

Extended ISDN HDLC FIFO controller with multiple Universal ISDN Ports

(XHFC-2S4U: 2 ST / U_p interfaces and 2 U_p interfaces) (XHFC-4SU: 4 ST / U_p interfaces)

Cologne Chip AG Eintrachtstrasse 113 D - 50668 Köln

Germany Tel.: +49 (0) 221 / 91 24-0 Fax: +49 (0) 221 / 91 24-100

http://www.CologneChip.com http://www.CologneChip.de support@CologneChip.com

Copyright 1994 - 2012 Cologne Chip AG All Rights Reserved

The information presented can not be considered as assured characteristics. Data can change without notice. Parts of the information presented may be protected by patent or other rights. Cologne Chip products are not designed, intended, or authorized for use in any application intended to support or sustain life, or for any other application in which the failure of the Cologne Chip product could create a situation where personal injury or death may occur.

Revision History of XHFC-2S4U/4SU Data Sheet

Date	Remarks
June 2012	Bitmap width of A_SL_CFG.V_CH_SNUM reduced to 4 bit.
	Description of bitmaps V_B1_TX_EN, V_B2_TX_EN (both in register A_SU_CTRL0), R_STATUS.V_MISC_IRQSTA and R_IRQ_OVIEW.V_MISC_IRQ slightly changed.
	Paragraph concerning HFC-channel processing limitation added to section 3.2.3 on page 80.
	Figure 6.5 (PCM clock synchronization) on page 231 modified concerning C2IO signal path to PCM data controller.
	Section 9.2.4 (Supply noise requirements for PLL locking) on page 296 added.
May 2010	No changes with regard to contents, only a few typographical corrections have been made.
April 2010	Sections 6.5.6, 6.5.7, 9.1.3.5, 10.3 and 13 added. Figures 9.3 and 10.2 added. Tables 2.3, 10.3, 13.1 and 13.2 added. Register R_SU_LED_CTRL added. Bit V_WD_EN in register R_BERT_WD_MD added.
	Reset groups and I/O characteristic of the pin list completely reworked. Section "Reset" also reworked.
	Register descriptions improved for e.g. A_B1_RX, A_B2_RX, A_D_RX, A_E_RX, A_FIFO_CTRL, A_SL_CFG, R_CHIP_ID, R_CIRM, R_CLK_CFG, R_FIFO_BL0_IRQR_FIFO_BL3_IRQ, R_IRQ_CTRL, R_IRQ_OVIEW, R_PCM_MD1 and R_RAM_CTRL.
	Register descriptions clarified and corrected for A_CON_HDLC, A_F1, A_F2, A_SU_CTRL0, R_IRQ_OVIEW, R_PCM_MD1, R_STATUS.
	Schematics slightly changed for processor interface (recommended capacitor added), component values of the quarz circuitry improved (see also calculation procedure in section 9.1.3).
	/WAIT signal added to parallel processor interface timing diagrams. Signals /SPICLK, SPICLK_IDLE and /SPICLK_IDLE added to timing diagram 2.20.
	Internal signal FSC renamed to FSC_RX (and as a consequence of this FSC_0 and FSC_1 renamed to FSC_TX_0 and FSC_TX_1). Internal signal FSC_TX added to figures 5.1, 5.5, 5.13, 5.15 and 5.16 and to the corresponding sections.
	Note *1 changed in NT state matrices for S/T (Table 5.4) and U_p (Table 5.9) line interfaces. Remarks added for bit scrambler configuration in sections 5.3.4 and 5.3.7. Remark added for monitoring applications in section 5.3.6. Remark concerning internal PCM loop added to section 6.2. Register bit V_FIFO_IRQMSK added to Figure 9.7. Remark concerning unused line interfaces added to section 9.4.4.1. Chapter 11 reworked and supplemented.
October 2007	Minor changes were made in this data sheet revision: Information added to Sections 5.2.6 and 9.4.4.1 concerning state machine behaviour and line interface frequency slip interrupt.
July 2007	C1 and C2 in external S/T receive circuitry moved from L_A /L_B pins to R_A /R_B pins, t_{AHD} added for bus interface write access in mode 2 (Motorola) and mode 3 (Intel), name V_CH_IRQ changed to V_STUP_IRQ in register R_IRQ_OVIEW, name V_FR_IRQSTA changed to V_FIFO_IRQSTA in register R_STATUS, description of many interrupt registers improved.
March 2007	I/O type and input/output characteristics revised in pin list, pins 12 and 13 changed from NC to GND in SPI operating mode (refer to pin list and SPI connection circuitry), SPI timing diagrams added, section "PCM clock synchronization" restructured and supplemented, application hints for expanding an existing system with ISDN ports added.

Contents

Al	oout t	his data	a sheet and Cologne Chip technical support	27
1	Gen	eral des	scription	31
	1.1	System	n overview	32
	1.2	•	es	33
	1.3	Pin de	scription	34
		1.3.1	Pinout diagram	34
		1.3.2	Pin list	36
2	Mic	roproce	essor bus interface	43
	2.1	Mode	selection	44
	2.2	Paralle	el processor interface	45
		2.2.1	Overview	45
		2.2.2	Interface signals	45
		2.2.3	Register access	46
			2.2.3.1 Non-multiplexed / multiplexed access	46
			2.2.3.2 Read* access	47
			2.2.3.3 Register address read-back capability	47
			2.2.3.4 Problems with interrupts between address and data accesses	47
		2.2.4	Signal and timing characteristics	47
			2.2.4.1 Bus interface in mode 2 and mode 3 (non-multiplexed)	47
			2.2.4.2 Bus interface in mode 2m and mode 3m (multiplexed)	53
		2.2.5	Microprocessor connection circuitries	57
	2.3	Serial	processor interface (SPI)	59
		2.3.1	SPI control byte	59
		2.3.2	SPI transactions	60
		2.3.3	Transaction duration	61
		2.3.4	Register write access	63
		2.3.5	Register read access	65
		2.3.6	Register access duration	66

		2.3.7	Register address read-back capability
		2.3.8	Problems with interrupts during transaction sequences
		2.3.9	SPI timing diagrams
		2.3.10	SPI connection circuitry
	2.4	Auto-E	EPROM mode 71
	2.5	Registe	er description
		2.5.1	Write only registers
		2.5.2	Read only registers
		2.5.3	Read / write register
3	XHF	FC-2S4U	J / XHFC-4SU data flow 77
	3.1	Data fl	ow concept
		3.1.1	Overview
		3.1.2	Term definitions
	3.2	Flow c	ontroller
		3.2.1	Overview
		3.2.2	Switching buffers
		3.2.3	Timed sequence
		3.2.4	Transmit operation (FIFO in transmit data direction)
		3.2.5	Receive operation (FIFO in receive data direction)
		3.2.6	Connection summary
	3.3	Assign	ers
		3.3.1	HFC-channel assigner
		3.3.2	PCM slot assigner
		3.3.3	Line interface assigner
		3.3.4	Assigner summary
	3.4	Data fl	ow modes
		3.4.1	Simple Mode (SM)
			3.4.1.1 Mode description
			3.4.1.2 Subchannel processing
			3.4.1.3 Example for SM
		3.4.2	Channel Select Mode (CSM)
			3.4.2.1 Mode description
			3.4.2.2 HFC-channel assigner
			3.4.2.3 Subchannel Processing
			3.4.2.4 Example for CSM
		3.4.3	FIFO Sequence Mode (FSM)
			3.4.3.1 Mode description

			3.4.3.2	FIFO sequence	101
			3.4.3.3	FSM programming	103
			3.4.3.4	Example for FSM	104
	3.5	Subcha	nnel Proce	essing	110
		3.5.1	Overview	·	110
		3.5.2	Subchann	el registers	111
		3.5.3	Details of	f the FIFO oriented part of the subchannel processor (part A) \ldots .	111
			3.5.3.1	FIFO transmit operation in transparent mode	111
			3.5.3.2	FIFO transmit operation in HDLC mode	113
			3.5.3.3	FIFO receive operation in transparent mode	113
			3.5.3.4	FIFO receive operation in HDLC mode	113
		3.5.4	Details of	f the HFC-channel oriented part of the subchannel processor (part B)	113
			3.5.4.1	FIFO transmit operation in SM	113
			3.5.4.2	FIFO transmit operation in CSM and FSM	114
			3.5.4.3	FIFO receive operation in SM	114
			3.5.4.4	FIFO receive operation in CSM and FSM	114
		3.5.5	Subchann	el example for SM	115
		3.5.6	Subchann	el example for CSM	120
4	FIE) h an dli			107
4			0	DLC controller	127
	4.1 4.2				
	4.2 4.3				128
	4.5 4.4		-		
	4.4	4.4.1	_	ansmit FIFOs	
					130
				c D-channel frame repetition (for S/T in TE mode only)	
		4.4.3 4.4.4			132
	15			ent mode of XHFC-2S4U / XHFC-4SU	133
	4.5	4.5.1	_		135
				y registers	135
		4.5.2	-	y registers	140
		4.5.3	Kead / wr	ite registers	147
5	Univ	ersal IS	DN Port		157
	5.1	Genera	l overview	of the S/T and U_p interfaces	158
		5.1.1	Array reg	isters and multiregisters	158
		5.1.2	Block dia	gram of the Universal ISDN Port module	158
	5.2	S/T inte	erface desc	cription	160
		5.2.1	Overview	·	160

	5.2.2	Frame Structure	160
	5.2.3	Multiframe structure	161
	5.2.4	Data transmission	161
	5.2.5	INFO signals	163
	5.2.6	State machine	165
	5.2.7	Clock synchronization	168
	5.2.8	External circuitries	170
		5.2.8.1 External receive circuitry	170
		5.2.8.2 External transmit circuitry	171
		5.2.8.3 Transformer and ISDN jack connection	172
	5.2.9	S/T transformers	173
5.3	U _p inte	erface description	177
	5.3.1	Overview	177
	5.3.2	Frame Structure	177
	5.3.3	Superframe structure	177
	5.3.4	Data transmission	178
	5.3.5	INFO signals	179
	5.3.6	State machine	181
	5.3.7	Clock synchronization	184
	5.3.8	External circuitry	186
	5.3.9	U_p transformers	187
5.4	Comm	non features of the S/T and U_p interfaces	188
	5.4.1	Direct data access for test purposes	188
	5.4.2	Clock synchr. with several TEs connected to different central office switches	189
	5.4.3	Combined S/T and U_p circuitry $\ldots \ldots \ldots$	194
5.5	Regist	er description	195
	5.5.1	Write only registers	195
	5.5.2	Read only registers	211
DCN	A interf		221
6.1			221
6.2			222
6.3			225 225
6.4			225 225
0.4	РСМ (6.4.1	5	225 225
	6.4.1 6.4.2		225 225
	6.4.2 6.4.3		225 225
6.5			223 230
0.3	г UNI (clock synchronization	<i>2</i> 30

6

		6.5.1	Overview	0
		6.5.2	Manual or automatic synchronization source selection	0
		6.5.3	PLL programming for F0IO generation	0
		6.5.4	Manual PLL adjustment	0
		6.5.5	C2IO signal	2
		6.5.6	SYNC_O and FSC_RX synchronization signals	2
		6.5.7	Synchronous 512 kHz output signal	2
		6.5.8	Application examples for XHFC-2S4U/4SU synchronization schemes 23	3
			6.5.8.1 System with internal PCM bus expanded by ISDN interfaces 23	3
			6.5.8.2 Application with multiple XHFC-2S4U/4SU	4
	6.6	Multif	rame / superframe synchronization to the PCM interface	7
		6.6.1	Overview	7
		6.6.2	Frame counter	7
		6.6.3	Synchronization input signal	7
		6.6.4	Synchronization output signal (FOIO pulse modification)	0
		6.6.5	Line interface synchronization	1
	6.7	Extern	al CODECs	2
	6.8	GCI / I	OM-2 mode	4
		6.8.1	Overview	4
		6.8.2	GCI frame structure	4
		6.8.3	GCI register programming	5
			6.8.3.1 Enable CGI functionality	5
			6.8.3.2 Monitor channel	6
			6.8.3.3 Command / indication bits (C/I-channel)	6
			6.8.3.4 Examples for GCI frame embedding in the PCM data structure 24	6
		6.8.4	GCI protocol	1
			6.8.4.1 XHFC-2S4U / XHFC-4SUtransmit procedure	1
			6.8.4.2 XHFC-2S4U / XHFC-4SUreceive procedure	2
			6.8.4.3 Receiver abort	4
	6.9	Registe	er description	5
		6.9.1	Write only registers	5
		6.9.2	Read only registers	3
		6.9.3	Read / write register	6
-	ът	• 141		-
7			modulation (PWM) outputs 27	
	7.1		ew	
	7.2		rd PWM usage	
	7.3	Alterna	ative PWM usage	ð

