDD_SU1

10.3 Activation state F7/G3 signalling

Some GPIO outputs can alternatively be used to report the activation states F7 or G3. This function is typically used to drive LEDs directly from XHFC-2SU pins. Figure 10.2 shows exemplarily for GPIO0, how the activation state is linked up to the GPIO signal path.

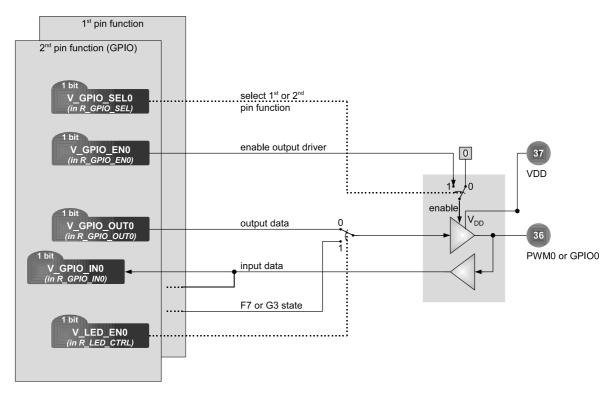


Figure 10.2: Activation state signalling exemplarily shown with GPIO0 (similar for GPIO1 . . GPIO5)

Table 10.3: State F7/G3 reporting

	V_LED_ROT in register R_SU_LED_CTRL				
Line interface	'00'	'01'	'10'	'11'	
0	GPIO0 and GPIO4	GPIO1 and GPIO5	GPIO2	GPIO3	
1	GPIO1 and GPIO5	GPIO2	GPIO3	GPIO0 and GPIO4	

The line activation state of each line interface numer 0 or 1 can be assigned to pins GPIO0..GPIO5 by a signal rotator/shifter.

GPIO port number = (line interface number + V_LED_ROT) mod 4

Additionally, GPIO4 can be used to report the activation state in parallel to GPIO0 and GPIO5 can be used to report the activation state in parallel to GPIO1.

Table 10.3 shows the assignment of GPIO port numbers 0..5 and line interface numbers 0..1.

10.4 Register description

10.4.1 Write only registers

R_	_GPIO_(OUT1		(w)	(Reset group: H, 0)	0x40
Gl	PIO out _l	put data bi	its 158			
	Bits	Reset value	Name	Des	cription	
	0	0	V_GPIO_OUT8	Out	tput data bit for pin GPIO8	
	1	0	V_GPIO_OUT9	Out	tput data bit for pin GPIO9	
	2	0	V_GPIO_OUT10	Out	tput data bit for pin GPIO10	
	3	0	V_GPIO_OUT11	Out	tput data bit for pin GPIO11	
	4	0	V_GPIO_OUT12	Out	tput data bit for pin GPIO12	
	5	0	V_GPIO_OUT13	Out	tput data bit for pin GPIO13	
	6	0	V_GPIO_OUT14	Out	tput data bit for pin GPIO14	
	7	0	V_GPIO_OUT15	Out	tput data bit for pin GPIO15	

R_GPIO_EN1 (w) (Reset group: H, 0) 0x42

GPIO output enable bits 15..8

Every bit value '1' enables the allocated output driver. If an output driver is disabled (bit value '0'), the pin is used for data input.

Bits	Reset value	Name	Description
0	0	V_GPIO_EN8	Output enable for pin GPIO8
1	0	V_GPIO_EN9	Output enable for pin GPIO9
2	0	V_GPIO_EN10	Output enable for pin GPIO10
3	0	V_GPIO_EN11	Output enable for pin GPIO11
4	0	V_GPIO_EN12	Output enable for pin GPIO12
5	0	V_GPIO_EN13	Output enable for pin GPIO13
6	0	V_GPIO_EN14	Output enable for pin GPIO14
7	0	V_GPIO_EN15	Output enable for pin GPIO15

R_GPIO_SEL_BL (w)	(Reset group: H, 0)	0x44
-------------------	---------------------	------

Selection register for GPIO block

12 GPIO pins are grouped in blocks with 6 GPIO functions each. These blocks use the line interfaces as first pin function alternatively.

This register controls only the output driver, whereas the input functionality needs no programming.

Bits	Reset value	Name	Description
0	0	V_GPIO_BL0	GPIO function on line interface no. 0 '0' = line interface no. 0 used (first pin function) '1' = GPIO8 GPIO11, GPIO16 and GPIO17 used (second pin function)
1	0	V_GPIO_BL1	GPIO function on line interface no. 1 '0' = line interface no. 1 used (first pin function) '1' = GPIO12 GPIO15, GPIO18 and GPIO19 used (second pin function)
72	0	(reserved)	Must be 0.

R.	R_GPIO_OUT2			(w)	(Reset group: H, 0)	0x45
G	PIO outp	out data bi	its 1916			
	Bits	Reset value	Name	Desc	cription	
	0	0	V_GPIO_OUT16	Out	put data bit for pin GPIO16	
	1	0	V_GPIO_OUT17	Out	put data bit for pin GPIO17	
	2	0	V_GPIO_OUT18	Out	put data bit for pin GPIO18	
	3	0	V_GPIO_OUT19	Out	put data bit for pin GPIO19	
	74	0	(reserved)	Mus	t be '0000'.	

GPIO output enable bits 19..16

Every bit value '1' enables the allocated output driver. If an output driver is disabled (bit value '0'), the pin is used for data input.

Bits	Reset value	Name	Description
0	0	V_GPIO_EN16	Output enable for pin GPIO16
1	0	V_GPIO_EN17	Output enable for pin GPIO17
2	0	V_GPIO_EN18	Output enable for pin GPIO18
3	0	V_GPIO_EN19	Output enable for pin GPIO19
74	0	(reserved)	Muste be '0000'.

R.	R_GPIO_OUT0			(w)	(Reset group: H, 0)	0x48
G	PIO outp	put data bi	its 70			
	Bits	Reset value	Name	Desc	cription	
	0	0	V_GPIO_OUT0	Out	put data bit for pin GPIO0	
	1	0	V_GPIO_OUT1	Out	put data bit for pin GPIO1	
	2	0	V_GPIO_OUT2	Out	put data bit for pin GPIO2	
	3	0	V_GPIO_OUT3	Out	put data bit for pin GPIO3	
	4	0	V_GPIO_OUT4	Out	put data bit for pin GPIO4	
	5	0	V_GPIO_OUT5	Out	put data bit for pin GPIO5	
	6	0	V_GPIO_OUT6	Out	put data bit for pin GPIO6	
	7	0	V_GPIO_OUT7	Out	put data bit for pin GPIO7	

(See Section 13 on page 343 for a fault description and workaround of an address decoding problem which concerns this register among others.)

R_GPIO_EN0 (w) (Reset group: H, 0) **0x4A**

GPIO output enable bits 7..0

Every bit value '1' enables the allocated output driver. If an output driver is disabled (bit value '0'), the pin is used for data input.

Bits	Reset value	Name	Description
0	0	V_GPIO_EN0	Output enable for pin GPIO0
1	0	V_GPIO_EN1	Output enable for pin GPIO1
2	0	V_GPIO_EN2	Output enable for pin GPIO2
3	0	V_GPIO_EN3	Output enable for pin GPIO3
4	0	V_GPIO_EN4	Output enable for pin GPIO4
5	0	V_GPIO_EN5	Output enable for pin GPIO5
6	0	V_GPIO_EN6	Output enable for pin GPIO6
7	0	V_GPIO_EN7	Output enable for pin GPIO7

R_	_GPIO_	SEL		(\mathbf{w}) (F	Reset group: H, 0)	0x4C
GI	PIO sele	ection regis	ter			
Th	is regist	er controls	only the output driver,	whereas the input func	ctionality needs no programi	ming.
	Bits	Reset value	Name	Description	n	
	0	0	V_GPIO_SEL0	'0' = PWM0	of first or second pin function (first pin function) (second pin function)	on
	1	0	V_GPIO_SEL1	'0' = PWM1	of first or second pin functi (first pin function) (second pin function)	on
	2	0	V_GPIO_SEL2	'0' = F1_0	of first or second pin functi (first pin function) 2 (second pin function)	on
	3	0	V_GPIO_SEL3	'0' = F1_1	of first or second pin functi (first pin function) 3 (second pin function)	ion
	4	0	V_GPIO_SEL4	'0' = STIO1	of first or second pin functi (first pin function) 4 (second pin function)	on
	5	0	V_GPIO_SEL5	'0' = STIO2	of first or second pin function? (first pin function) 5 (second pin function)	on
	6	0	V_GPIO_SEL6	'0' = SYNC	of first or second pin function O (first pin function) (second pin function)	ion
	7	0	V_GPIO_SEL7		of first or second pin function)	on

(See Section 13 on page 343 for a fault description and workaround of an address decoding problem which concerns this register among others.)

'1' = GPIO7 (second pin function)

R_SU_LED_CTRL (w) (Reset group: H, 0) **0x4D**

LED control register

This register can be used to indicate activated states F7 or G3 on two pins of GPIO0.. GPIO5. Activated state is indicated by high level. LEDs with series resistor can directly be connected to XHFC-2SU.

Bits	Reset value	Name	Description
0	0	V_LED_EN0	Enable LED output signal on pin GPIO0 '0' = normal GPIO function on pin GPIO0 '1' = activated state is indicated on pin GPIO0
1	0	V_LED_EN1	Enable LED output signal on pin GPIO1 '0' = normal GPIO function on pin GPIO1 '1' = activated state is indicated on pin GPIO1
2	0	V_LED_EN2	Enable LED output signal on pin GPIO2 '0' = normal GPIO function on pin GPIO2 '1' = activated state is indicated on pin GPIO2
3	0	V_LED_EN3	Enable LED output signal on pin GPIO3 '0' = normal GPIO function on pin GPIO3 '1' = activated state is indicated on pin GPIO3
4	0	V_LED_EN4	Enable LED output signal on pin GPIO4 '0' = normal GPIO function on pin GPIO4 '1' = activated state is indicated on pin GPIO4
5	0	V_LED_EN5	Enable LED output signal on pin GPIO5 '0' = normal GPIO function on pin GPIO5 '1' = activated state is indicated on pin GPIO5
76	0	V_LED_ROT	LED output rotator/shifter Activated state of the line interfaces can be assigned to pins GPIO0 GPIO5 via a signal rotator/shifter. When I_n is the line interface with number n : '00' = I_0 is assigned to GPIO0 and GPIO4, I_1 is assigned to GPIO1 and GPIO5, I_1 is assigned to GPIO2 '10' = I_0 is assigned to GPIO2, I_1 is assigned to GPIO3 '11' = I_0 is assigned to GPIO3, I_1 is assigned to GPIO3 OPIO3

(See Section 13 on page 343 for a fault description and workaround of an address decoding problem which concerns this register among others.)

10.4.2 Read only registers

R.	_GPIO_II	N1		(r)	(Reset group: -)	0x40	
G	GPIO input data bits 158						
No	ote: Unus	sed GPIO p	oins should be configured as	s output pins.			
	Bits	Reset value	Name	Descrip	otion		
	0		V_GPIO_IN8	Input d	ata bit from pin GPIO8		
	1		V_GPIO_IN9	Input d	ata bit from pin GPIO9		
	2		V_GPIO_IN10	Input d	ata bit from pin GPIO10		
	3		V_GPIO_IN11	Input d	ata bit from pin GPIO11		
	4		V_GPIO_IN12	Input d	ata bit from pin GPIO12		
	5		V_GPIO_IN13	Input d	ata bit from pin GPIO13		
	6		V_GPIO_IN14	Input d	ata bit from pin GPIO14		
	7		V_GPIO_IN15	Input d	ata bit from pin GPIO15		

R.	_GPIO_	IN2		(r)	(Reset group: -)	0x45		
G	GPI input data bits 1916							
No	ote: Unu	ised GPIO p	pins should be configu	red as output pins				
	Bits	Reset value	Name	Descr	ription			
	0		V_GPIO_IN16	Input	data bit from pin GPIO16			
	1		V_GPIO_IN17	Input	data bit from pin GPIO17			
	2		V_GPIO_IN18	Input	data bit from pin GPIO18			
	3		V_GPIO_IN19	Input	data bit from pin GPIO19			
	74		(reserved)					

R_GPIO_IN0	(r)	(Reset group: -)	0x48		
GPIO input data bits 70					
Note: Unused GPIO pins should be configured as output pins.					

Bits	Reset value	Name	Description
0		V_GPIO_IN0	Input data bit from pin GPIO0
1		V_GPIO_IN1	Input data bit from pin GPIO1
2		V_GPIO_IN2	Input data bit from pin GPIO2
3		V_GPIO_IN3	Input data bit from pin GPIO3
4		V_GPIO_IN4	Input data bit from pin GPIO4
5		V_GPIO_IN5	Input data bit from pin GPIO5
6		V_GPIO_IN6	Input data bit from pin GPIO6
7		V_GPIO_IN7	Input data bit from pin GPIO7

Chapter 11

Electrical characteristics

Absolute maximum ratings *1

Parameter	Symbol	Min.	Max.	Conditions
Power supply	$V_{ m DD}$	-0.3 V	+4.6 V	
Input voltage	$V_{ m I}$	-0.3 V	$V_{\rm DD} + 0.3 {\rm V} \ (\leq 4.6 {\rm V})$	3.3 V pins
	$V_{ m I}$	-0.3 V	6.0 V	5 V tolerant pins
Output voltage	V_{O}	-0.3 V	$V_{\rm DD} + 0.3 \mathrm{V}$	
Storage temperature	$T_{ m stg}$	-55 °C	+125°C	

Recommended operating conditions

Parameter	Symbol	Min. Typ.	Max	Conditions
Power supply	$V_{ m DD}$	3.0 V 3.3 V	3.6 V	
Operating temperature	$T_{ m opr}$	-30°C	+85 °C	
Peak-to-peak power supply noise	$V_{ m noise,pp}$		50 mV	PLL not used or no locking requirement
	$V_{ m noise,pp}$		10 mV	PLL used, stable locking required

Electrical characteristics for 3.3 V power supply

Parameter	Symbol	Min.	Тур.	Max	Conditions
Low input voltage *2	$V_{ m IL}$	-0.3 V		0.8 V	
High input voltage *3	$V_{ m IH}$	$2.0\mathrm{V}$		$V_{\rm DD} + 0.3 \mathrm{V}$	
High input voltage *4	$V_{ m IH}$	2.0 V		5.5 V	
Low output voltage *2	$V_{ m OL}$			0.4 V	
High output voltage *2	V_{OH}	2.4 V			
Internal pull-up resistor to $V_{\rm DD}$	$R_{ m pu,int}$	55 kΩ	110 kΩ	330 kΩ	
(pin type IOpu # only, see pin lis	st from page	36 and lege	end on pag	ge 40)	

The pin capacitance depends on the pin type. For details see legend of the pin list on page 40.

^{*1:} Stresses beyond those listed under 'Absolute maximum ratings' may cause permanent damage to the device. These are stress ratings only, and operation of the device at these or at any other conditions above those given in this data sheet is not implied. Exposure to limiting values for extended periods may affect device reliability.

^{*2:} All pins except oscillator and S/T/U_p type.

^{*3:} All pins except oscillator, $S/T/U_p$ type and 5 V tolerant pins.

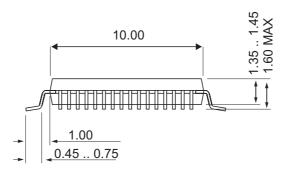
^{*4:} Only 5 V tolerant pins.

Power consumption for 3.3 V power supply

Parameter	Symbol	Min. Typ. Max	Conditions
Oscillator running with 24.576 MHz, internal clock disabled	$I_{ m opr}$	4 mA	21 °C
Oscillator running with 24.576 MHz, internal clock enabled,			
FIFOs and PCM 30 clocks running	I_{opr}	19 mA	21 °C
Oscillator running with 24.576 MHz, internal clock enabled, FIFOs and PCM 30 clocks running, both S/T interfaces sending 96 kHz			
test signal on 50Ω load	$I_{ m opr}$	39 mA	21 °C
Oscillator stopped	$I_{ m opr}$	1 mA	21 °C
Power consumption of PLL only			
with $f_{OSC} = 74 \mathrm{MHz}$ and $M = 1$	I_{opr}	7 mA	21 °C
Power consumption of PLL only			
with $f_{OSC} = 74 \mathrm{MHz}$ and $M = 3$	$I_{ m opr}$	5 mA	21 °C

Thermal package characteristics

Parameter	Symbol	Min. Typ.	Max	Conditions
Junction to air	$\Theta_{J\!A}$	+52 °C/W	7	Multi-Layer PCB
Junction to case	Θ_{JC}	+18°C/W	7	Multi-Layer PCB



Chapter 12

XHFC-2SU package dimensions

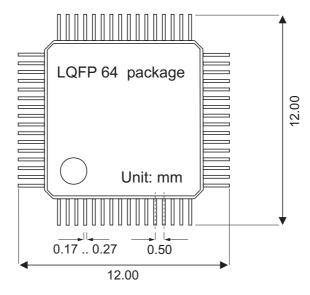


Figure 12.1: XHFC-2SU package dimensions

Chapter 13

XHFC-2SU address decoding erratum

13.1 Fault description

XHFC-2SU has an address decoding problem with write access to some registers. This erratum chapter describes the problem as well as work-arounds to avoid unwanted chip behaviour.

The address decoding fault refers to register addresses 0x48..0x5F. Any write access to these registers writes also to their counterregisters at in the address range 0x08..0x1F.

Due to the fact, that some addresses are not used by the chips, there are only few registers involved as shown in Table 13.1.

Table 13.1: Involved registers of the address decoding fault

	Write access to		Writes also to
0x48	R_GPIO_OUT0	0x08	R_RAM_ADDR
0x4C	R_GPIO_SEL	0x0C	R_FIFO_THRES
0x4D	R_SU_LED_CTRL	0x0D	R_FIFO_MD
0x50	R_PLL_CTRL	0x10	R_SLOT
0x51	R_PLL_P	0x11	R_MISC_IRQMSK
0x52	R_PLL_N	0x12	R_SU_IRQMSK
0x53	R_PLL_S	0x13	R_IRQ_CTRL

Read-only registers are not concerned in this fault.

13.2 Work-Around

The general work-around is to write registers in the address range 0x48..0x5F only once during chip initialization. The counterregisters 0x08..0x1F should be written afterwards. Exceptionally, register R_GPIO_OUT0 (0x48) can be written at any time, because it's counterregister R_RAM_ADDR (0x08) is normally not used.

Table 13.2 shows a complete list of the involved register adresses. Only gray marked lines are concerned in the decoding fault. In these cases, a detailed work-around is described to ensure a faultless chip behaviour.