Cologne Chip

	7.4	Registe	er descripti	on	279	
8	Bit F	Error Rate Test (BERT) 281				
	8.1	BERT	functionali	ty	282	
	8.2	BERT	transmitter		282	
	8.3	BERT	receiver .		282	
	8.4	Registe	er descripti	on	286	
		8.4.1	Write onl	y registers	286	
		8.4.2	Read only	v registers	287	
9	Cloc	k, PLL	, reset, into	errupt, timer and watchdog 2	.89	
	9.1	Clock			290	
		9.1.1	Clock out	put	290	
		9.1.2	Clock dis	- tribution	290	
		9.1.3	Clock osc	illator circuitry	.92	
			9.1.3.1	Frequency accuracy	.92	
			9.1.3.2	Pierce oscillator	.92	
			9.1.3.3	3rd overtone oscillator	.93	
			9.1.3.4	Crystal oscillator circuitry	.93	
			9.1.3.5	Several XHFC-2S4U/4SU with a single oscillator circuitry 2	.93	
	9.2	Phase 1	locked loop	(PLL)	.95	
		9.2.1	Overview		.95	
		9.2.2	PLL struc	ture	.95	
		9.2.3	PLL oper	ation	.96	
		9.2.4	Supply no	bise requirements for PLL locking	.96	
		9.2.5	PLL conf	iguration	.97	
	9.3	Reset			00	
	9.4	Interru	pt		801	
		9.4.1	Common	features	801	
		9.4.2	ST/U _p in	terface interrupt	801	
		9.4.3	FIFO inte	rrupt	801	
		9.4.4	Miscellea	nous interrupts	803	
			9.4.4.1	Line interface frequency slip interrupt	803	
			9.4.4.2	Timer interrupt	604	
			9.4.4.3	Processing / non-processing interrupt	604	
			9.4.4.4	Command / indication interrupt (GCI interface)	805	
			9.4.4.5	_	805	
			9.4.4.6	Interrupt for GCI monitor byte transmission	805	
			9.4.4.7	Interrupt after GCI monitor byte received	805	

	9.5	Watchdog reset	307			
	9.6	Register description	308			
		9.6.1 Write only registers	308			
		9.6.2 Read only registers	316			
		9.6.3 Read / write registers	325			
10	Gene	eral purpose I/O pins (GPIO)	327			
	10.1	GPIO functionality	328			
	10.2	GPIO output voltage	328			
	10.3	Activation state F7 / G3 signalling	331			
	10.4	Register description	333			
		10.4.1 Write only registers	333			
		10.4.2 Read only registers	342			
11	Elect	trical characteristics	345			
12	XHF	FC-2S4U / XHFC-4SU package dimensions	349			
13	XHF	FC-2S4U / XHFC-4SU address decoding erratum	351			
	13.1	Fault description	352			
	13.2	Work-Around	352			
Re	feren	ces	357			
Lis	List of register and bitmap abbreviations 3					

List of Figures

1.1	XHFC-4SU block diagram	31
1.2	XHFC-2S4U block diagram	32
1.3	XHFC-4SU pinout in parallel processor interface mode	34
1.4	XHFC-4SU pinout in serial processor interface mode	35
2.1	Bus interface read access in mode 2 (Motorola) and mode 3 (Intel)	48
2.2	Bus interface write access in mode 2 (Motorola) and mode 3 (Intel)	51
2.3	Bus interface read access in modes 2m and 3m (multiplexed)	54
2.4	Bus interface write access in mode 2m and 3m (multiplexed)	56
2.5	8 bit Motorola processor circuitry example (mode 2)	57
2.6	8 bit Motorola processor circuitry example (mode 2m)	57
2.7	8 bit Intel processor circuitry example (mode 3)	58
2.8	8 bit Intel processor circuitry example (mode 3m)	58
2.9	16 bit SPI write transaction ($R = '0'$, one data byte) \ldots	61
2.10	16 bit SPI read transaction ($R = '1'$, one data byte)	61
2.11	40 bit SPI write transaction ($R = '0'$, four data bytes)	62
2.12	40 bit SPI read transaction ($R = '1'$, four data bytes)	62
2.13	Split 40 bit SPI read transaction $(R = '1')$	62
2.14	Register write access (transaction sequence)	64
2.15	Multiple write accesses to the same register	64
2.16	Register write access with a 40 bit transaction	64
2.17	Register read access (transaction sequence)	65
2.18	Multiple read accesses to the same register	66
2.19	Register read access with a 40 bit transaction	66
2.20	SPI timing diagram for data write transactions	67
2.21	SPI timing diagram for data read transactions	68
2.22	SPI connection circuitry	70
3.1	Data flow block diagram	77
3.2	Areas of FIFO oriented, HFC-channel oriented and PCM time slot oriented numbering	79

3.3	The flow controller in transmit operation	81
3.4	The flow controller in receive FIFO operation	82
3.5	Overview of the assigner programming	86
3.6	SM example	90
3.7	HFC-channel assigner in CSM	95
3.8	CSM example	96
3.9	HFC-channel assigner in FSM	101
3.10	FSM list processing	102
3.11	FSM list programming	103
3.12	FSM example	104
3.13	General structure of the subchannel processor	110
3.14	Location of the subchannel parts A and B in the data flow diagram $\ldots \ldots \ldots \ldots$	110
3.15	Part A of the subchannel processor	112
3.16	Part B of the subchannel processor	114
3.17	SM example with subchannel processor	115
3.18	CSM example with subchannel processor	120
4.1	FIFO organization	131
4.2	FIFO data organization in HDLC mode	132
5.1	Overview of the Universal ISDN Port module	159
5.1 5.2	Overview of the Universal ISDN Port module	159 160
5.2	Frame structure at reference point S and T	160
5.2 5.3	Frame structure at reference point S and T	160 163
5.25.35.4	Frame structure at reference point S and T	160 163 164
5.25.35.45.5	Frame structure at reference point S and T	160 163 164 169 170
 5.2 5.3 5.4 5.5 5.6 	Frame structure at reference point S and T	160 163 164 169 170 171
5.2 5.3 5.4 5.5 5.6 5.7	Frame structure at reference point S and T	160 163 164 169 170 171 172
5.2 5.3 5.4 5.5 5.6 5.7 5.8 5.9	Frame structure at reference point S and T	160 163 164 169 170 171 172 172
5.2 5.3 5.4 5.5 5.6 5.7 5.8 5.9 5.10	Frame structure at reference point S and T	160 163 164 169 170 171 172 172 177
5.2 5.3 5.4 5.5 5.6 5.7 5.8 5.9 5.10 5.11	Frame structure at reference point S and T	 160 163 164 169 170 171 172 172 177 179
5.2 5.3 5.4 5.5 5.6 5.7 5.8 5.9 5.10 5.11 5.12	Frame structure at reference point S and T	 160 163 164 169 170 171 172 172 177 179
5.2 5.3 5.4 5.5 5.6 5.7 5.8 5.9 5.10 5.11 5.12 5.13	Frame structure at reference point S and T	160 163 164 169 170 171 172 172 177 179 180
5.2 5.3 5.4 5.5 5.6 5.7 5.8 5.9 5.10 5.11 5.12 5.13 5.14	Frame structure at reference point S and T	160 163 164 169 170 171 172 172 177 179 180 185
5.2 5.3 5.4 5.5 5.6 5.7 5.8 5.9 5.10 5.11 5.12 5.13 5.14 5.15	Frame structure at reference point S and T	160 163 164 169 170 171 172 172 177 179 180 185 186
5.2 5.3 5.4 5.5 5.6 5.7 5.8 5.9 5.10 5.11 5.12 5.13 5.14 5.15 5.16	Frame structure at reference point S and T	160 163 164 169 170 171 172 172 177 179 180 185 186 189
5.2 5.3 5.4 5.5 5.6 5.7 5.8 5.9 5.10 5.11 5.12 5.13 5.14 5.15 5.16 5.17	Frame structure at reference point S and T	160 163 164 169 170 171 172 172 172 177 179 180 185 186 189 190 191

6.1	PCM data flow for transmit and receive time slots	223
6.2	Global setting for all PCM time slots (detail of Figure 6.1)	224
6.3	PCM timing for master mode	226
6.4	PCM timing for slave mode	228
6.5	PCM clock synchronization	231
6.6	Expanding an existing system with ISDN ports (XHFC-2S4U/4SU as PCM slave)	233
6.7	Expanding an existing system with ISDN ports (XHFC-2S4U/4SU as PCM master) $% \mathcal{A} = \mathcal{A} + $	234
6.8	Multiple XHFC-2S4U/4SU synchronized with an open loop of SYNC_O/SYNC_I $\ .$	235
6.9	Multiple XHFC-2S4U/4SU synchronized with an closed loop of SYNC_O/SYNC_I	236
6.10	Multiframe/superframe synchronization to the PCM interface	238
6.11	Timing specification of the SYNC_IN change detection	239
6.12	F0IO pulse modification	240
6.13	Example for two CODEC enable signal shapes	242
6.14	Single channel GCI format	245
6.15	GCI application example 1 (XHFC-2S4U/4SU is PCM master and GCI master)	247
6.16	GCI application example 2 (XHFC-2S4U/4SU is PCM slave and GCI master)	249
6.17	GCI application example 3 (XHFC-2S4U/4SU is PCM slave and GCI slave)	249
6.18	GCI protocol for monitor bytes transmission	251
6.19	GCI protocol for monitor bytes receiving	253
8.1	BERT transmitter block diagram	283
8.2	BERT receiver block diagram	284
0.1		201
9.1	CLK_OUT generation and clock distribution	
9.2	Standard XHFC-2S4U/4SU quartz circuitry	
9.3	Clock distribution with only one quartz circuitry	
9.4	PLL block diagram	
9.5	Interrupt output	
9.6	ST/U_p interface interrupt	
9.7	Enable FIFO interrupt condition with V_FIFO_IRQ_EN	
9.8	FIFO interrupt	
9.9	Miscelleanous interrupts	304
9.10	Wakeup interrupt	305
10.1	GPIO block diagram	329
10.2	Activation state signalling exemplarily shown with GPIO0	331
12.1	XHFC-2S4U and XHFC-4SU package dimensions	350

ologne

List of Tables

2.1	Overview of the XHFC-2S4U/4SU bus interface registers	43
2.2	Microprocessor access types	44
2.3	Overview of the parallel processor interface pins	45
2.4	Parallel processor interface mode selection	46
2.5	Pins and signal names of the parallel processor interface modes	46
2.6	Overview of accesses in parallel microprocessor interface mode	49
2.7	Timing diagrams of the parallel microprocessor interface	49
2.8	Symbols of read accesses in Figure 2.1	50
2.9	Symbols of write accesses in Figure 2.2	52
2.10	Symbols of read accesses in Figure 2.3	53
2.11	Symbols of write accesses in Figures 2.4	55
2.12	Overview of the SPI interface pins	59
2.13	SPI control byte with $A = '0'$	60
2.14	SPI control byte with $A = '1'$	60
2.15	SPI control commands for register read and write operations	60
2.16	SPI data rates	66
2.17	Symbols of write access in Figure 2.20	68
2.18	Symbols of read access in Figure 2.21	69
3.1	Flow controller connectivity	83
3.2	V_DATA_FLOW programming values for bidirectional connections	83
3.3	Line interface assigner	85
3.4	Index registers of the FIFO array registers (sorted by address)	88
3.5	List specification of the example in Figure 3.12	105
3.6	Subchannel processing according to Figure 3.17 (SM \bullet TX, transparent mode)	117
3.7	Subchannel processing according to Figure 3.17 (SM \bullet RX, transparent mode)	117
3.8	Subchannel processing according to Figure 3.17 (SM 2 TX, HDLC mode)	119
3.9	Subchannel processing according to Figure 3.17 (SM 2 RX, HDLC mode)	119
3.10	Subchannel processing according to Figure 3.18 (CSM \bullet TX, transparent mode)	122
3.11	Subchannel processing according to Figure 3.18 (CSM \bigcirc RX, transparent mode)	123
3.12	Subchannel processing according to Figure 3.18 (CSM 2 TX, HDLC mode)	126

3.13	Subchannel processing according to Figure 3.18 (CSM 2 RX, HDLC mode)	126
4.1	Overview of the XHFC-2S4U/4SU FIFO registers	127
4.2	FIFO size setup	
5.1	Overview of the ST/U_p interface registers	157
5.2	Legend for Figure 5.2	161
5.3	Multiframe structure of the Q- and S-bits	162
5.4	S/T interface activation / deactivation layer 1 matrix for NT mode	166
5.5	S/T interface activation / deactivation layer 1 matrix for TE mode	167
5.6	S/T transformer part numbers and manufacturers	173
5.7	Legend for Figure 5.10	178
5.8	Superframe construction	178
5.9	U_p interface activation / deactivation layer 1 matrix for LT mode	182
5.10	U_p interface activation / deactivation layer 1 matrix for TE mode	183
5.11	Up transformer part numbers and manufacturers	187
5.12	Symbols of Figures 5.17	190
6.1	Overview of the XHFC-2S4U/4SU PCM interface registers	221
6.2	PCM master mode	222
6.3	PCM data flow programming	224
6.4	Symbols of PCM timing for master mode in Figure 6.3	227
6.5	Symbols of PCM timing for slave mode in Figure 6.4	229
6.6	Symbols of the SYNC_IN change detection timing specification in Figure 6.11	240
6.7	Selection of the FOIO pulse characteristic (see also Figure 6.12)	241
6.8	Legend of figure 6.14	245
6.9	Programming procedure for application example 1 according to Figure 6.15	248
6.10	Programming procedure for application example 3 according to Figure 6.17	250
6.11	Rules for the handshake signals MX_{TX} and MR_{TX}	252
6.12	Rules for the handshake signals MX_{RX} and MR_{RX}	254
7.1	Overview of the XHFC-2S4U/4SU PWM registers	277
8.1	Overview of the XHFC-2S4U/4SU BERT registers	281
9.1	Overview of clock, PLL, reset, timer and watchdog registers	289
9.2	PLL setup examples (P,M,N,S) with ISDN related frequencies for f_{out}	298
9.3	PLL setup examples (P,M,N,S) with ISDN related frequencies for \mathbf{f}_{in}	299
9.4	XHFC-2S4U/4SU reset groups	300
10.1	Overview of the XHFC-2S4U/4SU general purpose I/O registers	327

Cologne Chip

10.2	GPIO pins	330
10.3	State F7/G3 reporting	331
13.1	Involved registers of the address decoding fault	352

List of Registers

Please note !

Register addresses are assigned independently for write and read access; i.e. in many cases there are different registers for write and read access with the same address. Only registers with the same meaning and bitmap structure in both write and read directions are declared to be read/write.

It is important to distinguish between *registers*, *array registers* and *multi-registers*.

- **Array registers** have multiple instances and are indexed by a number. This index is either the FIFO number (R_FIFO with 15 indexed registers), the PCM time slot number (R_SLOT with 1 indexed register) or the ST/U_p interface number (R_SU_SEL with 21 indexed registers). <u>Array registers have equal name</u>, bitmap structure and meaning for every instance.
- Multi-registers have multiple instances, too, but they are selected by a bitmap value. With this value, different registers can be selected with the same address. Multi-register addresses are 0x15 (11 instances selected by R_PCM_MD0), 0x0F (2 instances selected by R_FIFO_MD) and 0x35 (2 instances selected by A_ST_CTRL3/A_UP_CTRL3) for XHFC-2S4U/4SU. Multi-registers have different names, bitmap structure and meaning for each instance.

The first letter of array register names is 'A_ ... ' whereas all other registers begin with 'R_ ... '. The index of array registers and multi-registers has to be specified in the appropriate register.

Reset

Registers sorted by name

group:	Η	=	Hardware reset
	0	=	Global software reset
	1	=	HFC reset
	2	=	PCM reset
	3	=	Line interface reset

See Table 9.4 on page 300 for a detailed reset group explanation.

Write only registers:

Write o	nly registers:			Address	Name	Reset group	Page
		Decet		0x15	R_MSS0	H, 0, 2	259
Address	Name	Reset group	Page	0x15	R_MSS1	H, 0, 2	265
0x3C	A_B1_TX[ST/Up]	_	208	0x14	R_PCM_MD0	H, 0, 2	256
0x3D	A_B2_TX[ST/Up]	_	208	0x15	R_PCM_MD1	H, 0, 2	261
0x3F	A_BAC_S_TX[ST/Up]	_	210	0x15	R_PCM_MD2	H, 0, 2	263
0x3E	A_D_TX[ST/Up]	_	209	0x50	R_PLL_CTRL	Н	315
0x0E	A_INC_RES_FIFO[FIFO]	H. 0. 1. 2. 3	138	0x1E	R_PWM_CFG	Н, 0	279
0x36	A_MS_DF[ST/Up]	H, 0, 3	206	0x46	R_PWM_MD	Н, О	280
0x34	A_MS_TX[ST/Up]	H, 0, 3	202	0x38	R_PWM0	Н, О	279
0x35	A_ST_CTRL3[ST/Up]	H, 0, 3	203	0x39	R_PWM1	Н, О	280
0x37	A_SU_CLK_DLY[ST/Up]	H, 0, 3	207	0x08	R_RAM_ADDR	Η, 0	73
0x31	A_SU_CTRL0[ST/Up]	H, 0, 3	197	0x09	R_RAM_CTRL	Η, 0	73
0x32	A_SU_CTRL1[ST/Up]	H, 0, 3	199	0x15	R_SH0H	H, 0, 2	266
0x33	A_SU_CTRL2[ST/Up]	H, 0, 3	200	0x15	R_SH0L	H, 0, 2	266
0x30	A_SU_WR_STA[ST/Up]	H, 0, 3	196	0x15	R_SH1H	H, 0, 2	267
0x35	A_UP_CTRL3[ST/Up]	H, 0, 3	204	0x15	R_SH1L	H, 0, 2	266
0x1B	R_BERT_WD_MD	H, 0	286	0x15	R_SL_SEL0	H, 0, 2	257
0x28	R_CI_TX	H, 0, 2	269	0x15	R_SL_SEL1	H, 0, 2	258
0x00	R_CIRM	Н	308	0x15	R_SL_SEL7	H, 0, 2	258
0x02	R_CLK_CFG	Н	310	0x10	R_SLOT	H, 0, 2	255
0x01	R_CTRL	Н	72	0x12	R_SU_IRQMSK	H, 0, 3	312
0x0D	R_FIFO_MD	Н	137	0x4D	R_SU_LED_CTRL	H, 0	341
0x0C	R_FIFO_THRES	H, 0, 1, 2, 3	136	0x16	R_SU_SEL	H, 0, 3	195
0x0F	R_FIFO	H, 0, 1	139	0x17	R_SU_SYNC	H, 0, 3	268
0x0B	R_FIRST_FIFO	H, 0, 1	135	0x1A	R_TI_WD	Η, 0	314
0x0F	R_FSM_IDX	H, 0, 1	139				
0x29	R_GCI_CFG0	H, 0, 2	270				
0x2A	R_GCI_CFG1	H, 0, 2	272				
0x4A	R_GPIO_EN0	Η, 0	339				
0x42	R_GPIO_EN1	Η, 0	334				
0x47	R_GPIO_EN2	Η, 0	337				
0x43	R_GPIO_EN3	Η, 0	335				
0x48	R_GPIO_OUT0	Η, 0	338				
0x40	R_GPIO_OUT1	Η, 0	333				
0x45	R_GPIO_OUT2	Η, 0	337				
0x41	R_GPIO_OUT3	Η, 0	334				
0x44	R_GPIO_SEL_BL	Η, 0	336				
0x4C	R_GPIO_SEL	Η, 0	340				
0x13	R_IRQ_CTRL	Н, О	313				
0x11	R_MISC_IRQMSK	Н	311				
0x2B	R_MON_TX	H, 0, 2	272				

ad

Please note !

See explanation of register types on page 21.

Read only registers:

Read/Write registers:

Address	Name	Reset group	Page
0x3C	A_B1_RX[ST/Up]	_	217
0x3D	A_B2_RX[ST/Up]	_	218
0x3E	A_D_RX[ST/Up]	_	219
0x3F	A_E_RX[ST/Up]	_	220
0x0C	A_F1[FIFO]	H, 0, 1	140
0x0D	A_F2[FIFO]	H, 0, 1	141
0x0E	A_FIFO_STA[FIFO]	H, 0, 1	142
0x34	A_MS_RX[ST/Up]	H, 0, 3	215
0x32	A_SU_DLYH[ST/Up]	_	214
0x31	A_SU_DLYL[ST/Up]	_	213
0x30	A_SU_RD_STA[ST/Up]	H, 0, 3	212
0x35	A_SU_STA[ST/Up]	H, 0, 3	216
0x14	A_USAGE[FIFO]	H, 0, 1	143
0x04	A_Z1[FIFO]	H, 0, 1	140
0x06	A_Z2[FIFO]	H, 0, 1	140
0x13	R_AF0_OVIEW	Н, 0, 3	211
0x1B	R_BERT_ECH	H, 0, 1	288
0x1A	R_BERT_ECL	H, 0, 1	287
0x17	R_BERT_STA	H, 0, 1	287
0x16	R_CHIP_ID	Н	74
0x1F	R_CHIP_RV	Н	74
0x28	R_CI_RX	_	274
0x19	R_F0_CNTH	H, 0, 1	273
0x18	R_F0_CNTL	H, 0, 1	273
0x20	R_FIFO_BL0_IRQ	H, 0, 1	321
0x21	R_FIFO_BL1_IRQ	H, 0, 1	322
0x22	R_FIFO_BL2_IRQ	H, 0, 1	323
0x23	R_FIFO_BL3_IRQ	H, 0, 1	324
0x24	R_FILL_BL0	H, 0, 1	143
0x25	R_FILL_BL1	H, 0, 1	144
0x26	R_FILL_BL2	H, 0, 1	145
0x27	R_FILL_BL3	H, 0, 1	146
0x29	R_GCI_STA	H, 0, 2	275
0x48	R_GPIO_IN0	-	344
0x40	R_GPIO_IN1	-	342
0x45	R_GPIO_IN2	-	343
0x41	R_GPIO_IN3	-	343
0x88	R_INT_DATA	_	75
0x10	R_IRQ_OVIEW	H, 0, 1	316
0x11	R_MISC_IRQ	H, 0, 1	318
0x2A	R_MON_RX	_	275
0x50	R_PLL_STA	Н	324
0x15	R_RAM_USE	—	74
0x1D	R_SL_MAX	-	273
0x1C	R_STATUS	H, 0, 3	320
0x12	R_SU_IRQ	Η, 0	319

Address	Name	Reset group	Page
0xF4	A_CH_MSK[FIFO]	H, 0, 1	148
0xFC	A_CHANNEL[FIFO]	H, 0, 1	152
0xFA	A_CON_HDLC[FIFO]	H, 0, 1	149
0xFF	A_FIFO_CTRL[FIFO]	H, 0, 1	154
0x84	A_FIFO_DATA_NOINC[F	IFO]–	147
0x80	A_FIFO_DATA[FIFO]	_	147
0xFD	A_FIFO_SEQ[FIFO]	H, 0, 1	153
0xD0	A_SL_CFG[SLOT]	H, 0, 2	276
0xFB	A_SUBCH_CFG[FIFO]	H, 0, 1	151
0x52	R_PLL_N	Н	325
0x51	R_PLL_P	Н	325
0x53	R_PLL_S	Н	325
0xC0	R_RAM_DATA	-	76

Registers sorted by address

Reset group:	Η	=	Hardware reset
	0	=	Global software reset
	1	=	HFC reset
	2	=	PCM reset
	3	=	Line interface reset

See Table 9.4 on page 300 for a detailed reset group explanation.