 Table 13.2: Detailed register list and work-around description

V	Write access to		Writes also to	Remark
0x48	R_GPIO_OUT0	0x08	R_RAM_ADDR	R_RAM_ADDR must be written again after R_GPIO_OUT0 write access. Typically, there is no reason for using register R_RAM_ADDR, so that any write access to register R_GPIO_OUT0 causes no problem.
0x49	_	0x09	R_RAM_CTRL	Address 0x49 is not used for write access.
0x4A	R_GPIO_EN0	0x0A	_	Counterregister 0x0A is not available.
0x4B	_	0x0B	R_FIRST_FIFO	Address 0x4B is not used for write access.
0x4C	R_GPIO_SEL	0x0C	R_FIFO_THRES	Register R_GPIO_SEL should be written during chip initialization. Typically, there is no need to write R_GPIO_SEL later once more. If necessary, register R_FIFO_THRES must be rewritten afterwards and unwanted FIFO fill levels might be reported in registers R_FILL_BLOR_FILL_BL3. Software should always check the actual FIFO fill level before writing or reading FIFO bytes and should not rely on the expected FIFO fill level threshold.
				(continued on next page)

 Table 13.2: Detailed register list and work-around description

(continued from previous page)

v	Vrite access to	1	Writes also to	Remark
0x4D R_SU_LED_CTRL		0x0D	R_FIFO_MD	Register R_SU_LED_CTRL should be written during chip initialization. Typically, there is no need to write R_SU_LED_CTRL later once more. If necessary in particular applications, write access to R_SU_LED_CTRL is only allowed when no FIFO is in use because this destroys the overall FIFO setup. Write access to this pair of registers must fulfill strong timing constraints as follows:
				 Configure FIFO mode by writing R_FIFO_MD.
				2. Initiate a global software reset to accept this setting.
				3. Configure R_SU_LED_CTRL within a not-busy phase (V_BUSY = '0' in register R_STATUS). This write access is not allowed while V_BUSY = '1'!
				4. Re-write R_FIFO_MD within the same not-busy phase. As the FIFO setup is evaluated only during busy phases, it is important to restore the value immediately after R_SU_LED_CTRL write access.
0x4E 0x4F	-	0x0E 0x0F	A_INC_RES_FIFO	Addresses 0x4E and 0x4F are not used for write access.
0x50	R_PLL_CTRL	0x10	R_SLOT	Typically, register R_PLL_CTRL is written during initialization. R_SLOT should be written afterwards. Applications that use the PLL's enable/disable function should ensure that PCM time slot selection with register R_SLOT and following access to PCM slot array registers is not interrupted by R_PLL_CTRL write access.
0x51	R_PLL_P	0x11	R_MISC_IRQMSK	It is strongly recommended to write registers
0x52	R_PLL_N	0x12	R_SU_IRQMSK	R_PLL_P, R_PLL_N and R_PLL_S during initialization only. The counterpart reg-
0x53	R_PLL_S	0x13	R_IRQ_CTRL	isters R_MISC_IRQMSK, R_SU_IRQMSK and R_IRQ_CTRL should be initialized afterwards to avoid unwanted interrupt generation, interrupt suppression or unwanted interrupt controller behaviour.
				(continued on next page)

Table 13.2: Detailed register list and work-around description

(continued from previous page)

Write access to			Writes also to	Remark		
0x54	_	0x14	R_PCM_MD0	Addresses 0x540x5F are not used for		
0x55	_	0x15	(11 multi-registers)	write access.		
0x56	_	0x16	R_SU_SEL			
0x57	_	0x17	R_SU_SYNC			
0x58	_	0x18	_			
0x59	_	0x19	_			
0x5A	_	0x1A	R_TI_WD			
0x5B	_	0x1B	R_BERT_WD_MD			
0x5C	_	0x1C	_			
0x5D	_	0x1D	_			
0x5E	_	0x1E	R_PWM_CFG			
0x5F	_	0x1F	_			

References

- [1] Cologne Chip AG. DIGICCTM PLL Technology, November 2004.
- [2] Cologne Chip AG. C3-PLL-2— Phase-locked Loop (PLL) Frequency Synthesizer IP Core, June 2005.
- [3] Electronic Manufacturing Industry Association of Germany, Information & Communication Technology Group (ZVEI Zentralverband Elektrotechnik, Fachverband Informations- und Kommunikationstechnik (I+K Forum)). ZVEI Documentation DKZ-N; Interfaces and signaling protocols for ISDN telecommunication installations. (only available in German under title: ZVEI-Dokumentation DKZ-N; Schnittstellen und Signalisierungsprotokolle für Telekommunikationsanlagen im ISDN), Mai 1989. Volume IV: DKZ-N part 1.2, DKZ-N2 part 2.2.
- [4] European Telecommunications Standards Institute. *Technical Basis for Regulation (TBR 3):*Integrated Services Digital Network (ISDN); Attachment requirements for terminal equipment to connect to an ISDN using ISDN basic access.
- [5] European Telecommunications Standards Institute. *Technical Basis for Regulation (TBR 4):*Integrated Services Digital Network (ISDN); Attachment requirements for terminal equipment to connect to an ISDN using ISDN primary rate access.
- [6] Infineon Technologies. PEB 2096 Data Sheet; ICs for Communications: Octal Transceiver for Upn Interfaces (OCTAT-P), 2.1 edition, April 1999.
- [7] Siemens AG. ICs for Communication. IOM®-2 Interface Reference Guide, 3 1991.
- [8] Telecommunication Standardization Sector of International Telecommunication Union (ITU). ITU-T V.27: Data communication over the telephone network; 4800 bits per second MODEM with manual equalizer standardized for use on leased telephone-type circuits, 1988, 1993.
- [9] Telecommunication Standardization Sector of International Telecommunication Union (ITU). ITU-T I.430: Integrated services digital network (ISDN); ISDN user-network interfaces. Basic user-network interface Layer 1 specification, November 1995.
- [10] Telecommunication Standardization Union (ITU). O.151: Error performance measuring equipment operating at the primary rate and above. In *Specification of measurement equipment*. ITU-T (Telecommunication Standardization Sector of ITU), 1992.
- [11] Telecommunication Standardization Union (ITU). O.150: Equipment for the measurement of digital and analogue/digital parameters. In *General requirements for instrumentation for performance measurements on digital transmission equipment*. ITU-T (Telecommunication Standardization Sector of ITU), 1996.

List of register and bitmap abbreviations

This list shows all abbreviations which are used to define the register and bitmap names. Appended digits are not shown here except they have a particular meaning.

16KHZ	16 kHz	CHANNEL	HFC-channel	E	E-channel
		CHIP	microchip	ECH	error counter, high
2KHZ	2 kHz	CI			byte
			Command/Indication	ECL	error counter, low
AB	A/B-bit		(C/I channel of the GCI interface)		byte
ABO	abort	CI6	6 bit C/I-channel	EN	enable
ACT	active, activation	010	length	END	end
ADDR	address	CIRM	configuration,	ERR	error
ADJ	adjust		interrupt and reset	EV	event
AF0	alternative frame	CLK	clock	EXCHG	exchange
	synchronization signal	CLKO	clock output	EXP	expired
AUTO	automatic	CNT	counter	F	<i>F</i> -counter
AUTO	automatic	CNTH	counter, high byte	F0	frame
B1	B1-channel	CNTL	counter, low byte	FU	synchronization
B12	B1- and	CON	connection settings		signal
	B2-channels	CONT	contention	F1	F1_1 pin
B2	B2-channel	CRC	cyclic redundancy	F1	F1-counter
BAC	BAC-bit		check	F2	F2-counter
BERT	bit error rate test	CTRL	control	FDIR	direction
BIT	bit	5	D-channel		(FIFO-related)
BL	block	D		FIFO	FIFO
BUSY	busy	DATA	data	FILL	fill level
	·	DC	DC-balancing bit data flow	FIRST	first
С	command bits of	DF		FLOW	flow
	the C/I-channel	DIR	direction	FNUM	number
C2I	C2 clock input	DLL	double last look criterion		(FIFO-related)
	(PCM bit clock)	DLY	delay	FR	frame
C2O	C2 clock output	DLYH	delay, high byte	FREEZE	freeze
04	(PCM bit clock)	DLYL	delay, low byte	FRQ	frequency
C4	C4IO clock (PCM double bit clock)	DONE	done	FSM	FIFO sequence mode
CFG	configuration	DR	data rate		mode
CH	HFC-channel	DST	destination	G2	G2 state
011	TH C-Chamber	531	destination	GZ.	GZ state

G3	G3 state	MD	mode	RDY	ready
GCI	GCI interface	MERGE	merge	REG	register
GLOB	global	MISC	miscellaneous	REP	repetition
GPIO	general purpose	MIX	mixed	RES	reset
	input/output	MOD	modification	REV	reverse
GRD	guard	MON	monitor channel of	ROT	Rotator, rotation
			the GCI interface	ROUT	routing
HDLC	high-level data link	MR	handshake bit MR	RPT	repeat
	control	MS		RV	revision
HFC	HDLC FIFO		multiframe/superfran	ne RX	receive
	controller	MSK	mask	RXHS	receiver handshake
HI	high	MSS		RXR	receiver ready
HPRIO9	high priority, 9 bits		multiframe / superfran		
			synchronization	S	S-bit
I	indication bits of	MULT	multiple	S	PLL post-scaler
	the C/I-channel	MX	handshake bit MX	SCRM	scrambler
ICR	increase			SDIR	direction
ID	identifier	N	PLL loop factor		(slot-related)
IDX	index	NEG	negative	SEL	select, selection
IFF	inter frame fill	NEXT	next	SEQ	sequence
IGNO	ignore	NINV	no inversion	SET	setup
IN	input	NO	no	SG	S/G-bit
INC	increment	NOINC	no increment	SH	shape
INFO0	INFO 0 line	NRES	active low reset	SH0H	shape 0, high byte
	condition (no	NT	NT mode	SH0L	shape 0, low byte
	signal)	NUM	number	SH1H	shape 1, high byte
INIT	initialization			SH1L	shape 1, low byte
INT	internal	OD	open drain output	SIG	signal
INV	invert, inversion	OFF	off	SL	time slot
IRQ	interrupt	OFFS	offset	SLIP	frequency slip
IRQMSK	interrupt mask	osc	oscillator	SLOT	time slot
IRQSTA	interrupt status	OUT	output	SLOW	slow
		OVIEW	overview	SMPL	sample
LD	load			SNUM	number
LED	Light emitting	Р	PLL predivider	SQ	(slot-related)
	diode	PAT	pattern	SRAM	S/Q-bits SRAM
LEN	length	PCM	pulse code	SRC	source
LO	low		modulation	SRES	software reset
LOCK	locked	PLL	phase locked loop	SSYNC	single
LOOP	loop	POL	polarity	331NC	synchronization
LOST	frame data lost	PROC	processing		pulse
LPRIO	low priority	PU	pulse	ST	S/T interface
LPRIO11	low priority, 11 bits	PULSE	pulse	STA	state, status
		PWM	pulse width	START	start
M	M-bit		modulation	STATUS	status
M	divider value M			STIO	STIO pins
MAN	manual	RAM	RAM	STOP	stop
MAX	maximum	RD	read	STR	strict
	•				

STUP SU SUBCH SWAP SYNC	S/T / U _p interface) Universal ISDN Port (combined S/T and U _p interface) subchannel swap synchronize, synchronization synchronization input signal	THRES TI TRI TRP TS TST TX TXHS	threshold timer tristate transparent time step test transmit transmitter handshake transmitter ready	USAGE USE VAL VIO WAIT WAK WD WR	usage use, usage value code violation wait wakeup watchdog timer write
T T2	T-bits S/T timer T2	UNIDIR UP	unidirectional U _p interface	Z1 Z2	Z1-counter Z2-counter

Index of register and bitmap names

Index entries are sorted by name. Pages of the register tables are printed in bold type.

A_B1_KX	186, 204, 213, 21 7, 218	Cn. 4: 126, 127, 129, 131,	
Ch. 5: 159, 162, 177, 178,	A_D_TX	136	
186, 215	Ch. 5: 159, 177, 186, 198,	Ch. 9: 318	
A_B1_TX	200, 207	A_MS_DF	
Ch. 5: 159, 177, 186, 206	A_E_RX	Ch. 5: 198, 204 , 217, 218	
A_B2_RX	Ch. 5: 159, 161, 162, 177,	A_MS_RX	
Ch. 5: 159, 162, 177, 178,	178, 186, 204, 213, 217,	Ch. 5: 157, 161, 167, 176,	
186, 216	218	177, 183, 213 , 217, 218	
A_B2_TX	A_F1	A_MS_TX	
Ch. 5: 159, 177, 186, 206	Ch. 3: 86	Ch. 5: 157, 161, 162, 167,	
A_BAC_S_TX	Ch. 4: 138	176–178, 183, 200 , 204,	
Ch. 5: 159, 177, 186, 198,	A_F2	207, 208, 213	
200, 208	Ch. 3: 86	A_SL_CFG	
A_CHANNEL	Ch. 4: 139	Ch. 2: 45	
Ch. 2: 45	A_FIFO_CTRL	Ch. 3: 82–84, 89–92, 96, 97,	
Ch. 3: 83, 84, 86, 93, 95–97,	Ch. 2: 45	105, 116, 117, 122, 123	
99, 101, 103, 104, 106,	Ch. 3: 86, 101	Ch. 6: 221–223, 246, 248,	
107, 119, 120, 122, 123	Ch. 4: 140, 147, 152	270, 274	
Ch. 4: 150	Ch. 8: 280, 283	A_ST_CTRL3	
A_CH_MSK	Ch. 9: 311, 319–322	Ch. 5: 156, 196, 201 , 202	
Ch. 2: 45	A_FIFO_DATA	A_SUBCH_CFG	
Ch. 3: 86, 87, 94, 101, 102,	Ch. 3: 86	Ch. 2: 45	
108, 109, 113–116, 118,	Ch. 4: 128, 145	Ch. 3: 86, 87, 93, 94, 101,	
119, 121, 122	A_FIFO_DATA_NOINC	102, 108, 109, 113, 114,	
Ch. 4: 136, 146	Ch. 3: 86	116, 117, 119–123	
A_CON_HDLC	Ch. 4: 128, 131, 145	Ch. 4: 132, 146, 149	
Ch. 2: 45	A_FIFO_SEQ	A_SU_CLK_DLY	
Ch. 3: 77, 79, 86, 87, 89–91,	Ch. 2: 45	Ch. 5: 158, 163, 167, 179,	
94–97, 101, 102,	Ch. 3: 86, 101, 103, 104,	183, 205	
104–106, 114, 116, 117,	106, 107	A_SU_CTRL0	
119, 120, 122, 123	Ch. 4: 151	Ch. 5: 159, 167, 176, 183,	
Ch. 4: 126, 128, 131, 147 ,	A_FIFO_STA	195 , 199, 214	
152	Ch. 4: 136, 140 , 153	Ch. 9: 302	
Ch. 9: 300	A_INC_RES_FIFO	A_SU_CTRL1	
A_D_RX	Ch. 13: 348	Ch. 4: 127	

Ch. 5: 163, 164, 167, 180,

Ch. 3: 86

Ch. 5: 159, 162, 177, 178,

Ch. 4: 126

182, 183, **197** Ch. 9: 288, 298, **306** Ch. 3: 99-103 A SU CTRL2 R CI RX Ch. 4: 127, 133 Ch. 6: 243, 272 R_FSM_IDX Ch. 5: 159, 167, 169, 176, 183, 195, **198** R_CI_TX Ch. 3: 86, 99, 101, 103, 104, Ch. 9: 302 Ch. 6: 244, 267 106, 107 A SU DLYH R CLK CFG Ch. 4: 137 Ch. 5: 167, 183, 211, 212 Ch. 9: 288, 292, 308 R_GCI_CFG0 A_SU_DLYL **R_CTRL** Ch. 6: 243–246, 248, **268** Ch. 5: 167, 183, **211**, 212 Ch. 2: 70 R_GCI_CFG1 Ch. 6: 246, 248, 269, 270 A SU RD STA Ch. 9: 288 R_GCI_STA Ch. 5: 163, 167, 179, 182, R FO CNTH 183, 194, **210** Ch. 6: 271 Ch. 6: 244, 252, 273 R GPIO_EN0 A SU STA R FO CNTL Ch. 5: 209, 214 Ch. 10: 334 Ch. 6: 271 Ch. 9: 302, 316 R FIFO Ch. 13: 347 A_SU_WR_STA Ch. 3: 79, 84–86, 89–91, 93, R_GPIO_EN1 Ch. 5: 163, 164, 167, 179, 95-97, 99, 101, 102, Ch. 10: 326, 331 180, 182, 183, **194**, 197, 104–106, 109, 113–123 R GPIO EN2 210 Ch. 4: 126, 130, 131, 136, Ch. 10: **332** A_UP_CTRL3 **137**, 138–141, 145–152 R_GPIO_IN0 Ch. 5: 156, 182, 201, **202** R_FIFO_BL0_IRQ Ch. 10: 326, 338 A USAGE Ch. 4: 152 R_GPIO_IN1 Ch. 4: 141 Ch. 9: 300, 314, **319** Ch. 10: 326, 337 A Z1 R FIFO BL1 IRQ R_GPIO_IN2 Ch. 3: 86 Ch. 9: 314, 320 Ch. 10: **337** Ch. 4: 138 R_FIFO_BL2_IRQ R_GPIO_OUT0 A Z2 Ch. 9: 314, **321** Ch. 10: 333 Ch. 3: 86 R_FIFO_BL3_IRQ Ch. 13: 346, 347 Ch. 4: 138 Ch. 4: 152 R_GPIO_OUT1 R_AF0_OVIEW Ch. 9: 300, 314, 319, **322** Ch. 10: **330** Ch. 5: 209, 215 R_FIFO_MD R GPIO OUT2 Ch. 9: 302, 316 Ch. 13: 346, 348 Ch. 10: 332 R_BERT_ECH Ch. 3: 85, 93, 99 **R_GPIO_SEL** Ch. 8: 280, 283, 285, 286 Ch. 4: 128, 133, 135, 137 Ch. 10: 326, 335 R_BERT_ECL **R_FIFO_THRES** Ch. 13: 346, 347 Ch. 8: 280, 283, 285, 286 Ch. 13: 346, 347 R_GPIO_SEL_BL R_BERT_STA Ch. 4: **134**, 141–144 Ch. 10: **331** Ch. 6: 228, 266 R_FILL_BL0 R_INT_DATA Ch. 8: 280, 283, 285 Ch. 13: 347 Ch. 2: 45, **73** R_BERT_WD_MD Ch. 4: 141 R_IRQ_CTRL Ch. 13: 349 R_FILL_BL1 Ch. 13: 346, 348 Ch. 8: 280, 284 Ch. 4: 142 Ch. 4: 152 Ch. 9: 305 R FILL BL2 Ch. 9: 299, 300, 311, R_CHIP_ID Ch. 4: **143** 319-322 Ch. 2: 72 R FILL BL3 **R_IRQ_OVIEW** R CHIP RV Ch. 9: 300, 302, 314, 318 Ch. 13: 347 Ch. 2: 72 Ch. 4: **144** R_MISC_IRQ R CIRM R FIRST FIFO Ch. 6: 244