Write only registers:

Write only registers:				Address	Name	Reset group	Page
		Reset		0x33	A_SU_CTRL2[ST/Up]	Н, 0, 3	200
Address	Name	group	Page	0x34	A_MS_TX[ST/Up]	Н, 0, 3	202
0x00	R_CIRM	Н	308	0x35	A_ST_CTRL3[ST/Up]	Н, 0, 3	203
0x01	R_CTRL	Н	72	0x35	A_UP_CTRL3[ST/Up]	Н, 0, 3	204
0x02	R_CLK_CFG	Н	310	0x36	A_MS_DF[ST/Up]	Н, 0, 3	206
0x08	R_RAM_ADDR	H, 0	73	0x37	A_SU_CLK_DLY[ST/Up]	H, 0, 3	207
0x09	R_RAM_CTRL	H, 0	73	0x38	R_PWM0	Η, 0	279
0x0B	R_FIRST_FIFO	H, 0, 1	135	0x39	R_PWM1	Η, 0	280
0x0C	R_FIFO_THRES	H, 0, 1, 2, 3	136	0x3C	A_B1_TX[ST/Up]	-	208
0x0D	R_FIFO_MD	Н	137	0x3D	A_B2_TX[ST/Up]	-	208
0x0E	A_INC_RES_FIFO[FIFO]		138	0x3E	A_D_TX[ST/Up]	-	209
0x0F	R_FSM_IDX	H, 0, 1	139	0x3F	A_BAC_S_TX[ST/Up]	-	210
0x0F	R_FIFO	H, 0, 1	139	0x40	R_GPIO_OUT1	Η, 0	333
0x10	R_SLOT	H, 0, 2	255	0x41	R_GPIO_OUT3	Η, 0	334
0x11	R_MISC_IRQMSK	Н	311	0x42	R_GPIO_EN1	Η, 0	334
0x12	R_SU_IRQMSK	H, 0, 3	312	0x43	R_GPIO_EN3	Η, 0	335
0x13	R_IRQ_CTRL	Н, О	313	0x44	R_GPIO_SEL_BL	Η, 0	336
0x14	R_PCM_MD0	H, 0, 2	256	0x45	R_GPIO_OUT2	Η, 0	337
0x15	R_MSS0	H, 0, 2	259	0x46	R_PWM_MD	Η, 0	280
0x15	R_MSS1	H, 0, 2	265	0x47	R_GPIO_EN2	Η, 0	337
0x15	R_PCM_MD1	H, 0, 2	261	0x48	R_GPIO_OUT0	Η, 0	338
0x15	R_PCM_MD2	H, 0, 2	263	0x4A	R_GPIO_EN0	Η, 0	339
0x15	R_SH0H	H, 0, 2	266	0x4C	R_GPIO_SEL	H, 0	340
0x15	R_SH1H	H, 0, 2	267	0x4D	R_SU_LED_CTRL	H, 0	341
0x15	R_SH0L	H, 0, 2	266	0x50	R_PLL_CTRL	Н	315
0x15	R_SH1L	H, 0, 2	266				
0x15	R_SL_SEL0	H, 0, 2	257				
0x15	R_SL_SEL1	H, 0, 2	258				
0x15	R_SL_SEL7	H, 0, 2	258				
0x16	R_SU_SEL	Н, 0, 3	195				
0x17	R_SU_SYNC	Н, 0, 3	268				
0x1A	R_TI_WD	Н, 0	314				
0x1B	R_BERT_WD_MD	Н, 0	286				
0x1E	R_PWM_CFG	Н, 0	279				
0x28	R_CI_TX	H, 0, 2	269				
0x29	R_GCI_CFG0	H, 0, 2	270				
0x2A	R_GCI_CFG1	H, 0, 2	272				
0x2B	R_MON_TX	H, 0, 2	272				
0x30	A_SU_WR_STA[ST/Up]	Н, 0, 3	196				
0x31	A_SU_CTRL0[ST/Up]	Н, 0, 3	197				
0x32	A_SU_CTRL1[ST/Up]	Н, 0, 3	199				

ad

Please note !

See explanation of register types on page 21.

Read only registers:

Address	Name	Reset group	Page
0x04	A_Z1[FIFO]	H, 0, 1	140
0x06	A_Z2[FIFO]	H, 0, 1	140
0x0C	A_F1[FIFO]	H, 0, 1	140
0x0D	A_F2[FIFO]	H, 0, 1	141
0x0E	A_FIFO_STA[FIFO]	H, 0, 1	142
0x10	R_IRQ_OVIEW	H, 0, 1	316
0x11	R_MISC_IRQ	H, 0, 1	318
0x12	R_SU_IRQ	Η, 0	319
0x13	R_AF0_OVIEW	H, 0, 3	211
0x14	A_USAGE[FIFO]	H, 0, 1	143
0x15	R_RAM_USE	_	74
0x16	R_CHIP_ID	Η	74
0x17	R_BERT_STA	H, 0, 1	287
0x18	R_F0_CNTL	H, 0, 1	273
0x19	R_F0_CNTH	H, 0, 1	273
0x1A	R_BERT_ECL	H, 0, 1	287
0x1B	R_BERT_ECH	H, 0, 1	288
0x1C	R_STATUS	H, 0, 3	320
0x1D	R_SL_MAX	_	273
0x1F	R_CHIP_RV	Η	74
0x20	R_FIFO_BL0_IRQ	H, 0, 1	321
0x21	R_FIFO_BL1_IRQ	H, 0, 1	322
0x22	R_FIFO_BL2_IRQ	H, 0, 1	323
0x23	R_FIFO_BL3_IRQ	H, 0, 1	324
0x24	R_FILL_BL0	H, 0, 1	143
0x25	R_FILL_BL1	H, 0, 1	144
0x26	R_FILL_BL2	H, 0, 1	145
0x27	R_FILL_BL3	H, 0, 1	146
0x28	R_CI_RX	-	274
0x29	R_GCI_STA	H, 0, 2	275
0x2A	R_MON_RX	_	275
0x30	A_SU_RD_STA[ST/Up]	H, 0, 3	212
0x31	A_SU_DLYL[ST/Up]	-	213
0x32	A_SU_DLYH[ST/Up]	-	214
0x34	A_MS_RX[ST/Up]	H, 0, 3	215
0x35	A_SU_STA[ST/Up]	H, 0, 3	216
0x3C	A_B1_RX[ST/Up]	-	217
0x3D	A_B2_RX[ST/Up]	-	218
0x3E	A_D_RX[ST/Up]	-	219
0x3F	A_E_RX[ST/Up]	_	220
0x40	R_GPIO_IN1	_	342
0x41	R_GPIO_IN3	_	343
0x45	R_GPIO_IN2	—	343
0x48	R_GPIO_IN0	-	344
0x50	R_PLL_STA	Н	324
0x88	R_INT_DATA	_	75

Read/Write registers:

Address	Name	Reset group	Page
0x51	R_PLL_P	Н	325
0x52	R_PLL_N	Н	325
0x53	R_PLL_S	Η	325
0x80	A_FIFO_DATA[FIFO]	-	147
0x84	A_FIFO_DATA_NOINC[F	IFO]–	147
0xC0	R_RAM_DATA	-	76
0xD0	A_SL_CFG[SLOT]	H, 0, 2	276
0xF4	A_CH_MSK[FIFO]	H, 0, 1	148
0xFA	A_CON_HDLC[FIFO]	H, 0, 1	149
0xFB	A_SUBCH_CFG[FIFO]	H, 0, 1	151
0xFC	A_CHANNEL[FIFO]	H, 0, 1	152
0xFD	A_FIFO_SEQ[FIFO]	H, 0, 1	153
0xFF	A_FIFO_CTRL[FIFO]	H, 0, 1	154

About this data sheet and Cologne Chip technical support

This data sheet covers all the features of XHFC-2S4U/4SU. The reader who absorbs the information in this data sheet will gain a deep and broad understanding of XHFC-2S4U and XHFC-4SU microchips.

However, the hurried reader needs not to read the complete data sheet. Every chapter comprises just one topic. What's not needed in the focus of a target application can be skipped over while reading this data sheet.

Organization of this data sheet

Chapters start with a short overview. They typically contain both the electrical description and the programming features of the corresponding subject. Finally, chapters end with a register description.

Links between chapters are mentioned in the text.

Development tools

Driver software plays an important role in all ISDN projects. For this reason we offer more than the hardware:

- An evaluation board of XHFC-2S4U/4SU is available. This can be connected to the target microprocessor system via a flat ribbon cable. It is planned to make the evaluation board accessible via a PCI bridge board to a standard PC environment.
- A demo layer 1 driver as source code as well as open-source (GPL) Linux drivers are available.
- There are also header files with all registers and their bitmaps available for programming language C. Please ask the Cologne Chip support team for more information and file delivery.

Visit our web site

Our web site (http://www.colognechip.com) contains a download area for all Cologne Chip data sheets. Additional information is given concerning transformers, drivers etc. on the website, too.

By having broad knowledge about ISDN applications, Cologne Chip supports any project individually. Please contact our support team.

Chapter overview

- **Chapter "General description"** (1) begins with an overview to XHFC-2S4U/4SU, especially general block diagrams and a feature list. Pinout diagrams for the different microprocessor bus interfaces and a detailed list of all pins complete this chapter.
- **Chapter "Microprocessor bus interface":** (2) XHFC-2S4U/4SU supports several processor interfaces which are explained in this chapter. This includes signal and timing characteristics as well as register access explanation and typical connection circuitries. (Separated inferface modes, read only the section which deals with the interface mode of your interest, prerequisite knowledge of the chosen interface mode is strongly recommended.)
- Chapter "XHFC-2S4U / XHFC-4SU data flow" (3) starts with the data processing explanation. This chapter deals with the data flow concept which connects all the data interfaces that are explained in the following chapters. (It is recommended to have at least a basic comprehension to this topic, as it connects several important parts of XHFC-2S4U/4SU.)
- **Chapter "FIFO handling and HDLC controller"** (4) covers the host side of the data flow. This includes both the HDLC controller and the FIFOs. (Should be read because FIFOs and the HDLC controller is typically used in every application.)
- **Chapter "Universal ISDN Port":** (5) XHFC-2S4U/4SU has several line interfaces which can be configured either in S/T or U_p mode. This chapter explains the data structures, clock synchronization and external circuitries. (The most important interface, should be read, prerequisite knowledge of ISDN protocol is strongly recommended.)
- **Chapter "PCM interface":** (6) The last interface which deals with the data flow described in chapter 3 is the PCM interface. Beneath other, an important topic of this chapter are synchronization features of XHFC-2S4U/4SU. (Read only when used, but don't skip the overview in this chapter even if the PCM interface is not used!)
- **Chapter "Pulse width modulation (PWM) outputs":** (7) This chapter can be skipped if the PWM interface is not used.
- Chapter "Bit Error Rate Test (BERT)": (8) This chapter can be skipped if the BERT functionality is not used.
- **Chapter "Clock, PLL, reset, interrupt, timer and watchdog"** (9) explains clock generation and distribution, PLL programming, reset functions and interrupt capabilities. (Must be read.)
- **Chapter "Electrical characteristics":** (11) Some information about the electrical characteristics of XHFC-2S4U/4SU are given in this chapter. (Information for hardware design.)
- **Chapter "XHFC-2S4U / XHFC-4SU package dimensions"** (12) shows the XHFC-2S4U/4SU package dimensions. (Information for hardware design.)

General remarks to notations

- 1. The decimal point is written as a point (e.g. 1.23). Thousands separators are written with thin space.
- 2. Numerical values have different notations for various number systems; e.g. the hexadecimal value 0xC9 is '1100 1001' in binary and 201 in decimal notation.
- 3. The prefix 'kilo' is written k for the meaning of 1000 and it is written K for the meaning of 1024.
- 4. The first letter of register names indicates the type: 'R_ ...' is a register or multi-register, while 'A_ ...' is an array register.

Chapter 1

General description

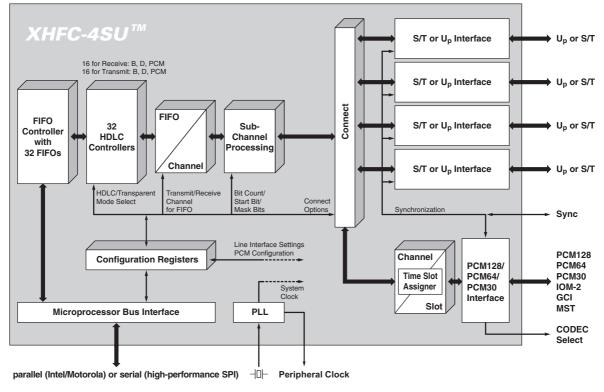


Figure 1.1: XHFC-4SU block diagram

1.1 System overview

XHFC-2S4U/4SU are single-chip ISDN transceiver for four ISDN S/T or U_{pN}/U_{p0}^{-1} Basic Rate Interfaces with integrated HDLC controllers for all kinds of BRI equipment, such as

- VoIP gateways / VoIP routers
- Integrated Access Devices (IAD)
- ISDN PABX
- IP Centrex / Hosted PBX
- ISDN least cost routers
- ISDN LAN routers
- ISDN test equipment
- Call recording
- S/T-to-U_p converters (private NTs)
- U_p repeaters

XHFC-2S4U has two Universal ISDN Ports which can be configurated either in S/T mode or in U_p mode (see Chapter 5), numbered 0 and 1. Two additional U_p interfaces 2 and 3 are available.

XHFC-4SU has four Universal ISDN Ports which can be configurated either in S/T mode or in U_p mode, numbered 0..3.

The integrated microprocessor bus interface of XHFC-2S4U/4SU can be configured to 8 bit parallel microprocessor interface or serial processor interface (SPI). A PCM128 / PCM64 / PCM30 interface for CODEC or inter-chip connection is also integrated. The deep FIFOs of XHFC-2S4U/4SU are realized with an internal SRAM.

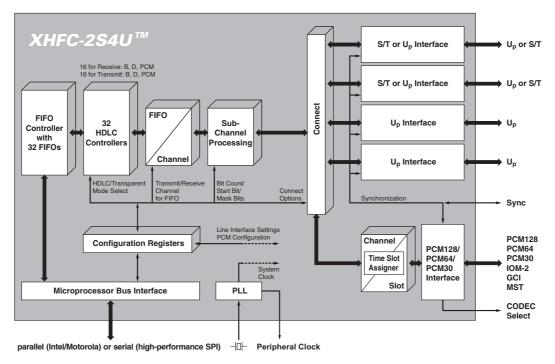


Figure 1.2: XHFC-2S4U block diagram

 $^{^{1}}U_{pN}/U_{p0}$ in the following referred to as U_{p} .

1.2 Features

Line interfaces

- **XHFC-2S4U:** 4 ISDN interfaces, two are selectable as S/T or U_{pN}/U_{p0} interfaces (Universal ISDN Ports), two operate always as U_{pN}/U_{p0} interfaces
- **XHFC-4SU:** 4 ISDN interfaces, each selectable as S/T or U_{pN}/U_{p0} interfaces (Universal ISDN Ports)
- S/T ISDN interfaces in TE and NT mode conform to ITU-T I.430 and TBR 3 [9, 4]
- + U_p signal range exceeding U_{pN}/U_{p0} specification [3]
- Simple external line interface circuitry

HDLC-controller and FIFO controller

- Universal HDLC controller for all B-, D- and E-channels, can also be used for PCM time slots
- Transparent mode and data rate independently selectable for all FIFOs
- Up to 16 FIFOs for transmit and receive data each, FIFO size configurable from 64 up to 256 bytes per FIFO, maximum 7 HDLC frames per FIFO
- B- and D-channels can be combined for higher data rate to 128 kBit/s (2B) or 144 kBit/s (2B+D) per line interface
- Bit Error Rate Test (BERT) with transmitter and receiver
- Programmable data flow to connect FIFOs, PCM and ST/U_p interfaces with each other

PCM interface

- PCM128 / PCM64 / PCM30 interface configurable to MST (MVIP)² or Siemens IOMTM-2 and Motorola GCI (monitor and C/I-channel support) for interchip connection or external CODECs
- Programmable PCM time slot assigner for 16 channels in transmit and receive direction each (switch matrix for PCM)
- H.100 data rate supported on PCM bus
- Flexible PCM synchronization options implemented, synchronization input and output signals available

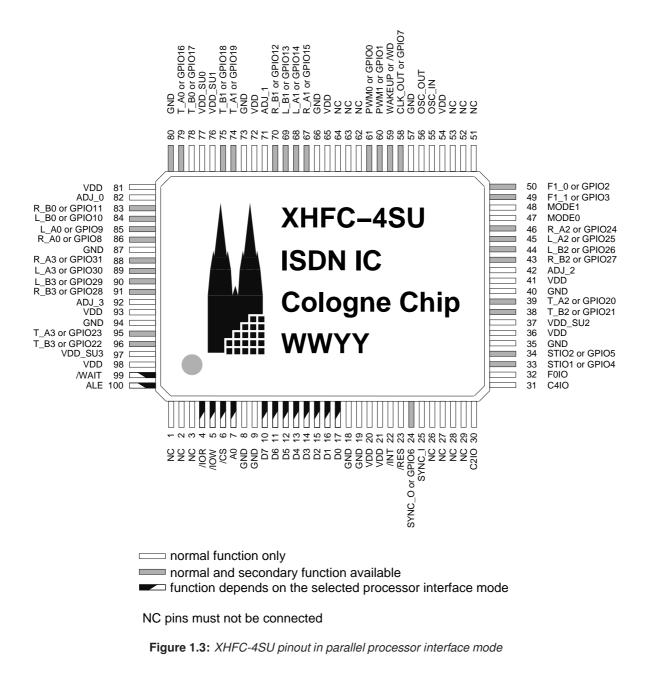
Microprocessor bus interface

- Improved 8 bit parallel microprocessor interface compatible to Motorola bus and Siemens / Intel bus, multiplexed and non-multiplexed modes supported
- High performance serial processor interface (SPI), up to 16 XHFC devices addressable with one /SPISEL signal
- Auto-configure mode for repeater applications without microcontroller (only external EEPROM needed)

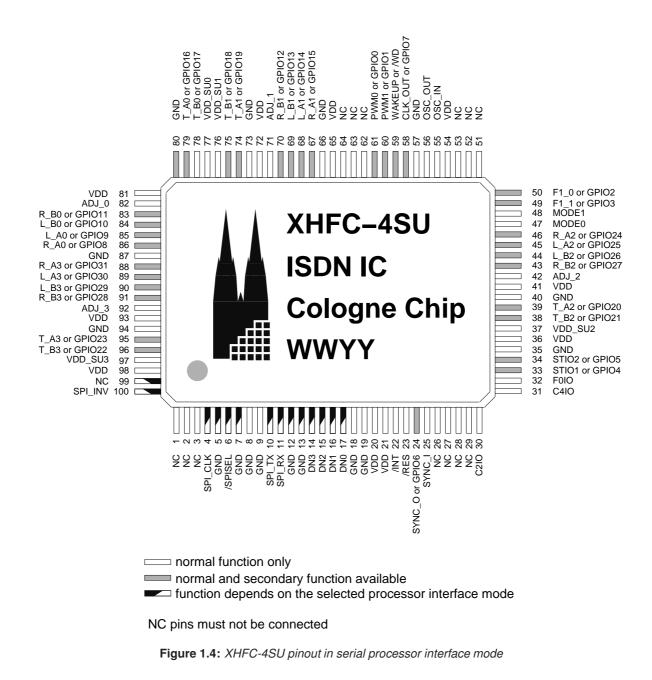
Miscelleanous features

- Flexible interrupt controller, timer and watchdog with interrupt capability
- Programmable PLL with big range of clock frequencies for general purpose usage (can also be used to generate the internal system clock)
- 6 GPIO pins can be used instead of every unused line interface, further 8 GPIOs can be enabled separately as second pin function
- 2 general purpose pulse width modulators (PWM) with dedicated output pins

Technology features


- Single 3.3 V power supply, CMOS technology 3.3 V, 5 V tolerant on nearly all inputs
- PQFP 100 package, 0.65 mm pin pitch
- RoHS compliant

²Mitel Serial Telecom bus


1.3 Pin description

1.3.1 Pinout diagram

Note: XHFC-2S4U pinning is identical with XHFC-4SU.

Note: XHFC-2S4U pinning is identical with XHFC-4SU.

1.3.2 Pin list

Pin	Function	Name	I/O (type)	Description	Input	Output				
	Microprocessor bus interface									
1		NC		Must not be connected						
2		NC		Must not be connected						
3		NC		Must not be connected						
4	Processor SPI	/IOR SPI_CLK	I (2 #) I (2 #)	Read enable SPI clock input	TTL TTL					
5	Processor SPI	/IOW GND	I (2 #)	Write enable Ground	TTL					
6	Processor SPI	/CS /SPISEL	I (2 #) I (2 #)	Chip select, active low SPI device select, active low	TTL TTL					
7	Processor SPI	A0 GND	I (2 #)	Address Ground	TTL					
8		GND		Ground						
9		GND		Ground						
10	Processor SPI	D7 SPI_TX	IO (1 #) O (1)	Data bit 7 SPI transmit data output	TTL	8 mA 8 mA				
11	Processor SPI	D6 SPI_RX	IO (1 #) I (1 #)	Data bit 6 SPI receive data input	TTL TTL	8 mA				
12	Processor SPI	D5 GND	IO (1 #)	Data bit 5 Ground	TTL	8 mA				
13	Processor SPI	D4 GND	IO (1 #)	Data bit 4 Ground	TTL	8 mA				
14	Processor SPI	D3 DN3	IO (1 #) I (1 #)	Data bit 3 SPI device number, bit 3	TTL TTL	8 mA				
15	Processor SPI	D2 DN2	IO (1 #) I (1 #)	Data bit 2 SPI device number, bit 2	TTL TTL	8 mA				
16	Processor SPI	D1 DN1	IO (1 #) I (1 #)	Data bit 1 SPI device number, bit 1	TTL TTL	8 mA				
17	Processor SPI	D0 DN0	IO (1 #) I (1 #)	Data bit 0 SPI device number, bit 0	TTL TTL	8 mA				
18		GND		Ground						
19		GND		Ground						

(continued on next page)