Ch. 9: 302-304, 309, 315,

Ch. 13: 347

316, 318 R_PWM_CFG Ch. 9: 298, 315, 316, 318 R MISC IROMSK Ch. 13: 349 R SU IRO Ch. 5: 167, 183, 186 Ch. 13: 346, 348 Ch. 7: 276, 277 R_PWM_MD Ch. 9: 299, 310, 315, 317 Ch. 5: 209, 215 Ch. 6: 243, 244 Ch. 7: 276, 278 **R_SU_IRQMSK** Ch. 9: 302-304, **309**, 316 Ch. 9: 303, 318 Ch. 13: 346, 348 R MON RX R_RAM_ADDR Ch. 5: 186 Ch. 9: 299, 310, 317 Ch. 6: 243, 244, 252, **273** Ch. 13: 346, 347 Ch. 9: 304 Ch. 2: 71, 74 R_SU_LED_CTRL R MON TX R RAM CTRL Ch. 10: 329, 336 Ch. 13: 347 Ch. 13: 346, 348 Ch. 6: 244, 249, 250, 252, **270**, 273 Ch. 2: 71, 74 **R_SU_SEL** Ch. 9: 304 R RAM DATA Ch. 13: 349 R MSS0 Ch. 2: 45, 71, 74 Ch. 5: 156, 193, 194, 195, Ch. 6: 235, 237–239, 254, **R_RAM_USE** 197, 198, 200-202, 204-208, 210-218 Ch. 2: **72** R MSS1 R SH0H R SU SYNC Ch. 5: 198 Ch. 6: 240, 241, 254–256, Ch. 13: 349 Ch. 6: 237, 254, **263** 264 Ch. 6: 228, 261, **266** R_PCM_MD0 R SHOL R_TI_WD Ch. 13: 349 Ch. 6: 240, 241, 254–256, Ch. 13: 349 Ch. 6: 220, 223, 239–241, 264 Ch. 9: 303, 305, **312** 246, 248, **254**, 255–257, R SH1H V_ABO_DONE 259, 261, 263–265 Ch. 6: 241, 254–256, **265** Ch. 4: 136, 140 R_PCM_MD1 R SH1L V_ADDR_INC Ch. 6: 220, 222, 228, 230, Ch. 6: 241, 254–256, **264** Ch. 2: 71 253, 254, **259**, 261, 271, R SLOT V_ADDR_RES 274 Ch. 13: 346, 348 Ch. 2: 71 R_PCM_MD2 Ch. 3: 82–84, 89–92, 96, 97, V_AUTO_SYNCI Ch. 6: 223, 228, 230, 254, 105, 116, 117, 122, 123 Ch. 6: 228, 229, **266** 261 Ch. 6: 246, 248, **253**, 270, V AUTO WD RES R_PLL_CTRL 274 Ch. 8: 284 Ch. 13: 346, 348 R_SL_MAX Ch. 9: 305 Ch. 9: 294, 313 Ch. 6: **271** V_B12_SWAP R PLL N R_SL_SEL0 Ch. 5: 161, 162, 177, 178, Ch. 13: 346, 348 Ch. 6: 240, 254, **255** 197 Ch. 9: 323 V_B1_RX R_SL_SEL1 R_PLL_P Ch. 6: 240, 241, 254, 255, Ch. 5: 215 Ch. 13: 346, 348 256 V B1 RX EN Ch. 9: 323 R SL SEL7 Ch. 5: 159, 162, 176, 178, R_PLL_S Ch. 2: 70 198 Ch. 13: 346, 348 Ch. 5: 166, 182 V B1 TX Ch. 9: 323 Ch. 6: 254, **256** Ch. 5: 206 R_PLL_STA **R STATUS** V_B1_TX_EN Ch. 9: 322 Ch. 13: 348 Ch. 5: 159, 161, 176, 177, R PWM0 Ch. 4: 127 195 Ch. 7: 276, 277 Ch. 5: 186, 206–208, V B2 RX R PWM1 215-218 Ch. 5: 216

V_B2_RX_EN

Ch. 6: 223

Ch. 7: 276, 277, 278

Ch. 5: 159, 162, 176, 178, 104, 106, 107, 119, 120, V_D_MERGE_TX 198 122, 123 Ch. 6: 266 V B2 TX Ch. 4: 150 V D RES Ch. 5: 206 V CH FNUM Ch. 4: 127 V_B2_TX_EN Ch. 3: 84, 93, 95–97, 103, Ch. 5: 161, 177, 197 Ch. 5: 159, 161, 176, 177, 104, 106, 107, 119, 120, V D RX 195 122, 123 Ch. 5: 217 V BAC D Ch. 4: 150 V D RX AB V_CH_MSK Ch. 5: 161, 197 Ch. 5: 217 Ch. 3: 112–114, 116, 119, V BAC NINV V D RX S 122 Ch. 5: 161, 177, **204** Ch. 5: 217 V BAC S SEL Ch. 4: 146 V_D_RX_SG Ch. 5: 161, 177, 198, 204 V_CH_SDIR Ch. 5: 217 V BAC TX Ch. 3: 82, 84, 89–92, 96, 97, V D TX Ch. 5: 208 105, 116, 117, 122, 123 Ch. 5: 207 V_BERT_ECH Ch. 6: 246, 248, **274** V D TX BAC V CH SNUM Ch. 8: 282, 286 Ch. 5: 207 V BERT ECL Ch. 3: 82, 84, 89–92, 96, 97, V D TX S 105, 116, 117, 122, 123 Ch. 8: 282, **285** Ch. 5: **207**, 208 **V_BERT_EN** Ch. 6: 246, 248, **274** V_EV_TS V CI IRQ Ch. 4: 152 Ch. 9: 303, 312 Ch. 6: 244 Ch. 8: 280–283 $V_E_MERGE_RX$ Ch. 9: 302, 316 **V_BERT_ERR** Ch. 6: 266 V CI IRQMSK Ch. 8: 280, 281, 284 V E RX V BERT INV DATA Ch. 5: 218 Ch. 6: 243, 244 Ch. 8: 282, 283, **285** Ch. 9: 302, **309** V_E_RX_AB V_BERT_SYNC V_CLKO_HI Ch. 5: 218 Ch. 8: 280, 282, 285 Ch. 9: 288, 289, 292, 308 V E RX S V_BIT_CNT V_CLKO_OFF Ch. 5: 218 Ch. 9: 288, 289, 292, **308** Ch. 3: 108–111, 114, 116, V_E_RX_SG 117, 119, 120, 122, 123 V_CLKO_PLL Ch. 5: 218 Ch. 4: 146, 149 Ch. 9: 288, 289, 292, 308 V_F0_CNTH Ch. 8: 280-283 V_CLK_F1 Ch. 6: **271** V BUSY Ch. 9: 288, 289, 292, 308 V_F0_CNTL Ch. 13: 348 V_CLK_OFF Ch. 6: 271 Ch. 4: 127 Ch. 9: 288, 289, 306 V FO LEN Ch. 9: 298, 318 V_CLK_PLL Ch. 6: 223, 229, 236, 238, V_C2I_EN Ch. 9: 288, 289, 308 239, **254** Ch. 6: 223, 229, 230, 261 V FO NEG **V_DATA_FLOW** V C2O EN Ch. 3: 77, 79–81, 89–91, Ch. 6: 229, 254 Ch. 6: 229, 230, **261** 95–97, 104–106, 114, V_F1 Ch. 4: 138 V C4 POL 116, 117, 119, 120, 122, Ch. 6: 229, 254 123 V F2 V_CHIP_ID Ch. 4: 148 Ch. 4: 139 Ch. 2: 72 V DF MD V_FIFO0_RX_IRQ V CHIP RV Ch. 3: 85, 93, 99 Ch. 9: 301, 319 Ch. 2: 72 Ch. 4: **135**, 137 V_FIFO0_TX_IRQ V CH FDIR V D MERGE RX Ch. 9: 301, 319 Ch. 3: 84, 93, 95–97, 103, Ch. 6: **266** V_FIFO10_RX_IRQ

Ch. 9: 321	V_FIFO7_TX_IRQ	V_FIFO_NUM
V_FIFO10_TX_IRQ	Ch. 9: 320	Ch. 3: 84, 89–91, 95–97,
Ch. 9: 321	V_FIFO8_RX_IRQ	104–106, 114, 116, 117,
V_FIFO11_RX_IRQ	Ch. 9: 321	119, 120, 122, 123
Ch. 9: 321	V_FIFO8_TX_IRQ	Ch. 4: 137
V_FIFO11_TX_IRQ	Ch. 9: 321	V_FILL_FIFO0_RX
Ch. 9: 321	V_FIFO9_RX_IRQ	Ch. 4: 141
V_FIFO12_RX_IRQ	Ch. 9: 321	V_FILL_FIFO0_TX
Ch. 9: 322	V_FIFO9_TX_IRQ	Ch. 4: 141
V_FIFO12_TX_IRQ	Ch. 9: 321	V_FILL_FIFO10_RX
Ch. 9: 322	V_FIFO_BL0_IRQ	Ch. 4: 143
V_FIFO13_RX_IRQ	Ch. 9: 300, 301, 314	V_FILL_FIFO10_TX
Ch. 9: 322	V_FIFO_BL1_IRQ	Ch. 4: 143
V_FIFO13_TX_IRQ	Ch. 9: 301, 314	V_FILL_FIFO11_RX
Ch. 9: 322	V_FIFO_BL2_IRQ	Ch. 4: 143
V_FIFO14_RX_IRQ	Ch. 9: 301, 314	V_FILL_FIFO11_TX
Ch. 9: 301, 322	V_FIFO_BL3_IRQ	Ch. 4: 143
V_FIFO14_TX_IRQ	Ch. 9: 300, 301, 314	V_FILL_FIFO12_RX
Ch. 9: 322	V_FIFO_DATA	Ch. 4: 144
V_FIFO15_RX_IRQ	Ch. 4: 145	V_FILL_FIFO12_TX
Ch. 9: 301, 322	V_FIFO_DATA_NOINC	Ch. 4: 144
V_FIFO15_TX_IRQ	Ch. 4: 145	V_FILL_FIFO13_RX
Ch. 9: 301, 322	V_FIFO_DIR	Ch. 4: 144
V_FIFO1_RX_IRQ	Ch. 3: 79, 81, 84, 89–91, 93,	V_FILL_FIFO13_TX
Ch. 9: 301, 319	95–97, 104–106, 114,	Ch. 4: 144
V_FIFO1_TX_IRQ	116, 117, 119, 120, 122,	V_FILL_FIFO14_RX
Ch. 9: 301, 319	123	Ch. 4: 144
V_FIFO2_RX_IRQ	Ch. 4: 137 , 148	V_FILL_FIFO14_TX
Ch. 9: 319	V_FIFO_ERR	Ch. 4: 144
V_FIFO2_TX_IRQ	Ch. 4: 136, 140 , 153	V_FILL_FIFO15_RX
Ch. 9: 301, 319	V_FIFO_IRQ	Ch. 4: 144
V_FIFO3_RX_IRQ	Ch. 3: 87, 89–91, 94–97,	V_FILL_FIFO15_TX
Ch. 9: 319	102–106, 114, 116, 117,	Ch. 4: 144
V_FIFO3_TX_IRQ	119, 120, 122, 123	V_FILL_FIFO1_RX
Ch. 9: 319	Ch. 4: 126, 147 , 148, 152	Ch. 4: 141
V_FIFO4_RX_IRQ	Ch. 9: 300, 319–322	V_FILL_FIFO1_TX
Ch. 9: 320	V_FIFO_IRQMSK	Ch. 4: 141
V_FIFO4_TX_IRQ	Ch. 4: 152	V_FILL_FIFO2_RX
Ch. 9: 320	Ch. 9: 311, 319–322	Ch. 4: 141
V_FIFO5_RX_IRQ	V_FIFO_IRQSTA	V_FILL_FIFO2_TX
Ch. 9: 320	Ch. 9: 319	Ch. 4: 141
V_FIFO5_TX_IRQ	V_FIFO_IRQ_EN	V_FILL_FIFO3_RX
Ch. 9: 320	Ch. 4: 152	Ch. 4: 141
V_FIFO6_RX_IRQ Ch. 9: 320	Ch. 9: 300, 301, 311 , 319–322	V_FILL_FIFO3_TX Ch. 4: 141
V_FIFO6_TX_IRQ	V_FIFO_LPRIO	V_FILL_FIFO4_RX
V_F1F00_1X_1RQ Ch. 9: 320	Ch. 2: 70	V_F1LL_F1F04_RX Ch. 4: 142
V_FIFO7_RX_IRQ	V_FIFO_MD	V_FILL_FIFO4_TX
Ch. 9: 320	Ch. 4: 128, 135	Ch. 4: 142
C11. 7. 320	I CII. T. 120, 133	C11, T, 172

V_FILL_FIFO5_RX	270	V_GPIO_EN8
Ch. 4: 142	V_GCI_SWAP_RXHS	Ch. 10: 326, 327, 331
V_FILL_FIFO5_TX	Ch. 6: 245, 248, 268 , 269	V_GPIO_EN9
Ch. 4: 142	V_GCI_SWAP_STIO	Ch. 10: 327, 331
V_FILL_FIFO6_RX	Ch. 6: 245, 248, 268, 269	V GPIO INO
Ch. 4: 142	V_GCI_SWAP_TXHS	Ch. 10: 329, 338
V_FILL_FIFO6_TX	Ch. 6: 245, 248, 268 , 269	V GPIO IN1
Ch. 4: 142	V_GLOB_IRQ_EN	Ch. 10: 338
V_FILL_FIFO7_RX	Ch. 9: 299, 311	V_GPIO_IN10
Ch. 4: 142	V_GPIO_BL0	Ch. 10: 337
V_FILL_FIFO7_TX	Ch. 10: 327, 331	V_GPIO_IN11
Ch. 4: 142	V_GPIO_BL1	Ch. 10: 337
V_FILL_FIFO8_RX	Ch. 10: 331	V_GPIO_IN12
Ch. 4: 143	V_GPIO_EN0	Ch. 10: 337
V FILL FIFO8 TX	Ch. 10: 329, 334	V_GPIO_IN13
Ch. 4: 143	V_GPIO_EN1	Ch. 10: 337
V_FILL_FIFO9_RX	Ch. 10: 334	V_GPIO_IN14
Ch. 4: 143	V_GPIO_EN10	Ch. 10: 337
V_FILL_FIFO9_TX	Ch. 10: 331	V_GPIO_IN15
Ch. 4: 143	V GPIO EN11	Ch. 10: 337
V_FIRST_FIFO_DIR	Ch. 10: 331	V_GPIO_IN16
Ch. 3: 101, 103	V_GPIO_EN12	Ch. 10: 327, 337
Ch. 4: 127, 133	Ch. 10: 331	V_GPIO_IN17
V_FIRST_FIFO_NUM	V_GPIO_EN13	Ch. 10: 337
Ch. 3: 101, 103	Ch. 10: 331	V_GPIO_IN18
Ch. 4: 127, 133	V_GPIO_EN14	Ch. 10: 337
V_FR_ABO	Ch. 10: 331	V_GPIO_IN19
Ch. 4: 140, 153	V_GPIO_EN15	Ch. 10: 337
V_G2_G3	Ch. 10: 331	V GPIO IN2
Ch. 5: 163, 182, 210	V_GPIO_EN16	Ch. 10: 338
V_G2_G3_EN	Ch. 10: 327, 332	V GPIO IN3
Ch. 5: 163, 164, 180, 182,	V_GPIO_EN17	Ch. 10: 338
197	Ch. 10: 332	V_GPIO_IN4
V_GCI_ABO	V_GPIO_EN18	Ch. 10: 338
Ch. 6: 252, 273	Ch. 10: 332	V GPIO IN5
V_GCI_C	V_GPIO_EN19	Ch. 10: 338
Ch. 6: 244, 267	Ch. 10: 332	V GPIO IN6
V_GCI_EN	V_GPIO_EN2	Ch. 10: 338
Ch. 6: 243, 246, 248, 269	Ch. 10: 334	V_GPIO_IN7
V_GCI_I	V_GPIO_EN3	Ch. 10: 338
Ch. 6: 244, 272	Ch. 10: 334	V GPIO IN8
V_GCI_MR	V_GPIO_EN4	Ch. 10: 327, 337
Ch. 6: 273	Ch. 10: 334	V_GPIO_IN9
V_GCI_MX	V_GPIO_EN5	Ch. 10: 327, 337
Ch. 6: 273	Ch. 10: 334	V_GPIO_OUT0
V_GCI_RX	V_GPIO_EN6	Ch. 10: 329, 333
V_GCI_KX Ch. 6: 273	Ch. 10: 334	V_GPIO_OUT1
V_GCI_SL	V_GPIO_EN7	Ch. 10: 333
	V_GPIO_EN/ Ch. 10: 334	
Ch. 6: 242, 243, 246, 248,	Cn. 10. 334	V_GPIO_OUT10

Ch. 10: 330	V_GPIO_SEL7	Ch. 9: 318
V_GPIO_OUT11	Ch. 10: 335	V_MAN_SYNC
Ch. 10: 330	V_HDLC_TRP	Ch. 5: 187
V_GPIO_OUT12	Ch. 3: 87, 89–91, 95–97,	Ch. 6: 228, 229, 266
Ch. 10: 330	103–106, 114, 116, 117,	V MISC IRO
V_GPIO_OUT13	119, 120, 122, 123	Ch. 9: 302, 315 , 318
Ch. 10: 330	Ch. 4: 131, 147	V_MISC_IRQSTA
V_GPIO_OUT14	Ch. 9: 300	Ch. 9: 315, 318
Ch. 10: 330	V_HFC_RES	V_MIX_IRQ
V_GPIO_OUT15	Ch. 4: 126	Ch. 4: 147, 152
Ch. 10: 330	Ch. 9: 298, 307	Ch. 9: 300, 319–322
V_GPIO_OUT16	V_IDX	V_MON_CI6
Ch. 10: 327, 332	Ch. 3: 101, 103, 104, 106,	Ch. 6: 244, 267, 268 , 272
V_GPIO_OUT17	107	V_MON_DLL
Ch. 10: 332	Ch. 4: 137	Ch. 6: 244, 268
V_GPIO_OUT18	V_IFF	V_MON_END
Ch. 10: 332	Ch. 3: 89–91, 95–97,	Ch. 6: 244, 250, 268
V_GPIO_OUT19	104–106, 114, 116, 117,	V_MON_RX
Ch. 10: 332	119, 120, 122, 123	Ch. 6: 273
V_GPIO_OUT2	Ch. 4: 128, 147	V_MON_RXR
Ch. 10: 333	V_INC_F	Ch. 6: 244, 252, 273
V_GPIO_OUT3	Ch. 4: 129, 131, 136	V_MON_RX_IRQ
Ch. 10: 333	V_INT_DATA	Ch. 9: 302, 304, 316
V_GPIO_OUT4	Ch. 2: 73	V_MON_RX_IRQMSK
Ch. 10: 333	V_INV_DATA	Ch. 6: 243
V_GPIO_OUT5	Ch. 3: 114, 116, 117, 119,	Ch. 9: 302, 304, 309
Ch. 10: 333	120, 122, 123	V_MON_SLOW
V_GPIO_OUT6	Ch. 4: 149	Ch. 6: 268
Ch. 10: 333	V_IRQ_POL	V_MON_TX
V_GPIO_OUT7	Ch. 9: 299, 311	Ch. 6: 270
Ch. 10: 333	V_LED_EN0	V_MON_TXR
V_GPIO_OUT8	Ch. 10: 329, 336	Ch. 6: 244, 250, 273
Ch. 10: 327, 330	V_LED_EN1	V_MON_TX_IRQ
V_GPIO_OUT9	Ch. 10: 336	Ch. 6: 244
Ch. 10: 327, 330	V_LED_EN2	Ch. 9: 302, 304, 316
V_GPIO_SEL0	Ch. 10: 336	V_MON_TX_IRQMSK
Ch. 10: 326, 329, 335	V_LED_EN3	Ch. 6: 244
V_GPIO_SEL1	Ch. 10: 336	Ch. 9: 302, 304, 309
Ch. 10: 335	V_LED_EN4	V_MSS_DLY
V_GPIO_SEL2	Ch. 10: 336	Ch. 6: 236–238, 263
Ch. 10: 335	V_LED_EN5	V_MSS_MOD
V_GPIO_SEL3	Ch. 10: 336	Ch. 6: 236, 238, 239, 257
Ch. 10: 335	V_LED_ROT	V_MSS_MOD_REP
V_GPIO_SEL4	Ch. 10: 329, 336	Ch. 6: 236, 238, 257
Ch. 10: 335	V_LOOP_FIFO	V_MSS_OFFS
V_GPIO_SEL5	Ch. 3: 114, 116, 117, 119,	Ch. 6: 236, 263
Ch. 10: 335	120, 122, 123	V_MSS_OUT_EN
V_GPIO_SEL6	Ch. 4: 149	Ch. 6: 236, 239, 257
Ch. 10: 335	V_LOST_STA	V_MSS_OUT_REP

271

V PWM0 Ch. 6: 236, 239, **257** V_PCM_IDX V MSS SRC Ch. 6: 240, 241, 254, Ch. 7: 277 255-257, 259, 261, V PWM0 16KHZ Ch. 6: 236, 237, **258** Ch. 7: 276, 277 V_MSS_SRC_EN 263-265 V_PCM_INIT V_PWM0_MD Ch. 6: 235-237, 257 V_MSS_SRC_GRD Ch. 6: 223 Ch. 7: 276, 278 Ch. 9: 298, 318 Ch. 6: 236, 237, 257 V PWM1 V_PCM_LOOP V_MS_RX Ch. 7: 278 Ch. 5: 176, 213 Ch. 6: 222, 259 V_PWM1_16KHZ V PCM MD V MS RX RDY Ch. 7: 276, 277 Ch. 5: 176, 213 Ch. 4: 128 V PWM1 MD V_MS_SSYNC1 Ch. 6: 220, 223, 229, 245, Ch. 7: 276, 278 Ch. 5: 198 246, 248, 254 V_PWM_FRQ Ch. 6: 236, 263 V PCM OD Ch. 7: 276, 277 V MS SSYNC2 Ch. 6: 221, 222, **259**, 274 V_RAM_ADDR0 Ch. 5: 161, 177, 198 V_PCM_RES Ch. 2: 71 Ch. 6: 263 Ch. 9: 298, 307 V RAM ADDR1 V MS TX V_PCM_SMPL Ch. 2: 71 Ch. 5: 176, **200**, 204, 207, Ch. 6: 222, **260** V RAM DATA 208 V_PLL_ADJ Ch. 2: 74 V MS TX RDY Ch. 6: 228–230, **259**, 261 V RD SYNC SRC V PLL FREEZE Ch. 5: 176, **213** Ch. 6: 228, 266 V_MULT_SU Ch. 9: 294, **313** Ch. 8: 285 Ch. 5: 193 V PLL ICR V RES FIFO $V_M_S_SRC$ Ch. 6: 228–230, **261**, 262 Ch. 4: 126, 127, 136 V_PLL_LOCK Ch. 5: 161, 177, **204** V_RES_FIFO_ERR V_NEXT_FIFO_DIR Ch. 9: 294, 322 Ch. 4: 127, 136, 140 V PLL M Ch. 3: 103, 104, 106, 107 V RES LOST Ch. 4: 151 Ch. 9: 294, **313** Ch. 4: 136 V_PLL_MAN V_NEXT_FIFO_NUM Ch. 9: 318 Ch. 6: 228-230, 261, 262 Ch. 3: 103, 104, 106, 107 V REV V_PLL_N Ch. 4: 151 Ch. 3: 87, 89-91, 94-97, V_NO_CRC Ch. 9: 293, 294, **323** 103–106, 114, 116, 117, Ch. 4: 153 V_PLL_NRES 119, 120, 122, 123 V_NO_REP Ch. 9: 294, 313 Ch. 4: 131, 137 V ROUT Ch. 4: 153 V_PLL_P V_NT_SYNC Ch. 9: 294, **323** Ch. 3: 89–92, 96, 97, 105, V PLL_S Ch. 2: 70 116, 117, 122, 123 Ch. 6: 229 Ch. 9: 294, 323 Ch. 6: 221, 222, 246, 248, V_OSC_OFF V_PLL_TST 274 Ch. 2: 70 Ch. 9: **313** V_SEQ_END Ch. 9: 289 V PROC Ch. 3: 101, 103, 104, 106, V_PAT_SEQ Ch. 5: 186, 206–208, 107 Ch. 8: 280-282, 284 215-218 Ch. 4: 151 V_PCM_CLK Ch. 9: 316, 318 V_SG_AB_INV Ch. 9: 288, 289, 308 Ch. 5: 162, 178, 204 V PROC IRQ V PCM DR Ch. 9: 302, 303, 316, 318 V SH0H Ch. 6: 220, 229, 253, **259**, V_PROC_IRQMSK Ch. 6: 241, 264

Ch. 9: 302, 303, 309

V_SH0L

Ch. 5: 214

V_ST_D_CONT

Ch. 6: 241, **264** Ch. 5: **214** V_SU_DLYH V SH1H V ST D HPRIO9 Ch. 5: 212 Ch. 6: 241, 265 Ch. 5: 214 V SU DLYL V_ST_D_LPRIO V_SH1L Ch. 5: 211 Ch. 6: 241, 264 Ch. 5: 195, 214 V_SU_EXCHG V_SH_SEL0 V ST D LPRIO11 Ch. 5: 161, 167, 169, 177, Ch. 6: 240, **255** Ch. 5: 214 183, **199** V_SH_SEL1 V_ST_E_IGNO V_SU_FR_SYNC Ch. 6: 240, 241, 255, 256 Ch. 5: 161, 197 Ch. 5: 210 V SU INFO0 V_SLIP_IRQ V ST E LO Ch. 9: 302, 316 Ch. 5: 161, **197** Ch. 5: 163, 210 V_SLIP_IRQMSK V_ST_PULSE V_SU_LD_STA Ch. 5: 209, 215 Ch. 5: 196, 201 Ch. 5: 163, 179, 182, 194 V ST PU CTRL V SU MD Ch. 9: 302, 309 Ch. 5: 161, 196 V SL DIR Ch. 5: 167, 183, 195 Ch. 3: 84, 89–92, 96, 97, V ST SEL Ch. 9: 302 105, 116, 117, 122, 123 Ch. 5: 156, 201 V SU RES Ch. 6: 246, 248, **253** V ST SMPL Ch. 9: 298, 307 V_SU_RX_VAL V_SL_MAX Ch. 5: **205** Ch. 6: 271 V_ST_SQ_EN Ch. 5: 162, 178, 204, 217, V SL NUM Ch. 5: 159, 161, **195** V_SU_SEL Ch. 3: 84, 89–92, 96, 97, V_SU0_AF0 105, 116, 117, 122, 123 Ch. 5: 209 Ch. 5: 156, 193 Ch. 6: 246, 248, **253** V_SU0_IRQ V_SU_SET_G2_G3 V SL SEL0 Ch. 5: 186 Ch. 5: 164, 180, **194**, 197 V_SU_SET_STA Ch. 6: 240, **255** Ch. 9: 300, 310, **317** V_SL_SEL1 V_SU0_IRQMSK Ch. 5: 194 Ch. 6: 240, 241, 255, **256** V SU STA Ch. 5: 186 V_SL_SEL7 Ch. 9: 300, 310 Ch. 5: **210** V_SU1_AF0 Ch. 6: **256** V_SU_STOP V SQ T DST Ch. 5: 209 Ch. 5: 162, 167, 178, 183, V_SU1_IRQ Ch. 5: 162, 178, **204**, 217, 196 V_SU_SYNC_NT 218 Ch. 5: 186 V_SQ_T_SRC Ch. 9: 300, 310, 317 Ch. 5: 167, 183, 198 Ch. 5: 161, 177, 204 V_SU1_IRQMSK Ch. 9: 302 V_SU_T2_EXP **V_SRAM_USE** Ch. 5: 186 Ch. 9: 300, 310 Ch. 2: **72** Ch. 5: **210 V_SRES** V_SU_2KHZ V_SU_TRI Ch. 4: 126 Ch. 5: 161, 177, 195, 199 Ch. 5: 161, 167, 177, 183, Ch. 9: 298, 306 V SU ACT 199 V_START_BIT Ch. 5: 163, 179, **194** V_SU_TST_SIG Ch. 5: 161, 177, 195, 199 Ch. 3: 108–111, 114–117, V SU AF0 Ch. 5: 188, 214, **215** 119, 120, 122, 123 V SYNC OUT1 Ch. 9: 302, 316 Ch. 4: **149** Ch. 6: 229, **261** V_STUP_IRQ V SU CLK V SYNC OUT2 Ch. 9: 300, 315 Ch. 6: 229, 261, 262 Ch. 2: 70 V ST D ACT Ch. 9: 288, 289 V SYNC SEL

Ch. 5: 187

Ch. 6: 228, 229, 266

V SU CLK DLY

Ch. 5: 158, 205

V_SYNC_SRC

Ch. 6: 228, 229, **261**

 V_S_TX

Ch. 5: 207, 208

V_THRES_RX

Ch. 4: **134**, 141–144

V THRES TX

Ch. 4: **134**, 141–144

V_TI_IRQ

Ch. 9: 302, 303, 316

V_TI_IRQMSK

Ch. 9: 302, 303, 309

V_UNIDIR_MD

Ch. 4: 128, 135

V_UNIDIR_RX

Ch. 4: 128, 135

V_UP_DC_OFF

Ch. 5: 177, 202

V_UP_DC_STR

Ch. 5: 177, **202**

 $V_UP_RPT_PAT$

Ch. 5: 177, 183, **202**

V_UP_SCRM_MD

Ch. 5: 177, 178, 182, 183,

202

V_UP_SCRM_RX_OFF

Ch. 5: 178, 182, 183, 203

V_UP_SCRM_TX_OFF

Ch. 5: 177, 182, 183, **203**

V_UP_SEL

Ch. 5: **202**

 $V_UP_S_RX$

Ch. 5: 176, **213**

 $V_UP_S_TX$

Ch. 5: 176, **200**, 204

V_UP_VIO

Ch. 5: **202**

V_USAGE

Ch. 4: **141**

V_WAIT_PROC

Ch. 9: **306**

V_WAIT_REG

Ch. 9: **306**

V_WAK_EN

Ch. 7: 278

Ch. 9: 303, 318

V_WAK_IRQ

Ch. 9: 302, 303, **316**

V WAK IROMSK

Ch. 9: 302, 303, **309**

V_WAK_STA

Ch. 9: 303, 318

V_WD_EN

Ch. 8: 284

V_WD_RES

Ch. 8: **284**

Ch. 9: 305

 V_WD_TS

Ch. 9: 305, **312**

 V_Z1

Ch. 4: 138

 V_Z2

Ch. 4: 138

Index of pin names

Index entries are sorted by name. Pages of the pin list are printed in bold type.

/CS	ADJ_1	Ch. 1: 34, 36
Ch. 1: 34, 36	Ch. 1: 34, 35, 38	Ch. 2: 46, 49
Ch. 2: 43, 44, 46, 47, 49, 52,	Ch. 5: 168	D5
54	ALE	Ch. 1: 34, 36
/INT	Ch. 1: 34, 39	Ch. 2: 46, 49
Ch. 1: 34, 35, 36	Ch. 2: 43, 44, 47, 51–54	D6
Ch. 2: 43, 57		Ch. 1: 34, 36
Ch. 4: 152	C2IO	Ch. 2: 46, 49
Ch. 9: 299, 309-311, 314	Ch. 1: 34, 35, 37	D7
/IOR	Ch. 4: 128	Ch. 1: 34, 36
Ch. 1: 34, 39	Ch. 6: 223, 230, 261	Ch. 2: 43, 44, 46, 49
Ch. 2: 43, 44, 47	C4IO	DN0
/IOW	Ch. 1: 34, 35, 37	Ch. 1: 35, 36
Ch. 1: 34, 39	Ch. 4: 128	Ch. 2: 57
Ch. 2: 43, 44, 47	Ch. 6: 220, 223, 224, 226,	DN1
/RES	228, 230, 232, 237–239,	Ch. 1: 35, 36
Ch. 1: 34, 35, 36	242, 245, 254, 259, 264,	Ch. 2: 57
Ch. 2: 43, 57	265	DN2
Ch. 9: 298	CLK_OUT	Ch. 1: 35, 36
/SPISEL	Ch. 10: 328, 335	Ch. 2: 57
Ch. 1: 33, 35, 36	Ch. 1: 34, 35, 37	DN3
Ch. 2: 57, 59–66	Ch. 9: 288, 289, 291, 292,	Ch. 1: 35, 36
/WAIT	308	Ch. 2: 57
Ch. 1: 34, 39	D0	
Ch. 2: 43, 46, 49	Ch. 1: 34, 36	F0IO
Ch. 9: 306	Ch. 2: 43, 44, 46, 49	Ch. 1: 34, 35, 37
/WD	D1	Ch. 4: 126, 128
Ch. 1: 34, 35, 37	Ch. 1: 34, 36	Ch. 5: 166, 182, 187, 189,
Ch. 9: 305	Ch. 2: 46, 49	190, 215
	D2	Ch. 6: 220, 223, 224, 226,
A0	Ch. 1: 34, 36	228, 230, 232, 235,
Ch. 1: 34, 36	Ch. 2: 46, 49	237–240, 242, 245, 254,
Ch. 2: 43, 44, 46–51, 53	D3	258, 271
ADJ_0	Ch. 1: 34, 36	Ch. 9: 302, 303
Ch. 1: 34, 35, 39	Ch. 2: 46, 49	F1_0
Ch. 5: 168	D4	Ch. 10: 328, 335