				(C	ontinued from pi	revious page)
Pin	Function	Name	I/O (type)	Description	Input	Output
20		VDD		+3.3 V power supply		
21		VDD		+3.3 V power supply		
		iscellaneous				
22		/INT	Ood #	Interrupt request pin, active low / high programmable		8 mA
23		/RES	Isch #	Reset input pin, active low	TTL	
			РС	M interface		
24	1st function 2nd function	SYNC_O GPIO6	IO (1 #) IO (1 #)	Synchronization output General purpose I/O pin 6	TTL TTL	8 mA 8 mA
25		SYNC_I	I (2 #)	Synchronization input	TTL	
26		NC		Must not be connected		
27		NC		Must not be connected		
28		NC		Must not be connected		
29		NC		Must not be connected		
30		C2IO	IOpu #	PCM bit clock	TTL	8 mA
31		C4IO	IOpu #	PCM double bit clock	TTL	8 mA
32		F0IO	IOpu #	PCM frame clock (8 kHz)	TTL	8 mA
33	1st function	STIO1	IOpu #	PCM data line 1, I or O per time slot	TTL	8 mA
	2nd function	GPIO4	IOpu #	General purpose I/O pin 4	TTL	8 mA
34	1st function	STIO2	IOpu #	PCM data line 2, I or O per time slot	TTL	8 mA
	2nd function	GPIO5	IOpu #	General purpose I/O pin 5	TTL	8 mA
35		GND		Ground		
36		VDD		+3.3 V power supply		
			Univer	rsal ISDN Ports		
37		VDD_SU2		Power supply for ST/Up interface no. 3		
38	1st function	T_B2	O (2)	Combined ST/Up interface no. 2 transmit output B		S/T / Up
	2nd function	GPIO21	IO (3)	General purpose I/O pin 21	TTL	16 mA

Pin	Function	Name	I/O (type)	Description	Input	Output
					mput	-
39	1st function	T_A2	O (2)	Combined ST/Up interface no. 2 transmit output A		S/T / Up
	2nd function	GPIO20	IO (3)	General purpose I/O pin 20	TTL	16 mA
40		GND		Ground		
41		VDD		+3.3 V power supply		
42		ADJ_2	Ood #	Combined ST/Up interface no. 2 level generator		2 mA
43	1st function	R_B2	I (3)	Combined ST/Up interface no. 2 receive input B	S/T / Up	
	2nd function	GPIO27	IO (3)	General purpose I/O pin 27	TTL	3 mA
44	1st function	L_B2	I (3)	Combined ST / Up interface no. 2 level detect B	S/T / Up	
	2nd function	GPIO26	IO (3)	General purpose I/O pin 26	TTL	3 mA
45	1st function	L_A2	I (3)	Combined ST / Up interface no. 2 level detect A	S/T / Up	
	2nd function	GPIO25	IO (3)	General purpose I/O pin 25	TTL	3 mA
46	1st function	R_A2	I (3)	Combined ST / Up interface no. 2 receive input A	S/T / Up	
	2nd function	GPIO24	IO (3)	General purpose I/O pin 24	TTL	3 mA
			Mi	iscellaneous		
47		MODE0	I (2 #)	Interface mode pin 0	TTL	
48		MODE1	I (2 #)	Interface mode pin 1	TTL	
49	1st function	F1_1	0(1)	Enable signal for external CODEC 1		8 mA
	2nd function	GPIO3	IO (1 #)	General purpose I/O pin 3	TTL	8 mA
50	1st function	F1_0	0(1)	Enable signal for external CODEC 0		8 mA
	2nd function	GPIO2	IO (1 #)	General purpose I/O pin 2	TTL	8 mA
51		NC		Must not be connected		
52		NC		Must not be connected		
53		NC		Must not be connected		
				Clock		
54		VDD		+3.3 V power supply		
55		OSC_IN	I (4)	Oscillator input signal	Oscillator	
56		OSC_OUT	O (3)	Oscillator output signal		Oscillator
					(continued on	

Pin	Function	Name	I/O (type)	Description	Input	Output
57		GND		Ground		
58	1st function	CLK_OUT	O (1)	Clock output signal		8 mA
	2nd function	GPIO7	IO (1 #)	General purpose I/O pin 7	TTL	8 mA
			Mi	iscellaneous		
59	1st function	WAKEUP	I (1 #)	Wakeup input pin for external awake circuitry	TTL	
	2nd function	/WD	Ood #	Watchdog output signal		8 mA
60	1st function	PWM1	O (1)	Pulse width modulator output 1		
	2nd function	GPIO1	IO (1 #)	General purpose I/O pin 1	TTL	
61	1st function	PWM0	O (1)	Pulse width modulator output 0		8 mA
	2nd function	GPIO0	IO (1 #)	General purpose I/O pin 0	TTL	8 mA
62		NC		Must not be connected		
63		NC		Must not be connected		
64		NC		Must not be connected		
65		VDD		+3.3 V power supply		
66		GND		Ground		
			Univer	rsal ISDN Ports		
67	1st function	R_A1	I (3)	Combined ST/Up interface no. 1 receive input A	S/T / Up	
	2nd function	GPIO15	IO (3)	General purpose I/O pin 15	TTL	3 mA
68	1st function	L_A1	I (3)	Combined ST/Up interface no. 1 level detect A	S/T / Up	
	2nd function	GPIO14	IO (3)	General purpose I/O pin 14	TTL	3 mA
69	1st function	L_B1	I (3)	Combined ST/Up interface no. 1 level detect B	S/T / Up	
	2nd function	GPIO13	IO (3)	General purpose I/O pin 13	TTL	3 mA
70	1st function	R_B1	I (3)	Combined ST/Up interface no. 1 receive input B	S/T / Up	
	2nd function	GPIO12	IO (3)	General purpose I/O pin 12	TTL	3 mA
71		ADJ_1	Ood #	Combined ST/Up interface no. 1 level generator		2 mA
72		VDD		+3.3 V power supply		
73		GND		Ground		
74	1st function	T_A1	O (2)	Combined ST/Up interface no. 1 transmit output A		S/T / Up
	2nd function	GPIO19	IO (3)	General purpose I/O pin 19	TTL	16 mA

Pin	Function	Name	I/O (type)	Description	Input	Output
75	1st function	T_B1	O (2)	Combined ST/Up interface		S/T / Up
	2nd function	GPIO18	IO (3)	no. 1 transmit output B General purpose I/O pin 18	TTL	16 mA
76		VDD_SU1		Power supply for ST/Up interface no. 1		
77		VDD_SU0		Power supply for ST/Up interface no. 0		
78	1st function	T_B0	O (2)	Combined ST / Up interface no. 0 transmit output B		S/T / Up
	2nd function	GPIO17	IO (3)	General purpose I/O pin 17	TTL	16 mA
79	1st function	T_A0	O (2)	Combined ST / Up interface no. 0 transmit output A		S/T / Up
	2nd function	GPIO16	IO (3)	General purpose I/O pin 16	TTL	16 mA
80		GND		Ground		
81		VDD		+3.3 V power supply		
82		ADJ_0	Ood #	Combined ST/Up interface no. 0 level generator		2 mA
83	1st function	R_B0	I (3)	Combined ST/Up interface no. 0 receive input B	S/T / Up	
	2nd function	GPIO11	IO (3)	General purpose I/O pin 11	TTL	3 mA
84	1st function	L_B0	I (3)	Combined ST / Up interface no. 0 level detect B	S/T / Up	
	2nd function	GPIO10	IO (3)	General purpose I/O pin 10	TTL	3 mA
85	1st function	L_A0	I (3)	Combined ST/Up interface no. 0 level detect A	S/T / Up	
	2nd function	GPIO9	IO (3)	General purpose I/O pin 9	TTL	3 mA
86	1st function	R_A0	I (3)	Combined ST / Up interface no. 0 receive input A	S/T / Up	
	2nd function	GPIO8	IO (3)	General purpose I/O pin 8	TTL	3 mA
87		GND		Ground		
88	1st function	R_A3	I (3)	Combined ST / Up interface no. 3 receive input A	S/T / Up	
	2nd function	GPIO31	IO (3)	General purpose I/O pin 31	TTL	3 mA
89	1st function	L_A3	I (3)	Combined ST/Up interface no. 3 level detect A	S/T / Up	
	2nd function	GPIO30	IO (3)	General purpose I/O pin 30	TTL	3 mA
90	1st function	L_B3	I (3)	Combined ST / Up interface no. 3 level detect B	S/T / Up	
	2nd function	GPIO29	IO (3)	General purpose I/O pin 29	TTL	3 mA

XHFC-2S4U XHFC-4SU

(continued from previous page)

				(COII	unued from pre	vious page)
Pin	Function	Name	I/O (type)	Description	Input	Output
91	1st function	R_B3	I (3)	Combined ST/Up interface no. 3 receive input B	S/T / Up	
	2nd function	GPIO28	IO (3)	General purpose I/O pin 28	TTL	3 mA
92		ADJ_3	Ood #	Combined ST/Up interface no. 3 level generator		2 mA
93		VDD		+3.3 V power supply		
94		GND		Ground		
95	1st function	T_A3	O (2)	Combined ST/Up interface no. 3 transmit output A		S/T / Up
	2nd function	GPIO23	IO (3)	General purpose I/O pin 23	TTL	16 mA
96	1st function	T_B3	O (2)	Combined ST/Up interface no. 3 transmit output B		S/T / Up
	2nd function	GPIO22	IO (3)	General purpose I/O pin 22	TTL	16 mA
97		VDD_SU3		Power supply for ST/Up interface no. 3		
			Microproc	cessor bus interface		
98		VDD		+3.3 V power supply		
99	Processor	/WAIT	Ood #	Wait signal for external processor, active low		8 mA
	SPI	NC		Must not be connected		
100	Processor	ALE	I (2 #)	Address latch enable (only in multiplexed modes)	TTL	
	SPI	SPI_INV	I (2 #)	Invert SPI clock	TTL	

Legend:	IO (1 #)	Bidirectional pin, input 5 V tolerant, 9 pF pin capacitance
	IO (3)	Bidirectional pin
	IOpu #	Bidirectional pin with internal pull-up resistor of $110 \text{ k}\Omega$ typical to VDD, input 5 V tolerant, 9 pF pin capacitance
	I (1 #)	Input pin, 5 V tolerant, 9 pF pin capacitance
	I (2 #)	Input pin, 5 V tolerant, 3 pF pin capacitance
	I (3)	Line interface input pin
	I (4)	Oscillator input pin, 12 pF pin capacitance
	Isch #	Schmitt Trigger input pin, 5 V tolerant, 9 pF pin capacitance
	O (1)	Output pin, 9 pF pin capacitance
	O (2)	Line interface output pin
	O (3)	Oscillator output pin, 10 pF pin capacitance
	Ood #	Output pin with open drain, 5 V tolerant, 9 pF pin capacitance
	NC	Must not be connected

Pins with 5 V tolerant input are marked with #.

Unused input pins should be connected to ground.

Unused I/O pins should be connected with pull-down resistor to ground. It is recommended to use a maximum of $22 k\Omega$ for pins with internal pull-up resistor and a maximum of $100 k\Omega$ for pins without internal pull-up resistor.

Chapter 2

Microprocessor bus interface

Write only	y registers:		Read only	registers:	
Address	Name	Page	Address	Name	Page
0x01	R_CTRL	72	0x15	R_RAM_USE	74
0x08	R_RAM_ADDR	73	0x16	R_CHIP_ID	74
0x09	R_RAM_CTRL	73	0x1F	R_CHIP_RV	74
			0x88	R_INT_DATA	75
			Read / wri	te registers:	
			Address	Name	Page
			0xC0	R_RAM_DATA	76

Table 2.1: Overview of the XHFC-2S4U/4SU bus interface registers

2.1 Mode selection

XHFC-2S4U/4SU has an integrated microprocessor bus interface which can be configured as parallel 8 bit microprocessor interface and serial processor interface (SPI). Table 2.2 shows how to select these bus modes via the two pins MODE0 and MODE1.