Ch. 1: 34, 35, 37 Ch. 6: 240, 255, 264 F1_1 Ch. 10: 328, 335 Ch. 1: 34, 35, 37 Ch. 6: 240, 256, 264, 265 Ch. 9: 288, 289, 308 GND Ch. 1: 34, 35, 36 GPIO0 Ch. 10: 328, 329, 333–336, 338 Ch. 1: 34, 35, 37 GPIO1 Ch. 10: 328, 329, 333–336, 338 Ch. 1: 34, 35, 37 GPIO1 Ch. 10: 328, 329, 333–336, 338 Ch. 1: 34, 35, 37 GPIO1 Ch. 10: 328, 329, 333–336, 338 Ch. 1: 34, 35, 37 GPIO1 Ch. 10: 328, 330, 331, 337 Ch. 1: 34, 35, 39 GPIO12 Ch. 10: 328, 330, 331, 337 Ch. 1: 34, 35, 38 GPIO14 Ch. 10: 328, 330, 331, 337 Ch. 1: 34, 35, 38 GPIO15 Ch. 10: 328, 330, 331, 337 Ch. 1: 34, 35, 38 GPIO16 Ch. 10: 328, 330, 331, 337 Ch. 1: 34, 35, 38 GPIO17 Ch. 10: 328, 330, 331, 337 Ch. 1: 34, 35, 38 GPIO17 Ch. 10: 328, 330, 331, 337 Ch. 1: 34, 35, 38 GPIO17 Ch. 10: 328, 331, 332, 337 Ch. 1: 34, 35, 38 GPIO17 Ch. 10: 328, 331, 332, 337 Ch. 1: 34, 35, 38 GPIO17 Ch. 10: 328, 331, 332, 337 Ch. 1: 34, 35, 38 GPIO17 Ch. 10: 328, 331, 332, 337 Ch. 1: 34, 35, 38 GPIO17 Ch. 10: 328, 331, 332, 337 Ch. 1: 34, 35, 38 GPIO17 Ch. 10: 328, 331, 332, 337 Ch. 1: 34, 35, 38 GPIO17 Ch. 10: 328, 331, 332, 337 Ch. 1: 34, 35, 38 GPIO17 Ch. 10: 328, 331, 332, 337 Ch. 1: 34, 35, 38 CPIO17 Ch. 10: 328, 331, 332, 337 Ch. 1: 34, 35, 38 CPIO19		1	1
FL 1		Ch. 1: 34, 35, 38	
Ch. 10: 328, 335 Ch. 1: 34, 35, 37 Ch. 6: 240, 256, 264, 265 Ch. 9: 288, 289, 308 GND Ch. 1: 34, 35, 36-39 GPIO0 Ch. 10: 328, 329, 333-336, 338 Ch. 1: 34, 35, 37 GPIO1 Ch. 10: 328, 329, 333-336, 338 Ch. 1: 34, 35, 37 GPIO1 Ch. 10: 328, 329, 333-336, 338 Ch. 1: 34, 35, 37 GPIO1 Ch. 10: 328, 329, 333-336, 338 Ch. 1: 34, 35, 37 GPIO10 Ch. 10: 328, 339, 331, 337 Ch. 1: 34, 35, 39 GPIO11 Ch. 10: 328, 330, 331, 337 Ch. 1: 34, 35, 39 GPIO12 Ch. 10: 328, 330, 331, 337 Ch. 1: 34, 35, 38 GPIO13 Ch. 10: 328, 330, 331, 337 Ch. 1: 34, 35, 38 GPIO14 Ch. 10: 328, 330, 331, 337 Ch. 1: 34, 35, 38 GPIO15 Ch. 10: 328, 330, 331, 337 Ch. 1: 34, 35, 38 GPIO16 Ch. 10: 328, 330, 331, 337 Ch. 1: 34, 35, 38 GPIO16 Ch. 10: 328, 330, 331, 337 Ch. 1: 34, 35, 38 GPIO16 Ch. 10: 328, 330, 331, 337 Ch. 1: 34, 35, 38 GPIO16 Ch. 10: 328, 330, 331, 337 Ch. 1: 34, 35, 38 GPIO16 Ch. 10: 328, 330, 331, 337 Ch. 1: 34, 35, 38 GPIO16 Ch. 10: 328, 330, 331, 337 Ch. 1: 34, 35, 38 GPIO16 Ch. 10: 328, 330, 331, 337 Ch. 1: 34, 35, 38 GPIO16 Ch. 10: 328, 330, 331, 337 Ch. 1: 34, 35, 38 GPIO16 Ch. 10: 328, 330, 331, 337 Ch. 1: 34, 35, 38 GPIO16 Ch. 10: 328, 330, 331, 337 Ch. 1: 34, 35, 38 GPIO17 Ch. 10: 328, 330, 331, 337 Ch. 1: 34, 35, 38 GPIO18 Ch. 10: 328, 330, 331, 337 Ch. 1: 34, 35, 38 GPIO18 Ch. 10: 328, 330, 331, 337 Ch. 1: 34, 35, 38 GPIO18 Ch. 10: 328, 330, 331, 337 Ch. 1: 34, 35, 38 GPIO18 Ch. 10: 328, 330, 331, 337 Ch. 1: 34, 35, 38 GPIO18 Ch. 10: 328, 330, 331, 337 Ch. 1: 34, 35, 38 GPIO18 Ch. 10: 328, 330, 331, 337 Ch. 1: 34, 35, 38 Ch. 1: 34, 35, 39	Ch. 6: 240, 255, 264	GPIO2	MODE1
Ch. 1: 34, 35, 37 Ch. 6: 240, 256, 264, 265 Ch. 9: 288, 289, 308 GND Ch. 1: 34, 35, 36–39 GPIO0 Ch. 10: 328, 329, 333–336, 338 Ch. 1: 34, 35, 37 GPIO1 Ch. 10: 328, 329, 333–336, 338 Ch. 1: 34, 35, 37 GPIO1 Ch. 10: 328, 329, 333–336, 338 Ch. 1: 34, 35, 37 GPIO1 Ch. 10: 328, 329, 333–336, 338 Ch. 1: 34, 35, 37 GPIO1 Ch. 10: 328, 330, 331, 337 Ch. 1: 34, 35, 39 GPIO11 Ch. 10: 328, 330, 331, 337 Ch. 1: 34, 35, 39 GPIO12 Ch. 10: 328, 330, 331, 337 Ch. 1: 34, 35, 38 GPIO14 Ch. 10: 328, 330, 331, 337 Ch. 1: 34, 35, 38 GPIO15 Ch. 10: 328, 330, 331, 337 Ch. 1: 34, 35, 38 GPIO15 Ch. 10: 328, 330, 331, 337 Ch. 1: 34, 35, 38 GPIO16 Ch. 10: 328, 330, 331, 337 Ch. 1: 34, 35, 38 GPIO17 Ch. 10: 328, 330, 331, 337 Ch. 1: 34, 35, 38 GPIO18 Ch. 10: 328, 330, 331, 337 Ch. 1: 34, 35, 38 GPIO17 Ch. 10: 328, 330, 331, 337 Ch. 1: 34, 35, 38 GPIO18 Ch. 10: 328, 331, 332, 337 Ch. 1: 34, 35, 38 GPIO17 Ch. 10: 328, 331, 332, 337 Ch. 1: 34, 35, 38 GPIO18 Ch. 10: 328, 331, 332, 337 Ch. 1: 34, 35, 38 GPIO19 Ch. 10: 328, 331, 332, 337 Ch. 1: 34, 35, 38 GPIO17 Ch. 10: 328, 331, 332, 337 Ch. 1: 34, 35, 38 GPIO18 Ch. 10: 328, 331, 332, 337 Ch. 1: 34, 35, 38 GPIO17 Ch. 10: 328, 331, 332, 337 Ch. 1: 34, 35, 38 GPIO18 Ch. 10: 328, 331, 332, 337 Ch. 1: 34, 35, 38 GPIO19 Ch. 10: 328, 331, 332, 337 Ch. 1: 34, 35, 38 GPIO19 Ch. 10: 328, 331, 332, 337 Ch. 1: 34, 35, 38 GPIO18 Ch. 10: 328, 331, 332, 337 Ch. 1: 34, 35, 38 GPIO19 Ch. 10: 328, 331, 332, 337 Ch. 1: 34, 35, 38 GPIO19 Ch. 10: 328, 331, 332, 337 Ch. 1: 34, 35, 38 GPIO19 Ch. 10: 328, 331, 332, 337 Ch. 1: 34, 35, 38 CPIO19 Ch. 10: 328, 331, 332, 337 Ch. 1: 34, 35, 38 CPIO19 Ch. 10: 328, 331, 332, 337 Ch. 1: 34, 35, 38 CPIO19 Ch. 10: 328, 331, 332, 337 Ch. 1: 34, 35, 38 CPIO19 CPIO20 CPI	F1_1	Ch. 10: 328, 329, 333–336,	Ch. 1: 34, 35, 37
Ch. 6: 240, 256, 264, 265 Ch. 9: 288, 289, 308 Ch. 1: 34, 35, 36–39 CPIO0 Ch. 10: 328, 329, 333–336, 338 Ch. 1: 34, 35, 37 CPIO1 Ch. 10: 328, 329, 333–336, 338 Ch. 1: 34, 35, 37 CPIO1 Ch. 10: 328, 330, 331, 337 Ch. 1: 34, 35, 39 CPIO10 Ch. 10: 328, 330, 331, 337 Ch. 1: 34, 35, 39 CPIO11 Ch. 10: 328, 330, 331, 337 Ch. 1: 34, 35, 39 CPIO12 Ch. 10: 328, 330, 331, 337 Ch. 1: 34, 35, 38 CPIO13 Ch. 10: 328, 330, 331, 337 Ch. 1: 34, 35, 38 CPIO14 Ch. 10: 328, 330, 331, 337 Ch. 1: 34, 35, 38 CPIO15 Ch. 10: 328, 330, 331, 337 Ch. 1: 34, 35, 38 CPIO16 Ch. 10: 328, 330, 331, 337 Ch. 1: 34, 35, 38 CPIO17 Ch. 10: 328, 330, 331, 337 Ch. 1: 34, 35, 38 CPIO18 Ch. 10: 328, 330, 331, 337 Ch. 1: 34, 35, 38 CPIO16 Ch. 10: 328, 330, 331, 337 Ch. 1: 34, 35, 38 CPIO17 Ch. 10: 328, 330, 331, 337 Ch. 1: 34, 35, 38 CPIO17 Ch. 10: 328, 330, 331, 337 Ch. 1: 34, 35, 38 CPIO17 Ch. 10: 328, 330, 331, 337 Ch. 1: 34, 35, 38 CPIO18 Ch. 10: 328, 331, 332, 337 Ch. 1: 34, 35, 38 CPIO17 Ch. 10: 328, 330, 331, 337 Ch. 1: 34, 35, 38 CPIO17 Ch. 10: 328, 330, 331, 337 Ch. 1: 34, 35, 38 CPIO17 Ch. 10: 328, 330, 331, 337 Ch. 1: 34, 35, 38 CPIO17 Ch. 10: 328, 330, 331, 337 Ch. 1: 34, 35, 38 CPIO18 Ch. 10: 328, 330, 331, 337 Ch. 1: 34, 35, 38 CPIO19 Ch. 10: 328, 330, 331, 337 Ch. 1: 34, 35, 38 CPIO19 Ch. 10: 328, 330, 331, 337 Ch. 1: 34, 35, 38 CPIO19 Ch. 10: 328, 330, 331, 337 Ch. 1: 34, 35, 38 CPIO19 Ch. 10: 328, 330, 331, 337 Ch. 1: 34, 35, 38 CPIO19 Ch. 10: 328, 330, 331, 337 Ch. 1: 34, 35, 38 CPIO19 Ch. 10: 328, 330, 331, 337 Ch. 1: 34, 35, 38 CPIO19 Ch. 10: 328, 330, 331, 337 Ch. 1: 34, 35, 38 CPIO19 Ch. 10: 328, 330, 331, 337 Ch. 1: 34, 35, 38 CPIO19 Ch. 10: 328, 330, 331, 337 Ch. 1: 34, 35, 38 CPIO19 Ch. 10: 328, 330, 331, 337 Ch. 1: 34, 35, 38 CPIO19 Ch. 10: 328, 330, 331, 337 Ch. 1: 34, 35, 38 CPIO19 Ch. 10: 328, 330, 331, 337 Ch. 1: 34, 35, 38 CPIO19 Ch. 10: 328, 330, 331, 337 Ch. 1: 34, 35, 38 CPIO19 Ch. 10: 328, 330, 331, 337 Ch. 1: 34, 35, 38 CPIO19 Ch. 10: 328, 330, 331, 337 Ch. 1: 34, 35, 38 Ch. 1: 34, 35, 39 Ch. 1: 34, 35, 39 Ch. 1: 34, 35	Ch. 10: 328, 335	338	Ch. 2: 42–44, 57
Ch. 9: 288, 289, 308 GND Ch. 10: 328, 329, 333-336, 338 Ch. 1: 34, 35, 36-39 GPIO0 Ch. 10: 328, 329, 333-336, 338 Ch. 1: 34, 35, 37 GPIO1 Ch. 10: 328, 329, 333-336, 338 Ch. 1: 34, 35, 37 GPIO1 Ch. 10: 328, 339, 331-336, 338 Ch. 1: 34, 35, 37 GPIO1 Ch. 10: 328, 330, 331, 337 Ch. 1: 34, 35, 39 GPIO12 Ch. 10: 328, 330, 331, 337 Ch. 1: 34, 35, 38 GPIO14 Ch. 10: 328, 330, 331, 337 Ch. 1: 34, 35, 38 GPIO15 Ch. 10: 328, 330, 331, 337 Ch. 1: 34, 35, 38 GPIO16 Ch. 10: 328, 330, 331, 337 Ch. 1: 34, 35, 38 GPIO17 Ch. 10: 328, 330, 331, 337 Ch. 1: 34, 35, 38 GPIO18 Ch. 10: 328, 330, 331, 337 Ch. 1: 34, 35, 38 GPIO19 Ch. 10: 328, 330, 331, 337 Ch. 1: 34, 35, 38 GPIO16 Ch. 10: 328, 330, 331, 337 Ch. 1: 34, 35, 38 GPIO17 Ch. 10: 328, 330, 331, 337 Ch. 1: 34, 35, 38 GPIO18 Ch. 10: 328, 330, 331, 337 Ch. 1: 34, 35, 38 GPIO17 Ch. 10: 328, 330, 331, 337 Ch. 1: 34, 35, 38 GPIO18 Ch. 10: 328, 330, 331, 337 Ch. 1: 34, 35, 38 GPIO17 Ch. 10: 328, 330, 331, 337 Ch. 1: 34, 35, 38 GPIO18 Ch. 10: 328, 331, 332, 337 Ch. 1: 34, 35, 38 GPIO17 Ch. 10: 328, 330, 331, 337 Ch. 1: 34, 35, 38 GPIO18 Ch. 10: 328, 330, 331, 337 Ch. 1: 34, 35, 38 GPIO18 Ch. 10: 328, 330, 331, 337 Ch. 1: 34, 35, 38 GPIO19 Ch. 10: 328, 330, 331, 337 Ch. 1: 34, 35, 38 GPIO17 Ch. 10: 328, 330, 331, 337 Ch. 1: 34, 35, 38 Ch. 1: 34, 35, 39 Ch. 1: 34, 35, 38 Ch. 1: 34, 35, 39 Ch. 1: 34,	Ch. 1: 34, 35, 37	Ch. 1: 34, 35, 37	Ch. 9: 298
GND Ch. 1: 34, 35, 36-39 GPIO0 Ch. 10: 328, 329, 333-336, 338 Ch. 1: 34, 35, 37 GPIO1 Ch. 10: 328, 329, 333-336, 338 Ch. 1: 34, 35, 37 GPIO10 Ch. 10: 328, 339, 331, 337 Ch. 1: 34, 35, 39 GPIO11 Ch. 10: 328, 339, 331, 337 Ch. 1: 34, 35, 39 GPIO12 Ch. 10: 328, 330, 331, 337 Ch. 1: 34, 35, 38 GPIO13 Ch. 10: 328, 330, 331, 337 Ch. 1: 34, 35, 38 GPIO14 Ch. 10: 328, 330, 331, 337 Ch. 1: 34, 35, 38 GPIO15 Ch. 10: 328, 330, 331, 337 Ch. 1: 34, 35, 38 GPIO16 GPIO17 Ch. 10: 328, 330, 331, 337 Ch. 1: 34, 35, 38 GPIO18 Ch. 10: 328, 330, 331, 337 Ch. 1: 34, 35, 38 GPIO17 Ch. 10: 328, 330, 331, 337 Ch. 1: 34, 35, 38 GPIO18 Ch. 10: 328, 330, 331, 337 Ch. 1: 34, 35, 38 GPIO16 GPIO17 Ch. 10: 328, 330, 331, 337 Ch. 1: 34, 35, 38 GPIO18 Ch. 10: 328, 330, 331, 337 Ch. 1: 34, 35, 38 GPIO19 Ch. 10: 328, 330, 331, 337 Ch. 1: 34, 35, 38 GPIO19 Ch. 10: 328, 330, 331, 337 Ch. 1: 34, 35, 38 GPIO16 Ch. 10: 328, 330, 331, 337 Ch. 1: 34, 35, 38 GPIO17 Ch. 10: 328, 330, 331, 337 Ch. 1: 34, 35, 38 GPIO18 Ch. 10: 328, 330, 331, 337 Ch. 1: 34, 35, 38 GPIO17 Ch. 10: 328, 330, 331, 337 Ch. 1: 34, 35, 38 GPIO18 Ch. 10: 328, 330, 331, 337 Ch. 1: 34, 35, 38 Ch. 1: 34, 35, 39 Ch. 1: 34	Ch. 6: 240, 256, 264, 265	GPIO3	
GND Ch. 1: 34, 35, 36–39 GPIO0 Ch. 10: 328, 329, 333–336, 338 Ch. 1: 34, 35, 37 GPIO1 Ch. 10: 328, 329, 333–336, 338 Ch. 1: 34, 35, 37 GPIO1 Ch. 10: 328, 330, 331, 337 Ch. 1: 34, 35, 38 GPIO14 Ch. 10: 328, 330, 331, 337 Ch. 1: 34, 35, 38 GPIO15 Ch. 10: 328, 330, 331, 337 Ch. 1: 34, 35, 38 GPIO16 Ch. 10: 328, 330, 331, 337 Ch. 1: 34, 35, 38 GPIO17 Ch. 10: 328, 330, 331, 337 Ch. 1: 34, 35, 38 GPIO17 Ch. 10: 328, 330, 331, 337 Ch. 1: 34, 35, 38 GPIO17 Ch. 10: 328, 330, 331, 337 Ch. 1: 34, 35, 38 GPIO16 Ch. 10: 328, 330, 331, 337 Ch. 1: 34, 35, 38 GPIO17 Ch. 10: 328, 330, 331, 337 Ch. 1: 34, 35, 38 GPIO17 Ch. 10: 328, 330, 331, 337 Ch. 1: 34, 35, 38 GPIO16 Ch. 10: 328, 330, 331, 337 Ch. 1: 34, 35, 38 GPIO17 Ch. 10: 328, 330, 331, 337 Ch. 1: 34, 35, 38 GPIO17 Ch. 10: 328, 330, 331, 337 Ch. 1: 34, 35, 38 GPIO17 Ch. 10: 328, 330, 331, 337 Ch. 1: 34, 35, 38 GPIO17 Ch. 10: 328, 330, 331, 337 Ch. 1: 34, 35, 38 GPIO17 Ch. 10: 328, 330, 331, 337 Ch. 1: 34, 35, 38 GPIO17 Ch. 10: 328, 330, 331, 337 Ch. 1: 34, 35, 38 GPIO17 Ch. 10: 328 Ch. 1: 34, 35, 38 GPIO17 Ch. 10: 328 Ch. 1: 34, 35, 39 Ch. 1: 34, 35, 39 Ch. 1: 34, 35, 39 Ch. 1: 34, 35, 38 Ch. 1: 34, 35, 39 Ch. 1: 34, 35, 38 Ch. 1: 34, 35, 37 Ch. 1: 34, 35, 38 Ch. 1: 34, 35, 37 Ch. 1: 34, 35, 38 Ch. 1: 34, 35, 37 Ch. 1: 34, 35, 38 Ch. 1: 34, 35, 37 Ch. 1: 34, 35, 38 Ch. 1: 34, 35, 39 Ch. 1: 34, 35, 38 Ch. 1: 34, 35, 39 Ch. 1: 34, 35, 38 Ch. 1: 34, 35, 39	Ch. 9: 288, 289, 308	Ch. 10: 328, 329, 333–336,	NC
Ch. 1: 34, 35, 36–39 GPIO0 Ch. 10: 328, 329, 333–336, 338 Ch. 1: 34, 35, 37 GPIO1 Ch. 10: 328, 329, 333–336, 338 Ch. 1: 34, 35, 37 GPIO1 Ch. 10: 328, 339, 331–336, 338 Ch. 1: 34, 35, 37 GPIO10 Ch. 10: 328, 330, 331, 337 Ch. 1: 34, 35, 39 GPIO11 Ch. 10: 328, 330, 331, 337 Ch. 1: 34, 35, 38 GPIO13 Ch. 10: 328, 330, 331, 337 Ch. 1: 34, 35, 38 GPIO14 Ch. 10: 328, 330, 331, 337 Ch. 1: 34, 35, 38 GPIO15 Ch. 10: 328, 330, 331, 337 Ch. 1: 34, 35, 38 GPIO16 Ch. 10: 328, 330, 331, 337 Ch. 1: 34, 35, 38 GPIO17 Ch. 10: 328, 330, 331, 337 Ch. 1: 34, 35, 38 GPIO16 Ch. 10: 328, 330, 331, 337 Ch. 1: 34, 35, 38 GPIO17 Ch. 10: 328, 330, 331, 337 Ch. 1: 34, 35, 38 GPIO16 Ch. 10: 328, 330, 331, 337 Ch. 1: 34, 35, 38 GPIO17 Ch. 10: 328, 330, 331, 337 Ch. 1: 34, 35, 38 GPIO37 Ch. 10: 328, 330, 331, 337 Ch. 1: 34, 35, 38 GPIO16 Ch. 10: 328, 330, 331, 337 Ch. 1: 34, 35, 38 GPIO17 Ch. 10: 328, 330, 331, 337 Ch. 1: 34, 35, 38 GPIO37 Ch. 10: 328, 330, 331, 337 Ch. 1: 34, 35, 38 GPIO37 Ch. 10: 328, 330, 331, 337 Ch. 1: 34, 35, 38 GPIO37 Ch. 10: 328, 330, 331, 337 Ch. 1: 34, 35, 38 GPIO37 Ch. 10: 328, 330, 331, 337 Ch. 1: 34, 35, 38 GPIO37 Ch. 10: 328, 330, 331, 337 Ch. 1: 34, 35, 38 GPIO38 Ch. 10: 328, 330, 331, 337 Ch. 1: 34, 35, 38 GPIO39 Ch. 10: 328, 330, 331, 337 Ch. 1: 34, 35, 38 CPIO38 Ch. 10: 328, 330, 331, 337 Ch. 1: 34, 35, 38 CPIO38 CPIO39 CP		338	Ch. 1: 35, 39
GPIO0 Ch. 10: 328, 329, 333–336, 338 Ch. 1: 34, 35, 37 GPIO1 Ch. 10: 328, 329, 333–336, 338 Ch. 1: 34, 35, 37 GPIO10 Ch. 10: 328, 339, 333–336, 338 Ch. 1: 34, 35, 37 GPIO10 Ch. 10: 328, 330, 331, 337 Ch. 1: 34, 35, 38 GPIO14 Ch. 10: 328, 330, 331, 337 Ch. 1: 34, 35, 38 GPIO15 Ch. 10: 328, 330, 331, 337 Ch. 1: 34, 35, 38 GPIO16 Ch. 10: 328, 330, 331, 337 Ch. 1: 34, 35, 38 GPIO17 Ch. 10: 328, 330, 331, 337 Ch. 1: 34, 35, 38 GPIO16 Ch. 10: 328, 330, 331, 337 Ch. 1: 34, 35, 38 GPIO17 Ch. 10: 328, 330, 331, 337 Ch. 1: 34, 35, 38 GPIO17 Ch. 10: 328, 330, 331, 337 Ch. 1: 34, 35, 38 GPIO16 Ch. 10: 328, 330, 331, 337 Ch. 1: 34, 35, 38 GPIO17 Ch. 10: 328, 330, 331, 337 Ch. 1: 34, 35, 38 GPIO16 Ch. 10: 328, 330, 331, 337 Ch. 1: 34, 35, 38 GPIO17 Ch. 10: 328, 330, 331, 337 Ch. 1: 34, 35, 38 GPIO17 Ch. 10: 328, 330, 331, 337 Ch. 1: 34, 35, 38 GPIO17 Ch. 10: 328, 330, 331, 337 Ch. 1: 34, 35, 38 GPIO17 Ch. 10: 328, 330, 331, 337 Ch. 1: 34, 35, 38 GPIO17 Ch. 10: 328, 330, 331, 337 Ch. 1: 34, 35, 38 GPIO17 Ch. 10: 328, 330, 331, 337 Ch. 1: 34, 35, 38 GPIO18 Ch. 10: 328, 330, 331, 337 Ch. 1: 34, 35, 38 GPIO17 Ch. 10: 328, 339, 333–336, 338 Ch. 1: 34, 35, 37 Ch. 1: 34, 35, 39 Ch. 1: 34, 35, 37 Ch. 1: 34, 35, 38 CPIO18 Ch. 10: 328, 330, 331, 337 Ch. 1: 34, 35, 38 GPIO19 Ch. 10: 328, 330, 331, 337 Ch. 1: 34, 35, 38 GPIO19 Ch. 10: 328, 330, 331, 337 Ch. 1: 34, 35, 38 GPIO19 Ch. 10: 328, 330, 331, 337 Ch. 1: 34, 35, 38 GPIO19 Ch. 10: 328, 330, 331, 337 Ch. 1: 34, 35, 38 GPIO19 Ch. 10: 328, 330, 331, 337 Ch. 1: 34, 35, 38 Ch. 1: 34, 35, 39		Ch. 1: 34, 35, 37	OSC IN
Ch. 10: 328, 329, 333–336, 338 Ch. 1: 34, 35, 37 GPIO1 Ch. 10: 328, 329, 333–336, 338 Ch. 1: 34, 35, 37 GPIO10 Ch. 10: 328, 330, 331, 337 Ch. 1: 34, 35, 39 GPIO11 Ch. 10: 328, 330, 331, 337 Ch. 1: 34, 35, 39 GPIO12 Ch. 10: 328, 330, 331, 337 Ch. 1: 34, 35, 38 GPIO13 Ch. 10: 328, 330, 331, 337 Ch. 1: 34, 35, 38 GPIO16 Ch. 10: 328, 330, 331, 337 Ch. 1: 34, 35, 38 GPIO17 Ch. 10: 328, 330, 331, 337 Ch. 1: 34, 35, 38 GPIO16 Ch. 10: 328, 330, 331, 337 Ch. 1: 34, 35, 38 GPIO17 Ch. 10: 328, 330, 331, 337 Ch. 1: 34, 35, 38 GPIO16 Ch. 10: 328, 330, 331, 337 Ch. 1: 34, 35, 38 GPIO17 Ch. 10: 328, 330, 331, 337 Ch. 1: 34, 35, 38 GPIO16 Ch. 10: 328, 330, 331, 337 Ch. 1: 34, 35, 38 GPIO17 Ch. 10: 328, 330, 331, 337 Ch. 1: 34, 35, 38 GPIO17 Ch. 10: 328, 330, 331, 337 Ch. 1: 34, 35, 38 GPIO17 Ch. 10: 328, 330, 331, 337 Ch. 1: 34, 35, 38 GPIO17 Ch. 10: 328, 330, 331, 337 Ch. 1: 34, 35, 38 GPIO17 Ch. 10: 328, 330, 331, 337 Ch. 1: 34, 35, 38 GPIO17 Ch. 10: 328, 330, 331, 337 Ch. 1: 34, 35, 38 GPIO17 Ch. 1: 34, 35, 38 GPIO17 Ch. 10: 328 Ch. 10: 328, 330, 331, 337 Ch. 1: 34, 35, 38 GPIO17 Ch. 10: 328 Ch. 1: 34, 35, 39 Ch. 1: 34, 35, 38 Ch. 1: 34, 35, 39 Ch. 1: 34, 35, 38 Ch. 1: 34, 35, 39 Ch. 1: 34, 35, 38 Ch. 1: 34, 35, 39 Ch. 1: 34, 35,		GPIO4	
338 Ch. 1: 34, 35, 37 GPIO1 Ch. 10: 328, 329, 333–336, 338 Ch. 1: 34, 35, 37 GPIO10 Ch. 10: 328, 339, 331, 337 Ch. 1: 34, 35, 39 GPIO11 Ch. 10: 328, 330, 331, 337 Ch. 1: 34, 35, 38 GPIO12 Ch. 10: 328, 330, 331, 337 Ch. 1: 34, 35, 38 GPIO13 Ch. 10: 328, 330, 331, 337 Ch. 1: 34, 35, 38 GPIO14 Ch. 10: 328, 330, 331, 337 Ch. 1: 34, 35, 38 GPIO15 Ch. 10: 328, 330, 331, 337 Ch. 1: 34, 35, 38 GPIO16 Ch. 10: 328, 330, 331, 337 Ch. 1: 34, 35, 38 GPIO15 Ch. 10: 328, 330, 331, 337 Ch. 1: 34, 35, 38 GPIO16 Ch. 10: 328, 330, 331, 337 Ch. 1: 34, 35, 38 GPIO17 Ch. 10: 328, 330, 331, 337 Ch. 1: 34, 35, 38 GPIO16 Ch. 10: 328, 330, 331, 337 Ch. 1: 34, 35, 38 GPIO17 Ch. 10: 328, 330, 331, 337 Ch. 1: 34, 35, 38 GPIO16 Ch. 10: 328, 330, 331, 337 Ch. 1: 34, 35, 38 GPIO17 Ch. 10: 328, 330, 331, 337 Ch. 1: 34, 35, 38 GPIO16 Ch. 10: 328, 330, 331, 337 Ch. 1: 34, 35, 38 GPIO17 Ch. 10: 328, 330, 331, 337 Ch. 1: 34, 35, 38 GPIO16 Ch. 10: 328, 330, 331, 337 Ch. 1: 34, 35, 38 GPIO17 Ch. 10: 328, 330, 331, 337 Ch. 1: 34, 35, 38 GPIO16 Ch. 10: 328, 330, 331, 337 Ch. 1: 34, 35, 38 GPIO17 Ch. 10: 328, 330, 331, 337 Ch. 1: 34, 35, 38 GPIO18 Ch. 10: 328, 330, 331, 337 Ch. 1: 34, 35, 38 GPIO17 Ch. 10: 328, 330, 331, 337 Ch. 1: 34, 35, 38 Ch. 1: 34, 35, 39 Ch. 1: 34, 35, 38 Ch. 1: 34, 35, 39 Ch. 1: 34, 35, 38 Ch. 1: 34, 35, 39 Ch. 1: 34, 35, 38 Ch. 1: 34, 35, 39 Ch. 1: 34, 35, 38 Ch. 1: 34, 35, 38 Ch. 1: 34, 35, 39 Ch. 1: 34, 35, 38 Ch. 1: 34, 35, 39 Ch. 1: 34, 35, 38 Ch. 1: 34, 35, 39 Ch. 1: 34, 35,	GPIO0	Ch. 10: 328, 329, 333–336,	
Ch. 1: 34, 35, 37 GPIO1 Ch. 10: 328, 329, 333–336, 338 Ch. 1: 34, 35, 37 GPIO10 Ch. 10: 328, 339, 331, 337 Ch. 1: 34, 35, 39 GPIO13 Ch. 10: 328, 330, 331, 337 Ch. 1: 34, 35, 38 GPIO14 Ch. 10: 328, 330, 331, 337 Ch. 1: 34, 35, 38 GPIO16 Ch. 10: 328, 330, 331, 337 Ch. 1: 34, 35, 38 GPIO16 Ch. 10: 328, 330, 331, 337 Ch. 1: 34, 35, 38 GPIO17 Ch. 10: 328, 330, 331, 337 Ch. 1: 34, 35, 38 GPIO16 Ch. 10: 328, 330, 331, 337 Ch. 1: 34, 35, 38 GPIO17 Ch. 10: 328, 330, 331, 337 Ch. 1: 34, 35, 38 GPIO16 Ch. 10: 328, 330, 331, 337 Ch. 1: 34, 35, 38 GPIO16 Ch. 10: 328, 330, 331, 337 Ch. 1: 34, 35, 38 GPIO16 Ch. 10: 328, 330, 331, 337 Ch. 1: 34, 35, 38 GPIO16 Ch. 10: 328, 330, 331, 337 Ch. 1: 34, 35, 38 GPIO16 Ch. 10: 328, 330, 331, 337 Ch. 1: 34, 35, 38 GPIO17 Ch. 10: 328, 330, 331, 337 Ch. 1: 34, 35, 38 GPIO17 Ch. 10: 328, 330, 331, 337 Ch. 1: 34, 35, 38 GPIO17 Ch. 10: 328, 330, 331, 337 Ch. 1: 34, 35, 38 GPIO18 Ch. 10: 328, 330, 331, 332, 337 Ch. 1: 34, 35, 38 GPIO17 Ch. 10: 328, 330, 331, 337 Ch. 1: 34, 35, 38 GPIO18 Ch. 10: 328, 330, 331, 337 Ch. 1: 34, 35, 38 GPIO17 Ch. 10: 328, 330, 331, 337 Ch. 1: 34, 35, 38 GPIO18 Ch. 10: 328, 330, 331, 337 Ch. 1: 34, 35, 38 CPIO18 CR. 10: 328, 333, 331, 332, 337 CR. 1: 34, 35, 39 CR. 1: 34, 35, 39 CR. 1: 34, 35, 37 CR. 1: 34, 35, 39 CR. 1: 34, 35, 39 CR. 1: 34, 35, 37 CR. 1: 34, 35, 39 CR. 1: 34, 35, 39 CR. 1: 34, 35, 39 CR. 1: 34, 35, 37 CR. 1: 34, 35, 39 CR. 1: 34, 35, 39 CR. 1: 34, 35, 39 CR. 1: 34, 35, 37 CR. 1: 34, 35, 39 CR. 1: 34	Ch. 10: 328, 329, 333–336,	338	
Ch. 1: 34, 35, 37 GPIO1 Ch. 10: 328, 329, 333–336, 338 Ch. 1: 34, 35, 37 GPIO10 Ch. 10: 328, 330, 331, 337 Ch. 1: 34, 35, 39 GPIO11 Ch. 10: 328, 330, 331, 337 Ch. 1: 34, 35, 38 GPIO14 Ch. 10: 328, 330, 331, 337 Ch. 1: 34, 35, 38 GPIO16 Ch. 10: 328, 330, 331, 337 Ch. 1: 34, 35, 38 GPIO17 Ch. 10: 328, 330, 331, 337 Ch. 1: 34, 35, 38 GPIO17 Ch. 10: 328, 330, 331, 337 Ch. 1: 34, 35, 38 GPIO17 Ch. 10: 328, 330, 331, 337 Ch. 1: 34, 35, 38 GPIO17 Ch. 10: 328, 330, 331, 337 Ch. 1: 34, 35, 38 GPIO17 Ch. 10: 328, 330, 331, 337 Ch. 1: 34, 35, 38 GPIO17 Ch. 10: 328, 330, 331, 337 Ch. 1: 34, 35, 38 GPIO17 Ch. 10: 328, 330, 331, 337 Ch. 1: 34, 35, 38 GPIO17 Ch. 10: 328, 330, 331, 337 Ch. 1: 34, 35, 38 GPIO17 Ch. 10: 328, 330, 331, 337 Ch. 1: 34, 35, 38 GPIO17 Ch. 10: 326, 328, 331, 332, 337 Ch. 1: 34, 35, 38 GPIO18 Ch. 10: 328, 331, 332, 337 Ch. 1: 34, 35, 38 GPIO19 Ch. 10: 328, 330, 331, 337 Ch. 1: 34, 35, 38 GPIO17 Ch. 10: 328, 331, 332, 337 Ch. 1: 34, 35, 38 GPIO18 Ch. 10: 328, 331, 332, 337 Ch. 1: 34, 35, 38 GPIO19 Ch. 10: 326, 328, 331, 332, 337 Ch. 1: 34, 35, 38 GPIO19 Ch. 10: 326, 528, 331, 332, 337 Ch. 1: 34, 35, 38 Ch. 1: 34, 35, 39 Ch. 1: 34, 35, 39 Ch. 1: 34, 35, 38 Ch. 1: 34, 35, 39 Ch. 1: 34, 35, 38 Ch. 1: 34, 35, 39 Ch. 1: 34, 35, 39 Ch. 1: 34, 35, 39 Ch. 1: 34, 35, 38 Ch. 1: 34, 35, 39 Ch. 1: 34, 35, 38 Ch. 1: 34, 35, 39		Ch. 1: 34, 35, 37	
GPIO1 Ch. 10: 328, 329, 333–336, 338 Ch. 1: 34, 35, 37 GPIO10 Ch. 10: 328, 330, 331, 337 Ch. 1: 34, 35, 39 GPIO11 Ch. 10: 326, 328, 330, 331, 337 Ch. 1: 34, 35, 38 GPIO13 Ch. 10: 328, 330, 331, 337 Ch. 1: 34, 35, 38 GPIO15 Ch. 10: 328, 330, 331, 337 Ch. 1: 34, 35, 38 GPIO15 Ch. 10: 328, 330, 331, 337 Ch. 1: 34, 35, 38 GPIO15 Ch. 10: 328, 330, 331, 337 Ch. 1: 34, 35, 38 GPIO15 Ch. 10: 328, 330, 331, 337 Ch. 1: 34, 35, 38 GPIO16 Ch. 10: 328, 330, 331, 337 Ch. 1: 34, 35, 38 GPIO17 Ch. 10: 328, 330, 331, 337 Ch. 1: 34, 35, 38 GPIO18 Ch. 10: 328, 330, 331, 337 Ch. 1: 34, 35, 38 GPIO16 Ch. 10: 328, 330, 331, 337 Ch. 1: 34, 35, 38 GPIO16 Ch. 10: 326, 328, 331, 332, 337 Ch. 1: 34, 35, 38 GPIO16 Ch. 10: 326, 328, 331, 332, 337 Ch. 1: 34, 35, 38 GPIO17 Ch. 10: 328, 330, 331, 337 Ch. 1: 34, 35, 38 GPIO16 Ch. 10: 328, 330, 331, 337 Ch. 1: 34, 35, 38 GPIO17 Ch. 10: 328, 330, 331, 337 Ch. 1: 34, 35, 38 GPIO18 Ch. 10: 328, 331, 332, 337 Ch. 1: 34, 35, 38 GPIO18 Ch. 10: 328, 331, 332, 337 Ch. 1: 34, 35, 38 GPIO17 Ch. 10: 326, 328, 331, 332, 337 Ch. 1: 34, 35, 38 CPIO18 Ch. 10: 328, 330, 331, 337 Ch. 1: 34, 35, 38 CPIO19 Ch. 10: 326, 328, 331, 332, 337 Ch. 1: 34, 35, 38 CPIO19 Ch. 10: 326, 328, 331, 332, 337 Ch. 1: 34, 35, 38 CPIO19 Ch. 10: 326, 328, 331, 332, 337 Ch. 1: 34, 35, 38 CPIO19 Ch. 10: 326, 328, 331, 332, 337 Ch. 1: 34, 35, 38 CPIO19 CPIO18 Ch. 10: 328, 330, 331, 337 Ch. 1: 34, 35, 38 CPIO19 Ch. 10: 328, 330, 331, 337 Ch. 1: 34, 35, 38 CPIO19 Ch. 10: 328, 330, 331, 337 Ch. 1: 34, 35, 38 CPIO19 Ch. 10: 328, 330, 331, 337 Ch. 1: 34, 35, 39 Ch	Ch. 1: 34, 35, 37		
Ch. 10: 328, 329, 333–336, 338 Ch. 1: 34, 35, 37 GPIO10 Ch. 10: 328, 330, 331, 337 Ch. 1: 34, 35, 39 GPIO11 Ch. 10: 328, 330, 331, 337 Ch. 1: 34, 35, 39 GPIO12 Ch. 10: 328, 330, 331, 337 Ch. 1: 34, 35, 38 GPIO13 Ch. 10: 328, 330, 331, 337 Ch. 1: 34, 35, 38 GPIO14 Ch. 10: 328, 330, 331, 337 Ch. 1: 34, 35, 38 GPIO15 Ch. 10: 328, 330, 331, 337 Ch. 1: 34, 35, 38 GPIO15 Ch. 10: 328, 330, 331, 337 Ch. 1: 34, 35, 38 GPIO15 Ch. 10: 328, 330, 331, 337 Ch. 1: 34, 35, 38 GPIO15 Ch. 10: 328, 330, 331, 337 Ch. 1: 34, 35, 38 GPIO15 Ch. 10: 328, 330, 331, 337 Ch. 1: 34, 35, 38 GPIO15 Ch. 10: 328, 330, 331, 337 Ch. 1: 34, 35, 38 GPIO17 Ch. 10: 328, 330, 331, 337 Ch. 1: 34, 35, 38 GPIO15 Ch. 10: 328, 330, 331, 337 Ch. 1: 34, 35, 38 GPIO15 Ch. 10: 328, 330, 331, 337 Ch. 1: 34, 35, 38 GPIO15 Ch. 10: 328, 330, 331, 337 Ch. 1: 34, 35, 38 GPIO17 Ch. 10: 328, 330, 331, 337 Ch. 1: 34, 35, 38 GPIO17 Ch. 10: 328, 330, 331, 337 Ch. 1: 34, 35, 38 GPIO17 Ch. 10: 328, 330, 331, 337 Ch. 1: 34, 35, 38 GPIO17 Ch. 10: 328, 330, 331, 337 Ch. 1: 34, 35, 38 GPIO17 Ch. 10: 328, 330, 331, 337 Ch. 1: 34, 35, 38 GPIO18 Ch. 10: 328, 330, 331, 337 Ch. 1: 34, 35, 38 GPIO19 Ch. 10: 328, 330, 331, 337 Ch. 1: 34, 35, 38 GPIO19 Ch. 10: 328, 330, 331, 337 Ch. 1: 34, 35, 38 GPIO19 Ch. 10: 328, 330, 331, 337 Ch. 1: 34, 35, 38 GPIO19 Ch. 10: 328, 330, 331, 337 Ch. 1: 34, 35, 38 GPIO19 Ch. 10: 328, 330, 331, 337 Ch. 1: 34, 35, 38 GPIO19 Ch. 10: 328, 330, 331, 337 Ch. 1: 34, 35, 38 Ch. 1: 34, 35, 39	GPIO1		Ch. 9: 288, 289, 291
Ch. 1: 34, 35, 37 GPIO10 Ch. 10: 328, 330, 331, 337 Ch. 1: 34, 35, 39 GPIO11 Ch. 10: 326, 328, 330, 331, 337 Ch. 1: 34, 35, 39 GPIO12 Ch. 10: 328, 330, 331, 337 Ch. 1: 34, 35, 38 GPIO13 Ch. 10: 328, 330, 331, 337 Ch. 1: 34, 35, 38 GPIO14 Ch. 10: 328, 330, 331, 337 Ch. 1: 34, 35, 38 GPIO14 Ch. 10: 328, 330, 331, 337 Ch. 1: 34, 35, 38 GPIO14 Ch. 10: 328, 330, 331, 337 Ch. 1: 34, 35, 38 GPIO15 Ch. 10: 328, 330, 331, 337 Ch. 1: 34, 35, 38 GPIO16 Ch. 10: 328, 330, 331, 337 Ch. 1: 34, 35, 38 GPIO16 Ch. 10: 328, 330, 331, 337 Ch. 1: 34, 35, 38 GPIO17 Ch. 10: 328, 330, 331, 337 Ch. 1: 34, 35, 38 GPIO16 Ch. 10: 328, 330, 331, 337 Ch. 1: 34, 35, 38 GPIO16 Ch. 10: 328, 330, 331, 337 Ch. 1: 34, 35, 38 GPIO16 Ch. 10: 328, 330, 331, 337 Ch. 1: 34, 35, 38 GPIO17 Ch. 10: 328, 330, 331, 337 Ch. 1: 34, 35, 38 GPIO18 Ch. 10: 326, 328, 331, 332, 337 Ch. 1: 34, 35, 38 GPIO17 Ch. 10: 326, 328, 331, 332, 337 Ch. 1: 34, 35, 38 GPIO18 Ch. 10: 328, 330, 331, 337 Ch. 1: 34, 35, 38 GPIO19 Ch. 10: 328, 330, 331, 337 Ch. 1: 34, 35, 38 GPIO19 Ch. 10: 328, 330, 331, 337 Ch. 1: 34, 35, 38 GPIO19 Ch. 10: 328, 330, 331, 337 Ch. 1: 34, 35, 38 GPIO19 Ch. 10: 328, 330, 331, 337 Ch. 1: 34, 35, 38 Ch. 1: 34, 35, 39 Ch. 1: 34, 35, 39 Ch. 1: 34, 35, 39 Ch. 1: 34, 35, 38 Ch. 1: 34, 35, 39 Ch. 1: 34, 35, 39 Ch. 1: 34, 35, 38 Ch. 1: 34, 35, 39 Ch. 1: 34, 35, 39 Ch. 1: 34, 35, 38 Ch. 1: 34, 35, 39 Ch. 1: 34, 35,	Ch. 10: 328, 329, 333–336,		DWMO
Ch. 1: 34, 35, 37 GPIO10 Ch. 10: 328, 330, 331, 337 Ch. 1: 34, 35, 39 GPIO11 Ch. 10: 326, 328, 330, 331, 337 Ch. 1: 34, 35, 38 GPIO13 Ch. 10: 328, 330, 331, 337 Ch. 1: 34, 35, 38 GPIO13 Ch. 10: 328, 330, 331, 337 Ch. 1: 34, 35, 38 GPIO14 Ch. 10: 328, 330, 331, 337 Ch. 1: 34, 35, 38 GPIO15 Ch. 10: 328, 330, 331, 337 Ch. 1: 34, 35, 38 GPIO15 Ch. 10: 328, 330, 331, 337 Ch. 1: 34, 35, 38 GPIO16 Ch. 10: 328, 330, 331, 337 Ch. 1: 34, 35, 38 GPIO16 Ch. 10: 328, 330, 331, 337 Ch. 1: 34, 35, 38 GPIO17 Ch. 10: 328, 330, 331, 337 Ch. 1: 34, 35, 38 GPIO18 Ch. 10: 326, 328, 331, 332, 337 Ch. 1: 34, 35, 38 GPIO17 Ch. 10: 326, 328, 331, 332, 337 Ch. 1: 34, 35, 38 GPIO18 Ch. 10: 328, 331, 332, 337 Ch. 1: 34, 35, 38 GPIO17 Ch. 10: 326, 328, 331, 332, 337 Ch. 1: 34, 35, 38 GPIO17 Ch. 10: 326, 328, 331, 332, 337 Ch. 1: 34, 35, 38 GPIO17 Ch. 10: 326, 328, 331, 332, 337 Ch. 1: 34, 35, 38 GPIO17 Ch. 10: 326, 328, 331, 332, 337 Ch. 1: 34, 35, 38 GPIO19 Ch. 10: 328, 330, 331, 337 Ch. 1: 34, 35, 38 GPIO17 Ch. 10: 326, 328, 331, 332, 337 Ch. 1: 34, 35, 38 GPIO19 Ch. 10: 328, 330, 331, 337 Ch. 1: 34, 35, 38 Ch. 1: 34, 35, 39 Ch. 1: 34, 3	338		
Ch. 10: 328, 330, 331, 337 Ch. 1: 34, 35, 39 GPIO11 Ch. 10: 326, 328, 330, 331, 337 Ch. 1: 34, 35, 38 GPIO13 Ch. 10: 328, 330, 331, 337 Ch. 1: 34, 35, 38 GPIO14 Ch. 10: 328, 330, 331, 337 Ch. 1: 34, 35, 38 GPIO15 Ch. 10: 328, 330, 331, 337 Ch. 1: 34, 35, 38 GPIO16 Ch. 10: 328, 330, 331, 337 Ch. 1: 34, 35, 38 GPIO17 Ch. 10: 328, 330, 331, 337 Ch. 1: 34, 35, 38 GPIO18 Ch. 10: 328, 330, 331, 337 Ch. 1: 34, 35, 38 GPIO16 Ch. 10: 328, 330, 331, 337 Ch. 1: 34, 35, 38 GPIO17 Ch. 10: 328, 330, 331, 337 Ch. 1: 34, 35, 38 GPIO16 Ch. 10: 328, 330, 331, 337 Ch. 1: 34, 35, 38 GPIO17 Ch. 10: 328, 330, 331, 337 Ch. 1: 34, 35, 38 GPIO16 Ch. 10: 328, 330, 331, 337 Ch. 1: 34, 35, 38 GPIO17 Ch. 10: 328, 330, 331, 337 Ch. 1: 34, 35, 38 GPIO16 Ch. 10: 328, 330, 331, 337 Ch. 1: 34, 35, 38 Ch. 1: 34, 35, 39 Ch. 1: 34, 35, 39 Ch. 1: 34, 35, 39 Ch. 1: 34, 35, 38 Ch. 1: 34, 35, 39 Ch. 1: 34, 35, 39 Ch. 1: 34, 35, 39 Ch. 1: 34, 35, 38 Ch. 1: 34, 35, 39 Ch. 1: 34, 35, 39 Ch. 1: 34, 35, 39 Ch. 1: 34, 35, 38 Ch. 1: 34, 35, 39 Ch. 1: 34, 35, 39 Ch. 1: 34, 35, 39 Ch. 1: 34, 35, 38 Ch. 1: 34, 35, 39 Ch. 1: 34, 35, 38 Ch. 1: 34, 35, 39 Ch. 1: 34, 35, 38 Ch. 1: 34, 35, 39 Ch. 1: 34,	Ch. 1: 34, 35, 37		
Ch. 10: 328, 330, 331, 337 Ch. 1: 34, 35, 39 GPIO11 Ch. 10: 326, 328, 330, 331, 337 Ch. 1: 34, 35, 39 GPIO12 Ch. 10: 328, 330, 331, 337 Ch. 1: 34, 35, 38 GPIO13 Ch. 10: 328, 330, 331, 337 Ch. 1: 34, 35, 38 GPIO14 Ch. 10: 328, 330, 331, 337 Ch. 1: 34, 35, 38 GPIO15 Ch. 10: 328, 330, 331, 337 Ch. 1: 34, 35, 38 GPIO16 Ch. 10: 328, 330, 331, 337 Ch. 1: 34, 35, 38 GPIO16 Ch. 10: 328, 330, 331, 337 Ch. 1: 34, 35, 38 GPIO16 Ch. 10: 328, 330, 331, 337 Ch. 1: 34, 35, 38 GPIO17 Ch. 10: 328, 330, 331, 337 Ch. 1: 34, 35, 38 GPIO16 Ch. 10: 328, 330, 331, 337 Ch. 1: 34, 35, 38 GPIO17 Ch. 10: 328, 330, 331, 337 Ch. 1: 34, 35, 38 GPIO16 Ch. 10: 328, 330, 331, 337 Ch. 1: 34, 35, 38 GPIO17 Ch. 10: 328, 330, 331, 337 Ch. 1: 34, 35, 38 GPIO16 Ch. 10: 328, 330, 331, 337 Ch. 1: 34, 35, 38 GPIO17 Ch. 10: 328 Ch. 10: 34, 35, 39 Ch. 10: 328 Ch. 10: 34, 35, 39 Ch. 10: 328 Ch. 10: 328 Ch. 10: 34, 35, 39 Ch. 10: 328 Ch. 10: 34, 35,	GPIO10		
Ch. 1: 34, 35, 39 GPIO11 Ch. 10: 326, 328, 330, 331, 337 Ch. 1: 34, 35, 39 GPIO12 Ch. 10: 328, 330, 331, 337 Ch. 1: 34, 35, 38 GPIO13 Ch. 10: 328, 330, 331, 337 Ch. 1: 34, 35, 38 GPIO14 Ch. 10: 328, 330, 331, 337 Ch. 1: 34, 35, 38 GPIO15 Ch. 10: 328, 330, 331, 337 Ch. 1: 34, 35, 38 GPIO15 Ch. 10: 328, 330, 331, 337 Ch. 1: 34, 35, 38 GPIO16 Ch. 10: 326–328, 331, 332, 337 Ch. 1: 34, 35, 38 GPIO17 Ch. 10: 326–328, 331, 332, 337 Ch. 1: 34, 35, 38 GPIO18 Ch. 10: 328, 330, 331, 337 Ch. 1: 34, 35, 38 GPIO16 Ch. 10: 326–328, 331, 332, 337 Ch. 1: 34, 35, 38 GPIO17 Ch. 10: 328, 330, 331, 337 Ch. 1: 34, 35, 38 GPIO18 Ch. 10: 328 Ch. 1: 34, 35, 39 Ch. 1: 34, 35, 39 Ch. 1: 34, 35, 38 Ch. 1: 34, 35, 39 Ch. 1: 34, 35, 39 Ch. 1: 34, 35, 38 Ch. 1: 34, 35, 39 Ch. 1: 34, 35, 39 Ch. 1: 34, 35, 38 Ch. 1: 34, 35, 39 Ch. 1: 34, 35, 39 Ch. 1: 34, 35, 39 Ch. 1: 34, 35, 38 Ch. 1: 34, 35, 39 Ch. 1: 34, 35, 39 Ch. 1: 34, 35, 39 Ch. 1: 34, 35, 38 Ch. 1: 34, 35, 39 Ch. 1: 34, 35, 3	Ch. 10: 328, 330, 331, 337		