Table 2.2: Microprocessor access types
--

Bus mode	MODE1	MODE0
Serial processor interface (SPI)	0	0
Parallel processor interface		
Modes 2 and 2m: Motorola	0	1
Modes 3 and 3m: Intel	1	0
Auto-EEPROM mode	1	1

The Auto-EEPROM mode lets XHFC-2S4U/4SU operate without an external microprocessor. The complete setup procedure can be stored in an external EEPROM. This mode is useful for applications that do not need a microprocessor intervention during operation (i.e. only static initialization required), e.g. U_p repeater applications.

The mode selection pins MODE0 and MODE1 must be stable during hardware reset. Sections 2.2 to 2.4 explain how to use XHFC-2S4U/4SU in the different bus modes.

2.2 Parallel processor interface

Number	Name	Description
22	/INT	Interrupt request pin, active low / high programmable
23	/RES	Reset input pin, active low
47	MODE0	Interface mode pin 0
48	MODE1	Interface mode pin 1
99	/WAIT	Wait signal for external processor, active low
100	ALE	Address latch enable (only in multiplexed modes)
4	/IOR	Read enable
5	/IOW	Write enable
6	/CS	Chip select, active low
7	A0	Address
1710	D0D7	Data bit 0 Data bit 7

Table 2.3: Overview of the parallel processor interface pins

2.2.1 Overview

XHFC-2S4U/4SU has four different parallel microprocessor interface modes. According to the name conventions of other Cologne Chip products (HFC series) the non-multiplexed processor interface modes are numbered 2 and 3 like shown in Table 2.4. The corresponding multiplexed modes are named 2m and 3m.¹

The interface mode is determined with power-on. For the non-multiplexed modes 2 and 3, the ALE pin must be stable after reset and should be fixed to ground.

Multiplexed modes are selected after reset with the first rising edge of ALE. XHFC-2S4U/4SU then switches permanently from mode 2 into mode 2m or from mode 3 into mode 3m respectively. XHFC-2S4U/4SU cannot switch to multiplexed modes before end of reset time. Rising and falling edges of ALE are ignored during reset time.

2.2.2 Interface signals

The processor interface signals have different names for Motorola and Intel microprocessors. Table 2.5 shows the mapping with the pin names of XHFC-2S4U/4SU.

¹Mode 3m is formerly known as mode 4 from previous chips of the HFC series.

Pin	Mode 2 Motorola Non-mul	Mode 3 Intel tiplexed	Mode 2m Motorola Multij	Mode 3m Intel plexed
MODE0	1	0	1	0
MODE1	0	1	0	1
ALE	0^{*1}	0^{*1}	*2	*2

 Table 2.4: Parallel processor interface mode selection

^{*1}: This pin should be fixed to ground

*2: 1-pulse latches register address

Table 2.5: Pins and signal names of the	narallel processor interface modes
Table 2.3. Fins and signal names of the	parallel processor internace modes

XHFC-2S4U/4SU pins		Signal names				
Number	Name	Mode 2 Motorola Non-multiplexed	Mode 3 Intel Non-multiplexed	Mode 2m Motorola Multiplexed	Mode 3m Intel Multiplexed	
6	/CS	/CS	/CS	/CS	/CS	
4	/IOR	/DS	/RD	/DS	/RD	
5	/IOW	R/W	/WR	R/W	/WR	
100	ALE	'0'	'O'	ALE	ALE	
7	A0	A0	A0	,0,	·0'	
1017	D7D0	D7D0	D7D0	AD7 AD0	AD7 AD0	

2.2.3 Register access

2.2.3.1 Non-multiplexed / multiplexed access

Non-multiplexed modes: With this indirect addressing method, modes 2 and 3, A0 is the address input line. A0 = '0' is used for data write and read, while A0 = '1' is used for address write and read-back accesses.

Both, register address and data, are transferred through the pins D7..D0 (D0 is LSB). The address must first be written on D7..D0 with A0 = '1'. Then data read or write can be performed with A0 = '0' on the same bus D7..D0. Several data accesses can be executed to the same register address without writing the address again. Access details are shown in the timing diagrams in Figures 2.1 and 2.2.

Multiplexed modes: Direct addressing is supported with the multiplexed modes 2m and 3m. These do not use A0 and require A0 = '0' all the time.

All registers can directly be accessed in multiplexed mode. ALE latches the register address. The multiplexed address and data bus is D7..D0 (D0 is LSB). Timing diagrams are shown in Figures 2.3 and 2.4.

2.2.3.2 Read* access

Some registers must be read with an indirect method, the so-called Read^{*} access (written as 'r^{*}' characteristic in register tables). This refers to all readable registers in the address range 0xC0..0xFF, here called *target register*.

The Read* access performs two consecutive read accesses to XHFC-2S4U/4SU:

- 1. First, a read access to the target register must be executed. The returned value is not the value of the register and must be ignored.
- 2. Then, the target register value can be read from register R_INT_DATA.

The Read* access is practical for the target registers R_RAM_DATA, A_SL_CFG, A_CH_MSK, A_CON_HDLC, A_SUBCH_CFG, A_CHANNEL, A_FIFO_SEQ and A_FIFO_CTRL. All other registers have a direct read access.

2.2.3.3 Register address read-back capability

When the non-multiplexed modes 2 and 3 are used, the address read access can be executed to readback the address of the currently selected register.

2.2.3.4 Problems with interrupts between address write and data read / write accesses

The register address read-back capability is useful for interrupt procedures, e.g., to save and restore the previous state:

```
interrupt procedure: - execute address read access and store the register address
- ... (execute the interrupt service routine)
- address write access to restore the previous register address
```

This procedure is important to avoid data read or write to an unexpected register address after a register read or write access has been split by an interrupt service routine which executes any access to XHFC-2S4U/4SU.

2.2.4 Signal and timing characteristics

Table 2.6 shows the interface signals for the different microprocessor interface modes. Timing characteristics are shown in Figures 2.1 and 2.2 for non-multiplexed modes 2 and 3. Figures 2.3 and 2.4 show multiplexed modes 2m and 3m timing characteristics. Please see Table 2.7 for a quick timing and symbol list finding.

2.2.4.1 Bus interface in mode 2 and mode 3 (non-multiplexed)

Read access

8 bit processors read data like shown in Figure 2.1. Timing values are listed in Table 2.8.

Cologne Chip

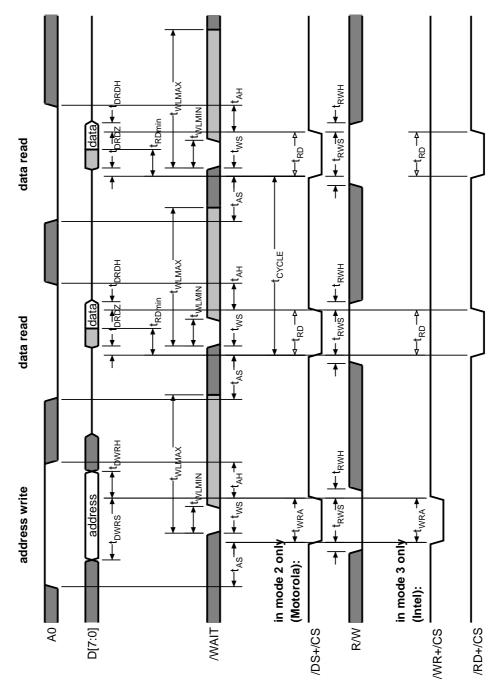


Figure 2.1: Bus interface read access in mode 2 (Motorola) and mode 3 (Intel)

Notes:

- (1) It is not necessary to use /WAIT if the processor is able to ensure the t_{CYCLE} timing constraint.
- (2) /WAIT signal is only active if the interval of two consecutive data phases is less than t_{CYCLE} .
- (3) For faster access, it is recommended to set up a processor timing which does not require the /WAIT signal.

/CS	/ IOR (/DS, /RD)	/ IOW (R/W, /WR)	ALE	A 0	Operation	Processor interface mode
1	Х	Х	Х	Х	no access	all
0	1	1	0	0	no access	all
0	0	1	0	1	read address	mode 2
0	0	0	0	1	write address	mode 2
0	0	1	0	0	read data	mode 2
0	0	0	0	0	write data	mode 2
0	0	1	0	1	read address	mode 3
0	1	0	0	1	write address	mode 3
0	0	1	0	0	read data	mode 3
0	1	0	0	0	write data	mode 3
0	0	1	*	0	read data	mode 2m
0	0	0	<u> </u>	0	write data	mode 2m
0	0	1	*	0	read data	mode 3m
0	1	0	*	0	write data	mode 3m

Table 2.6: Overview of accesses in parallel microprocessor interface mode (X = don't care)

*: 1-pulse latches register address

Table 2.7:	Timing diagrams	of the parallel	microprocesso	r interface
	i inning alagianio	or the paraner	111101001000000	miconaco

Mode	Access	Tir	ning	Timin	g values
	type	Figure	on page	table	on page
2 & 3	read	2.1	48	2.8	50
2 & 3	write	2.2	51	2.9	52
2m & 3m	read	2.3	54	2.10	53
2m & 3m	write	2.4	56	2.11	55

Data can be read with²

$$(/DS + /CS) = '0'$$
 and $R/W = '1'$.

in mode 2 (Motorola) or with

$$(/RD + /CS) = '0'$$
 and $/WR = '1'$

in mode 3 (Intel). The data bus is stable after $t_{RD min}$ and returns into tristate after t_{DRDH} .

The address line A0 requires a setup time t_{AS} . The hold time of this line is t_{AH} .

 $^{^{2}}$ /DS + /CS means logical OR function of the two signals.

Symbol	min / ns	max / ns	Characteristic
$t_{\rm AS}$	20		
			A0 valid to /DS+/CS (/WR+/CS) $\$ setup time
$t_{\rm AH}$	0		Address hold time after /DS+/CS (/WR+/CS) _
$t_{\rm WRA}$	20		Write time for address write
<i>t</i> _{DWRS}	25		Write data setup time to /DS+/CS (/WR+/CS) _
<i>t</i> _{DWRH}	0		Write data hold time from /DS+/CS (/WR+/CS) _
t _{RD}	25		Read time
<i>t</i> _{CYCLE}			/DS+/CS (/RD+/CS)
	30		Register address range 0x000x7F
	$3.5 \cdot t_{SYS}$		Register address range 0x800xFF
t _{DRDZ}	3		/DS+/CS (/RD+/CS) $\$ to data buffer turn on time
t _{DRDH}	2	15	/DS+/CS (/RD+/CS)
t _{RWS}	2		R/W setup time to /DS+/CS \Box (in mode 2 only)
t _{RWH}	2		R/W hold time after /DS+/CS _(in mode 2 only)
t _{WS}		10	/WAIT turn on time to /DS+/CS or /WR+/CS \
<i>t</i> _{WLMIN}	0		Minimum /WAIT low time
$t_{\rm WLMAX}$		<i>t</i> _{CYCLE}	Maximum /WAIT low time

 Table 2.8: Symbols of read accesses in Figure 2.1

The cycle time specifies the time between two consecutive data accesses. $t_{SYS} = 1/f_{SYS}$ with the system clock f_{SYS} .

Write access

8 bit processors write data like shown in Figure 2.2. Timing values are listed in Table 2.9.

Data is written with \Box of (/DS + /CS) in mode 2 (Motorola) or with \Box of (/WR + /CS) in mode 3 (Intel) respectively. XHFC-2S4U/4SU requires a data setup time t_{DWRS} and a data hold time t_{DWRH} .

The address line A0 requires a setup time t_{AS} which starts when the address signal is valid. The hold time is $t_{AH} \ge 0$ ns after address write access and it is $t_{AHD} \ge 0.5 t_{SYS} + 9$ ns after data write access.³

³Please ask Cologne Chip's support team if the intended processor has problems with t_{AHD} (support@CologneChip.com).