GPIO11 Ch. 10: 326, 328, 330, 331, 337 Ch. 1: 34, 35, 38 GPIO13 Ch. 10: 328, 330, 331, 337 Ch. 1: 34, 35, 38 GPIO14 Ch. 10: 328, 330, 331, 337 Ch. 1: 34, 35, 38 GPIO15 Ch. 10: 328, 330, 331, 337 Ch. 1: 34, 35, 38 GPIO16 Ch. 10: 328, 330, 331, 337 Ch. 1: 34, 35, 38 GPIO17 Ch. 10: 326, 328, 331, 332, 337 Ch. 1: 34, 35, 38 GPIO17 Ch. 10: 328, 331, 332, 337 Ch. 1: 34, 35, 38 GPIO17 Ch. 10: 326, 328, 331, 332, 337 Ch. 1: 34, 35, 38 GPIO18 Ch. 10: 328, 330, 331, 337 Ch. 1: 34, 35, 38 GPIO17 Ch. 10: 326, 328, 331, 332, 337 Ch. 1: 34, 35, 38 GPIO18 Ch. 10: 328, 330, 331, 337 Ch. 1: 34, 35, 38 GPIO19 Ch. 10: 328, 330, 331, 337 Ch. 1: 34, 35, 38 GPIO17 Ch. 10: 328, 331, 332, 337 Ch. 1: 34, 35, 38 GPIO18 Ch. 10: 328, 330, 331, 337 Ch. 1: 34, 35, 38 GPIO19 Ch. 10: 328, 330, 331, 337 Ch. 1: 34, 35, 38 Ch. 1: 34, 35, 39 Ch. 1: 34, 35, 38 Ch. 1: 34, 35, 39 Ch. 1: 34, 35, 38 Ch. 1: 34, 35, 38 Ch. 1: 34, 35, 39 Ch. 1: 34, 35, 38 Ch. 1: 34, 35, 38 Ch. 1: 34, 35, 39 Ch. 1: 34, 35, 38 Ch. 1: 34, 35, 38 Ch. 1: 34, 35, 39 Ch. 1: 34, 35, 38 Ch. 1: 34, 35, 38 Ch. 1: 34, 35, 39 Ch. 1: 34, 35, 38 Ch. 1: 34, 35, 39 Ch. 1: 34, 35, 38 Ch. 1: 34, 35, 39 Ch. 1: 34, 35, 39 Ch. 1: 34, 35, 38 Ch. 1: 34, 35, 39 Ch.	Ch. 1: 34, 35, 39		
Ch. 10: 326, 328, 330, 331, 337 Ch. 1: 34, 35, 39 GPIO12 Ch. 10: 328, 330, 331, 337 Ch. 1: 34, 35, 38 GPIO3 Ch. 10: 328, 330, 331, 337 Ch. 1: 34, 35, 38 GPIO14 Ch. 10: 328, 330, 331, 337 Ch. 1: 34, 35, 38 GPIO15 Ch. 10: 328, 330, 331, 337 Ch. 1: 34, 35, 38 GPIO16 Ch. 10: 328, 330, 331, 337 Ch. 1: 34, 35, 38 GPIO16 Ch. 10: 328, 330, 331, 337 Ch. 1: 34, 35, 38 GPIO16 Ch. 10: 328, 330, 331, 337 Ch. 1: 34, 35, 38 GPIO16 Ch. 10: 328, 330, 331, 337 Ch. 1: 34, 35, 38 GPIO17 Ch. 10: 326, 328, 331, 332, 337 Ch. 1: 34, 35, 38 GPIO17 Ch. 10: 326, 328, 331, 332, 337 Ch. 1: 34, 35, 38 GPIO18 Ch. 10: 328 Ch. 10: 3	GPIO11		
337 Ch. 1: 34, 35, 39 GPIO12 Ch. 10: 328, 330, 331, 337 Ch. 1: 34, 35, 38 GPIO13 Ch. 10: 328, 330, 331, 337 Ch. 1: 34, 35, 38 GPIO14 Ch. 10: 328, 330, 331, 337 Ch. 1: 34, 35, 38 GPIO15 Ch. 10: 328, 330, 331, 337 Ch. 1: 34, 35, 38 GPIO15 Ch. 10: 328, 330, 331, 337 Ch. 1: 34, 35, 38 GPIO15 Ch. 10: 328, 330, 331, 337 Ch. 1: 34, 35, 38 GPIO16 Ch. 10: 328, 330, 331, 337 Ch. 1: 34, 35, 38 GPIO16 Ch. 10: 328, 330, 331, 337 Ch. 1: 34, 35, 38 GPIO16 Ch. 10: 326–328, 331, 332, 337 Ch. 1: 34, 35, 38 GPIO17 Ch. 10: 326, 328, 331, 332, 337 Ch. 1: 34, 35, 38 GPIO17 Ch. 10: 328, 331, 332, 337 Ch. 1: 34, 35, 38 GPIO18 Ch. 10: 328, 331, 332, 337 Ch. 1: 34, 35, 38 GPIO19 Ch. 10: 328 Ch. 1: 34, 35, 38 Ch. 1: 34, 35, 39 Ch. 1: 34, 35, 38 Ch. 1: 34, 35, 39 Ch. 1: 34, 35, 38 Ch. 1: 34, 35, 39 Ch. 1: 34, 35, 38 Ch. 1: 34, 35, 39 Ch. 1: 34, 35, 38 Ch. 1: 34, 35, 39 Ch.	Ch. 10: 326, 328, 330, 331,		
Ch. 1: 34, 35, 39 GPIO12 Ch. 10: 328, 330, 331, 337 Ch. 1: 34, 35, 38 GPIO13 Ch. 10: 328, 330, 331, 337 Ch. 1: 34, 35, 38 GPIO14 Ch. 10: 328, 330, 331, 337 Ch. 1: 34, 35, 38 GPIO14 Ch. 10: 328, 330, 331, 337 Ch. 1: 34, 35, 38 GPIO15 Ch. 10: 328, 330, 331, 337 Ch. 1: 34, 35, 38 GPIO15 Ch. 10: 328, 330, 331, 337 Ch. 1: 34, 35, 38 GPIO16 Ch. 10: 328, 330, 331, 337 Ch. 1: 34, 35, 38 GPIO16 Ch. 10: 326–328, 331, 332, 337 Ch. 1: 34, 35, 38 GPIO17 Ch. 10: 326, 328, 331, 332, 337 Ch. 1: 34, 35, 38 GPIO17 Ch. 10: 326, 328, 331, 332, 337 Ch. 1: 34, 35, 38 GPIO18 Ch. 10: 328, 331, 332, 337 Ch. 1: 34, 35, 38 GPIO18 Ch. 10: 328, 331, 332, 337 Ch. 1: 34, 35, 38 GPIO18 Ch. 10: 328, 331, 332, 337 Ch. 1: 34, 35, 38 GPIO18 Ch. 10: 328, 331, 332, 337 Ch. 1: 34, 35, 38 Ch. 1: 34, 35, 39 Ch. 1: 34, 35, 38 Ch. 1: 34, 35, 39 Ch. 1: 34, 35, 38 Ch. 1: 34, 35, 39 Ch. 1: 34, 35, 39 Ch. 1: 34, 35, 38 Ch. 1: 34, 35, 39 Ch. 1: 34, 35, 39 Ch. 1: 34, 35, 38 Ch. 1: 34, 35, 39 Ch. 1: 3	337		Ch. 7: 276–278
GPIO12 Ch. 10: 328, 330, 331, 337 Ch. 1: 34, 35, 38 GPIO13 Ch. 10: 328, 330, 331, 337 Ch. 1: 34, 35, 38 GPIO14 Ch. 10: 328, 330, 331, 337 Ch. 1: 34, 35, 38 GPIO15 Ch. 10: 328, 330, 331, 337 Ch. 1: 34, 35, 38 GPIO15 Ch. 10: 328, 330, 331, 337 Ch. 1: 34, 35, 38 GPIO16 Ch. 10: 328, 330, 331, 337 Ch. 1: 34, 35, 38 GPIO17 Ch. 10: 326–328, 331, 332, 337 Ch. 1: 34, 35, 38 GPIO17 Ch. 10: 326, 328, 331, 332, 337 Ch. 1: 34, 35, 38 GPIO17 Ch. 10: 326, 328, 331, 332, 337 Ch. 1: 34, 35, 38 GPIO17 Ch. 10: 328, 331, 332, 337 Ch. 1: 34, 35, 38 GPIO17 Ch. 10: 328, 331, 332, 337 Ch. 1: 34, 35, 38 GPIO17 Ch. 10: 328, 331, 332, 337 Ch. 1: 34, 35, 38 GPIO17 Ch. 10: 328, 331, 332, 337 Ch. 1: 34, 35, 38 GPIO19 Ch. 10: 328, 331, 332, 337 Ch. 1: 34, 35, 38 GPIO18 Ch. 10: 328, 331, 332, 337 Ch. 1: 34, 35, 38 GPIO18 Ch. 10: 328, 331, 332, 337 Ch. 1: 34, 35, 38 GPIO19 Ch. 10: 328, 330, 331, 337 Ch. 1: 34, 35, 38 Ch. 1: 34, 35, 38 Ch. 1: 34, 35, 38 Ch. 1: 34, 35, 39 Ch. 1: 34, 35, 38 Ch. 1: 34, 35, 39 Ch. 1: 34, 35, 39 Ch. 1: 34, 35, 38 Ch. 1: 34, 35, 39 Ch. 1: 34, 35, 39 Ch. 1: 34, 35, 38 Ch. 1: 34, 35, 39 Ch. 1: 34, 35,	Ch. 1: 34, 35, 39		P AO
Ch. 10: 328, 330, 331, 337 Ch. 1: 34, 35, 38 GPIO13 Ch. 10: 328, 330, 331, 337 Ch. 1: 34, 35, 38 GPIO14 Ch. 10: 328, 330, 331, 337 Ch. 1: 34, 35, 38 GPIO15 Ch. 10: 328, 330, 331, 337 Ch. 1: 34, 35, 38 GPIO15 Ch. 10: 328, 330, 331, 337 Ch. 1: 34, 35, 38 GPIO16 Ch. 10: 328, 330, 331, 337 Ch. 1: 34, 35, 38 GPIO16 Ch. 10: 326–328, 331, 332, 337 Ch. 1: 34, 35, 38 GPIO17 Ch. 10: 326, 328, 331, 332, 337 Ch. 1: 34, 35, 38 GPIO17 Ch. 10: 326, 328, 331, 332, 337 Ch. 1: 34, 35, 38 GPIO18 Ch. 10: 328, 331, 332, 337 Ch. 1: 34, 35, 38 GPIO18 Ch. 10: 328, 331, 332, 337 Ch. 1: 34, 35, 38 GPIO18 Ch. 10: 328, 331, 332, 337 Ch. 1: 34, 35, 38 GPIO19 Ch. 10: 328, 331, 332, 337 Ch. 1: 34, 35, 38 Ch. 1: 34, 35, 38 Ch. 1: 34, 35, 39 Ch. 1: 34, 35, 38 Ch. 1: 34, 35, 38 Ch. 1: 34, 35, 39 Ch. 1: 34, 35, 38 Ch. 1: 34, 35, 38 Ch. 1: 34, 35, 39 Ch. 1: 34, 35, 38 Ch. 1: 34, 35, 39			
Ch. 1: 34, 35, 38 GPIO13 Ch. 10: 328, 330, 331, 337 Ch. 1: 34, 35, 38 GPIO14 Ch. 10: 328, 330, 331, 337 Ch. 1: 34, 35, 38 GPIO15 Ch. 10: 328, 330, 331, 337 Ch. 1: 34, 35, 38 GPIO15 Ch. 10: 328, 330, 331, 337 Ch. 1: 34, 35, 38 GPIO16 Ch. 10: 328, 330, 331, 337 Ch. 1: 34, 35, 38 GPIO16 Ch. 10: 326-328, 331, 332, 337 Ch. 1: 34, 35, 38 GPIO17 Ch. 10: 326, 328, 331, 332, 337 Ch. 1: 34, 35, 38 GPIO17 Ch. 10: 326, 328, 331, 332, 337 Ch. 1: 34, 35, 38 GPIO18 Ch. 10: 328, 331, 332, 337 Ch. 1: 34, 35, 38 GPIO18 Ch. 10: 328, 331, 332, 337 Ch. 1: 34, 35, 38 GPIO18 Ch. 10: 328, 331, 332, 337 Ch. 1: 34, 35, 38 GPIO18 Ch. 10: 328, 331, 332, 337 Ch. 1: 34, 35, 38 GPIO19 Ch. 10: 328, 331, 332, 337 Ch. 1: 34, 35, 38 GPIO18 Ch. 10: 327, 328, 330, 331, 328 Ch. 1: 34, 35, 38 Ch. 5: 166, 182 Ch. 10: 328 Ch. 1: 34, 35, 38 Ch. 1: 34, 35, 39 Ch. 5: 166, 182 Ch. 10: 328 Ch. 1: 34, 35, 38 Ch. 1: 34, 35, 39 Ch. 1: 34, 35, 39 Ch. 2: 57, 65, 66 SPI_INV Ch. 1: 35, 39 Ch. 2: 57, 65, 66	Ch. 10: 328, 330, 331, 337		
GPIO13 Ch. 10: 328, 330, 331, 337 Ch. 1: 34, 35, 38 GPIO14 Ch. 10: 328, 330, 331, 337 Ch. 1: 34, 35, 38 GPIO15 Ch. 10: 328, 330, 331, 337 Ch. 1: 34, 35, 38 GPIO16 Ch. 10: 328, 331, 332, 337 Ch. 1: 34, 35, 38 GPIO17 Ch. 10: 326, 328, 331, 332, 337 Ch. 1: 34, 35, 38 GPIO17 Ch. 10: 326, 328, 331, 332, 337 Ch. 1: 34, 35, 38 GPIO18 Ch. 10: 328, 331, 332, 337 Ch. 1: 34, 35, 38 GPIO18 Ch. 10: 328, 331, 332, 337 Ch. 1: 34, 35, 38 GPIO18 Ch. 10: 328, 331, 332, 337 Ch. 1: 34, 35, 38 GPIO19 Ch. 10: 328, 331, 332, 337 Ch. 1: 34, 35, 38 GPIO19 Ch. 10: 328, 331, 332, 337 Ch. 1: 34, 35, 38 GPIO19 Ch. 10: 328, 331, 332, 337 Ch. 1: 34, 35, 38 GPIO19 Ch. 10: 328, 331, 332, 337 Ch. 1: 34, 35, 38 GPIO19 Ch. 10: 328, 331, 332, 337 Ch. 1: 34, 35, 38 Ch. 1: 34, 35, 38 Ch. 1: 34, 35, 39 Ch. 5: 168 Ch. 10: 328 Ch. 1: 34, 35, 39 Ch. 5: 166 SPI_INV Ch. 1: 35, 39 Ch. 2: 57, 65, 66 Ch. 1: 34, 35, 39 Ch. 2: 57, 65, 66			
Ch. 10: 328, 330, 331, 337 Ch. 1: 34, 35, 38 GPIO14 Ch. 10: 328, 330, 331, 337 Ch. 1: 34, 35, 38 GPIO15 Ch. 10: 328, 330, 331, 337 Ch. 1: 34, 35, 38 GPIO16 Ch. 10: 328, 330, 331, 337 Ch. 1: 34, 35, 38 GPIO16 Ch. 10: 328, 331, 332, 337 Ch. 1: 34, 35, 38 GPIO17 Ch. 10: 326, 328, 331, 332, 337 Ch. 1: 34, 35, 38 GPIO18 Ch. 10: 328, 331, 332, 337 Ch. 1: 34, 35, 38 GPIO18 Ch. 10: 328, 331, 332, 337 Ch. 1: 34, 35, 38 GPIO18 Ch. 10: 328, 331, 332, 337 Ch. 1: 34, 35, 38 GPIO18 Ch. 10: 328, 331, 332, 337 Ch. 1: 34, 35, 38 GPIO19 Ch. 10: 328, 331, 332, 337 Ch. 1: 34, 35, 38 GPIO19 Ch. 10: 328, 331, 332, 337 Ch. 1: 34, 35, 38 Ch. 1: 34, 35, 38 Ch. 1: 34, 35, 39 Ch. 1: 34, 35, 38 Ch. 1: 34, 35, 39 Ch. 1:			
Ch. 1: 34, 35, 38 GPIO14 Ch. 10: 328, 330, 331, 337 Ch. 1: 34, 35, 38 GPIO15 Ch. 10: 328, 330, 331, 337 Ch. 10: 328, 331, 332, 337 Ch.			
GPIO14 Ch. 10: 328, 330, 331, 337 Ch. 1: 34, 35, 38 GPIO15 Ch. 10: 328, 330, 331, 337 Ch. 1: 34, 35, 38 Ch. 10: 328, 330, 331, 337 Ch. 1: 34, 35, 38 Ch. 10: 328 Ch. 10: 326-328, 331, 332, Ch. 1: 34, 35, 38 Ch. 1: 34, 35, 38 Ch. 1: 34, 35, 39 Ch. 10: 328 Ch.			
Ch. 10: 328, 330, 331, 337 Ch. 1: 34, 35, 38 GPIO15 Ch. 10: 328, 330, 331, 337 Ch. 1: 34, 35, 38 GPIO16 Ch. 10: 326–328, 331, 332, 337 Ch. 1: 34, 35, 38 GPIO17 Ch. 10: 326, 328, 331, 332, Ch. 1: 34, 35, 38 GPIO17 Ch. 10: 326, 328, 331, 332, Ch. 1: 34, 35, 38 GPIO18 Ch. 10: 328, 331, 332, 337 Ch. 1: 34, 35, 38 GPIO18 Ch. 10: 328, 331, 332, 337 Ch. 1: 34, 35, 38 GPIO19 Ch. 10: 328, 331, 332, 337 Ch. 1: 34, 35, 38 GPIO19 Ch. 10: 328, 331, 332, 337 Ch. 1: 34, 35, 38 Ch. 1: 34, 35, 38 Ch. 1: 34, 35, 38 Ch. 1: 34, 35, 38 Ch. 1: 34, 35, 38 Ch. 1: 34, 35, 38 Ch. 1: 34, 35, 38 Ch. 1: 34, 35, 38 Ch. 1: 34, 35, 38 Ch. 1: 34, 35, 38 Ch. 1: 34, 35, 38 Ch. 1: 34, 35, 38 Ch. 1: 34, 35, 38 Ch. 1: 34, 35, 38 Ch. 1: 34, 35, 38 Ch. 1: 34, 35, 38 Ch. 1: 35, 39 Ch. 2: 57, 65, 66		Ch. 1: 34, 35, 39	
Ch. 1: 34, 35, 38 GPIO15 Ch. 10: 328, 330, 331, 337 Ch. 1: 34, 35, 38 GPIO16 Ch. 10: 326-328, 331, 332, 337 Ch. 1: 34, 35, 38 GPIO17 Ch. 10: 326, 328, 331, 332, 337 Ch. 1: 34, 35, 38 GPIO18 Ch. 10: 328, 331, 332, 337 Ch. 1: 34, 35, 38 GPIO18 Ch. 10: 328, 331, 332, 337 Ch. 1: 34, 35, 38 GPIO19 Ch. 10: 328, 331, 332, 337 Ch. 1: 34, 35, 38 Ch. 10: 328 Ch. 11: 34, 35, 38 Ch. 11: 34, 35, 38 Ch. 12: 34, 35, 38 Ch. 12: 34, 35, 38 Ch. 13: 34, 35, 38 Ch. 10: 328 Ch		1 40	
GPIO15 Ch. 10: 328, 330, 331, 337 Ch. 5: 168 Ch. 10: 328 Ch. 10: 328 Ch. 11: 34, 35, 39 Ch. 10: 328 Ch. 11: 34, 35, 39 Ch. 10: 328			·
Ch. 10: 328, 330, 331, 337 Ch. 1: 34, 35, 38 GPIO16 Ch. 10: 326–328, 331, 332, 337 Ch. 1: 34, 35, 38 GPIO17 Ch. 10: 328, 331, 332, 337 Ch. 1: 34, 35, 38 GPIO18 Ch. 10: 328, 331, 332, 337 Ch. 1: 34, 35, 38 GPIO18 Ch. 10: 328 Ch. 1: 34, 35, 38 Ch. 1: 34, 35, 38 Ch. 1: 34, 35, 38 Ch. 1: 34, 35, 39 Ch.		· ·	
Ch. 1: 34, 35, 38 GPIO16 Ch. 10: 326–328, 331, 332, 337 Ch. 1: 34, 35, 38 GPIO17 Ch. 10: 328, 331, 332, Ch. 1: 34, 35, 38 GPIO17 Ch. 10: 326, 328, 331, 332, Ch. 1: 34, 35, 39 Ch. 1: 34, 35, 38 GPIO18 Ch. 10: 328 Ch. 10: 328 Ch. 1: 34, 35, 39 Ch. 1: 34, 35, 38 Ch. 1: 34, 35, 38 Ch. 1: 34, 35, 39 Ch. 1: 34, 35, 38 Ch. 1: 35, 39 Ch. 2: 57, 65, 66 SPI_INV Ch. 1: 35, 39 Ch. 1: 35, 39 Ch. 1: 35, 39 Ch. 2: 57, 65, 66			
GPIO16 Ch. 10: 326–328, 331, 332, 337 Ch. 1: 34, 35, 38 Ch. 1: 34, 35, 38 R_B1 Ch. 1: 34, 35, 38 Ch. 10: 328 Ch. 10: 328 Ch. 10: 328 Ch. 10: 326, 328, 331, 332, 337 Ch. 1: 34, 35, 38 Ch. 1: 34, 35, 38 Ch. 5: 168 Ch. 1: 34, 35, 38 Ch. 10: 328 Ch. 5: 166, 182 Ch. 1: 34, 35, 38 Ch. 10: 328 Ch. 1: 35, 39 Ch. 1: 34, 35, 38 Ch. 1: 34, 35, 38 Ch. 1: 35, 39 Ch. 1: 34, 35, 38 Ch. 1: 34, 35, 38 Ch. 1: 35, 39 Ch. 1: 34, 35, 38 Ch. 1: 34, 35, 38 Ch. 1: 35, 39 Ch. 1: 34, 35, 38 Ch. 1: 34, 35, 37 Ch. 2: 57, 65, 66			
Ch. 10: 326–328, 331, 332, 337 Ch. 1: 34, 35, 38 Ch. 10: 328 Ch. 10: 328 Ch. 10: 328 Ch. 10: 328 Ch. 1: 34, 35, 39 Ch. 1: 34, 35, 39 Ch. 1: 34, 35, 38 Ch. 1: 34, 35, 38 Ch. 1: 34, 35, 39 Ch. 1: 34, 35, 38 Ch. 1: 34, 35, 38 Ch. 1: 34, 35, 39 Ch. 1: 34, 35, 38 Ch. 1: 34, 35, 38 Ch. 1: 34, 35, 39 Ch. 1: 34, 35, 38 Ch. 1: 34, 35, 38 Ch. 1: 34, 35, 39 Ch. 1: 34, 35, 38 Ch. 1: 34, 35, 38 Ch. 1: 34, 35, 39 Ch. 1: 34, 35, 38 Ch. 1: 34, 35, 38 Ch. 1: 34, 35, 38 Ch. 1: 34, 35, 39 Ch. 1: 35, 39 Ch. 2: 57, 65, 66 Ch. 1: 34, 35, 37 Ch. 1: 34, 35, 38 Ch. 10: 328 Ch. 10: 328 Ch. 1: 34, 35, 38 Ch.			
337 Ch. 1: 34, 35, 38 GPIO17 Ch. 10: 326, 328, 331, 332, 337 Ch. 1: 34, 35, 38 Ch. 1: 35, 39 Ch. 1: 35, 39 Ch. 1: 34, 35, 37 Ch. 1: 35, 39 Ch. 2: 57, 65, 66			
Ch. 1: 34, 35, 38 GPIO17 Ch. 10: 326, 328, 331, 332, 337 Ch. 1: 34, 35, 38 Ch. 1: 34, 35, 39 Ch. 5: 168 L_B1 Ch. 10: 328 Ch. 1: 34, 35, 38 Ch. 5: 168 SPI_CLK Ch. 1: 35, 39 Ch. 1: 34, 35, 38 Ch. 1: 34, 35, 38 Ch. 1: 34, 35, 38 Ch. 1: 35, 39 Ch. 1: 34, 35, 38 Ch. 1: 34, 35, 38 Ch. 1: 35, 39 Ch. 1: 34, 35, 38 Ch. 1: 35, 39 Ch. 1: 34, 35, 38 Ch. 1: 35, 39 Ch. 1: 34, 35, 38 Ch. 1: 35, 39			_
GPIO17 Ch. 10: 326, 328, 331, 332, 337 Ch. 1: 34, 35, 38 Ch. 1: 34, 35, 39 Ch. 1: 34, 35, 38 Ch. 1: 34, 35, 39 Ch. 1: 35, 39 Ch. 1: 35, 39 Ch. 2: 57, 65, 66 Ch. 1: 34, 35, 37 Ch. 1: 35, 39 Ch. 2: 57, 65, 66			
Ch. 10: 326, 328, 331, 332,			Ch. 1: 34, 35, 38
337 Ch. 1: 34, 35, 38 Ch. 10: 328 Ch. 10: 328, 331, 332, 337 Ch. 1: 34, 35, 38 CPIO19 Ch. 10: 328, 331, 332, 337 Ch. 1: 34, 35, 38 Ch. 1: 35, 39 Ch. 1: 35, 39 Ch. 2: 57, 65, 66			Ch. 5: 166, 182
Ch. 1: 34, 35, 38 GPIO18 Ch. 10: 328, 331, 332, 337 Ch. 1: 34, 35, 38 Ch. 1: 34, 35, 38 Ch. 1: 34, 35, 38 Ch. 1: 35, 39 Ch. 2: 57, 65, 66 SPI_INV Ch. 1: 35, 39 Ch. 1: 35, 39 Ch. 1: 35, 39 Ch. 1: 34, 35, 37 Ch. 2: 57, 65, 66		Ch. 5: 168	CDI CLIV
GPIO18 Ch. 10: 328, 331, 332, 337 Ch. 1: 34, 35, 38 Ch. 1: 34, 35, 38 Ch. 2: 57, 65, 66 SPI_INV Ch. 1: 34, 35, 39 Ch. 1: 34, 35, 37 Ch. 2: 57, 65, 66		L_B1	
Ch. 10: 328, 331, 332, 337 Ch. 1: 34, 35, 38 GPIO19 SPI_INV Ch. 1: 35, 39 Ch. 1: 34, 35, 37 Ch. 1: 34, 35, 37 Ch. 2: 57, 65, 66		Ch. 10: 328	
Ch. 1: 34, 35, 38 GPIO19 MODE0 Ch. 1: 35, 39 Ch. 2: 57, 65, 66		Ch. 1: 34, 35, 38	
GPIO19 Ch. 1: 34, 35, 37 Ch. 2: 57, 65, 66		1.000	_
Ch. 10: 328, 331, 332, 337 Ch. 2: 42–44, 57 SPI_RX			
	Ch. 10: 328, 331, 332, 337	Ch. 2: 42–44, 57	SPI_RX

Ch. 1: 35, **36**

Ch. 2: 57, 59, 60, 62–64

SPI_TX

Ch. 1: 35, **36**

Ch. 2: 57, 59–64

STIO1

Ch. 10: 328, 335

Ch. 1: 34, 35, 37

Ch. 3: 89–92, 96, 97, 105,

116, 122

Ch. 6: 220-224, 226, 237,

242, 243, 245, 246, 248,

258, 259, 269, 274

STIO2

Ch. 10: 328, 335

Ch. 1: 34, 35, **37**

Ch. 3: 90-92, 96, 97, 105,

117, 123

Ch. 6: 220–224, 226, 237,

242, 243, 245, 246, 248,

259, 269, 274

SYNC_I

Ch. 1: 34, 35, **36**

Ch. 6: 228, 231–234, 237,

258, 261, 262, 266

Ch. 8: 285

SYNC O

Ch. 10: 328, 335

Ch. 1: 34, 35, 36

Ch. 6: 230-234, 261

T A0

Ch. 10: 327, 328

Ch. 1: 34, 35, **38**

Ch. 5: 157, 167, 169, 183

 T_A1

Ch. 10: 328

Ch. 1: 34, 35, 38

T B0

Ch. 10: 328

Ch. 1: 34, 35, **38**

Ch. 5: 157, 167, 169, 183

T_B1

Ch. 10: 328

Ch. 1: 34, 35, 38

VDD

Ch. 10: 327-329

Ch. 1: 34, 35, **36–39**, 40

VDD_SU0

Ch. 10: 326-328

Ch. 1: 34, 35, 38

Ch. 5: 169

VDD_SU1

Ch. 10: 326, 328

Ch. 1: 34, 35, 38

Ch. 5: 169

WAKEUP

Ch. 1: 34, 35, **37**

Ch. 2: 70

Ch. 7: 278

Ch. 9: 288, 306, 316, 318

Cologne Chip AG

Data Sheet of XHFC-2SU