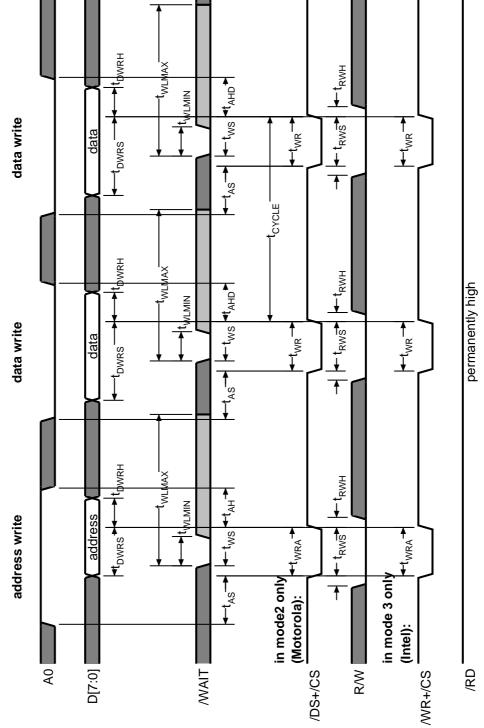


Figure 2.2: Bus interface write access in mode 2 (Motorola) and mode 3 (Intel)

Notes:

- (1) It is not necessary to use /WAIT if the processor is able to ensure the t_{CYCLE} timing constraint.
- (2) /WAIT signal is only active if the interval of two consecutive data phases is less than t_{CYCLE} .
- (3) For faster access, it is recommended to set up a processor timing which does not require the /WAIT signal.

Symbol	min / ns	max / ns	Characteristic
t _{AS}	20		
			A0 valid to /DS+/CS (/WR+/CS) $_$ setup time
$t_{\rm AH}$	0		Address hold time of address write access after /DS+/CS (/WR+/CS) $_\!$
$t_{\rm AHD}$	$0.5 \cdot t_{SYS} + 9$		Address hold time of data write access after /DS+/CS (/WR+/CS) $_$
$t_{\rm WRA}$	20		Write time for address write
<i>t</i> _{DWRS}	20		Write data setup time to /DS+/CS (/WR+/CS) _
t _{DWRH}	0		Write data hold time from /DS+/CS (/WR+/CS) _
t _{WR}	20		Write time
<i>t</i> _{CYCLE}			/DS+/CS (/RD+/CS) _ to next /DS+/CS (/RD+/CS) _
	$1.5 \cdot t_{SYS}$		Register address range 0x000x7F
	$3.5 \cdot t_{SYS}$		Register address range 0x800xFF
t _{RWS}	2		R/W setup time to /DS+/CS \Box (in mode 2 only)
$t_{\rm RWH}$	2		R/W hold time after /DS+/CS ⊥(in mode 2 only)
t _{WS}		10	/WAIT turn on time to /DS+/CS or /WR+/CS \
<i>t</i> _{WLMIN}	0		Minimum /WAIT low time
t _{WLMAX}		<i>t</i> _{CYCLE}	Maximum /WAIT low time

 Table 2.9: Symbols of write accesses in Figure 2.2

Symbol	min / ns	max / ns	Characteristic
t _{AS}	20		Address valid to ALE $\$ setup time
$t_{\rm AH}$	0		Address hold time after ALE $\$
t_{ALE}	10		Address latch time
$t_{\rm ALEL}$	0		
			ALE L to /RD+/CS L
$t_{\rm ALEH}$	0		/RD+/CS _ to ALE _
t _{RD}	25		Read time
<i>t</i> _{CYCLE}			/DS+/CS (/RD+/CS)
	30		Register address range 0x000x7F
	$3.5 \cdot t_{SYS}$		Register address range 0x800xFF
t _{DRDZ}	3		/RD+/CS \Box to data buffer turn on time
t _{DRDH}	2	15	/RD+/CS
t _{RWS}	2		R/W setup time to /DS+/CS \((in mode 2 only))
t _{RWH}	2		R/W hold time after /DS+/CS ⊥(in mode 2 only)
t _{WS}		10	/WAIT turn on time to /DS+/CS or /WR+/CS \Box
<i>t</i> _{WLMIN}	0		Minimum /WAIT low time
t _{WLMAX}		<i>t</i> _{CYCLE}	Maximum /WAIT low time

 Table 2.10:
 Symbols of read accesses in Figure 2.3

2.2.4.2 Bus interface in mode 2m and mode 3m (multiplexed)

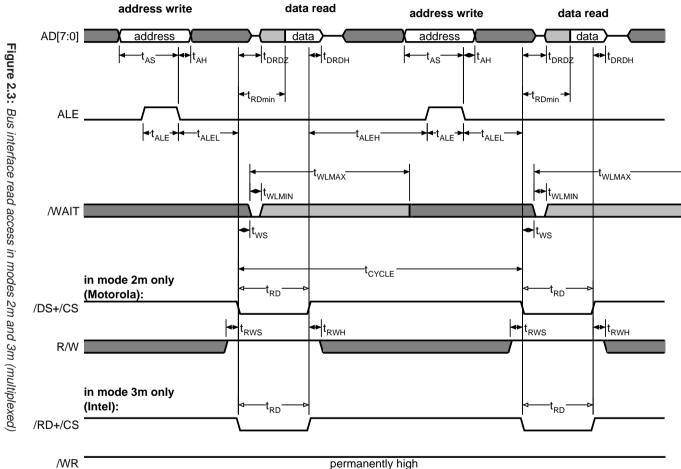
Read access

8 bit processors read data like shown in Figure 2.3. Timing values are listed in Table 2.10.

Data can be read with ⁴

$$(/DS + /CS) = '0'$$
 and $R/W = '1'$.

in mode 2m (Motorola) or with


/WR = '1'

in mode 3m (Intel). The data bus is stable after $t_{RD min}$ and returns into tristate after t_{DRDH} .

The address line A0 requires a setup time t_{AS} in relation to \neg of ALE. The hold time of these lines is t_{AH} . If consecutive read accesses are on the same register address, multiple address write accesses are not required.

The cycle time specifies the time between two consecutive data accesses. $t_{SYS} = 1/f_{SYS}$ with the system clock f_{SYS} .

 $^{^{4}}$ /DS +/CS means logical OR function of the two signals.

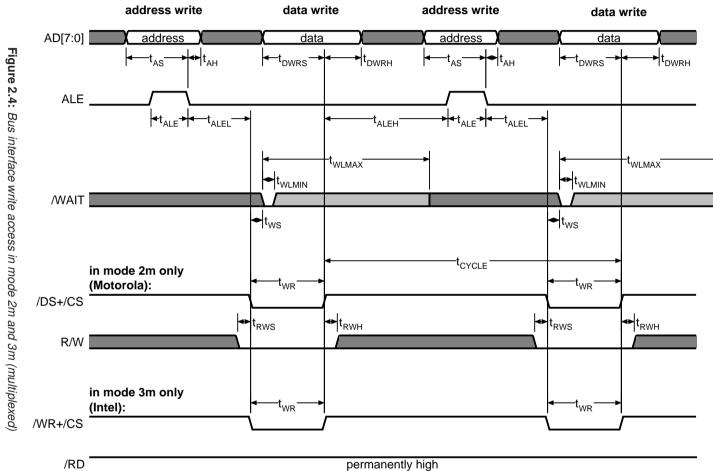
ים ביטי. שמט הונטרומנים וכמט מכיכטט ווי הונספט בווי מווס טווי (הומווס

XHFC-2S4U XHFC-4SU

Microprocessor bus interface

Cologne Chip

Symbol	min / ns	max / ns	Characteristic
t _{AS}	20		Address valid to ALE $\$ setup time
$t_{\rm AH}$	0		Address hold time after /WR+/CS _
<i>t</i> _{ALE}	10		Address latch time
$t_{\rm ALEL}$	0		
			ALE T to /WR+/CS T
$t_{\rm ALEH}$	0		/WR+/CS _ to ALE _
t _{DWRS}	20		Write data setup time to /WR+/CS _
t _{DWRH}	0		Write data hold time from /WR+/CS _
t _{WR}	20		Write time
<i>t</i> _{CYCLE}			/DS+/CS (/WR+/CS) _ to next /DS+/CS (/WR+/CS) _
	$1.5 \cdot t_{SYS}$		Register address range 0x000x7F
	$3.5 \cdot t_{SYS}$		Register address range 0x800xFF
t _{RWS}	2		R/W setup time to /DS+/CS $\ (in mode 2 only)$
t _{RWH}	2		R/W hold time after /DS+/CS \(\[(in mode 2 only) \)
t _{WS}		10	/WAIT turn on time to /DS+/CS or /WR+/CS \Box
<i>t</i> _{WLMIN}	0		Minimum /WAIT low time
t _{WLMAX}		<i>t</i> _{CYCLE}	Maximum /WAIT low time


 Table 2.11: Symbols of write accesses in Figures 2.4

Write access

8 bit processors write data like shown in Figure 2.4. Timing values are listed in Table 2.11.

Data is written with \Box of (/DS + /CS) in mode 2m (Motorola) or with \Box of (/WR + /CS) in mode 3m (Intel) respectively. XHFC-2S4U/4SU requires a data setup time t_{DWRS} and a data hold time t_{DWRH} .

The address line A0 requires a setup time t_{AS} in relation to \neg of ALE. The hold time of these lines is t_{AH} . If consecutive write accesses are on the same register address, multiple address write accesses are not required.

2.2.5 Microprocessor connection circuitries

Figures 2.5 to 2.8 show examples how to connect XHFC-2S4U/4SU to different parallel processor interfaces.

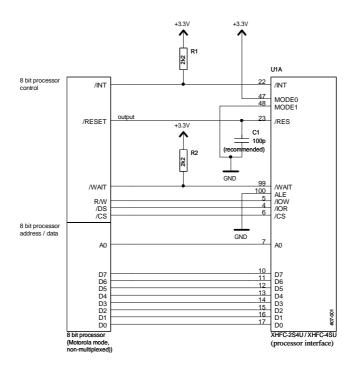
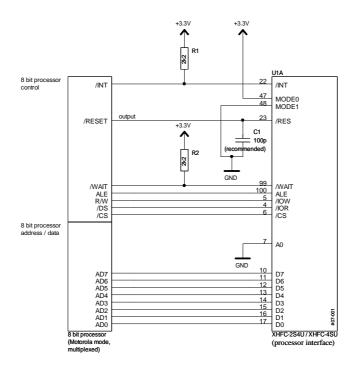



Figure 2.5: 8 bit Motorola processor circuitry example (mode 2)

Figure 2.6: 8 bit Motorola processor circuitry example (mode 2m)

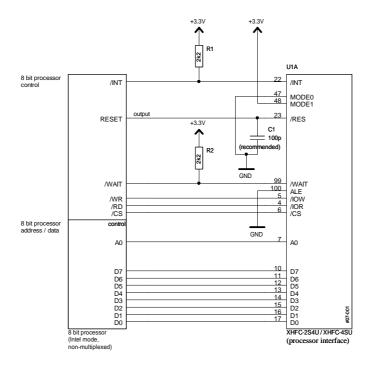
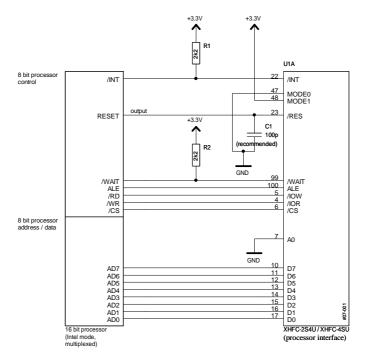



Figure 2.7: 8 bit Intel processor circuitry example (mode 3)

Figure 2.8: 8 bit Intel processor circuitry example (mode 3m)

2.3 Serial processor interface (SPI)

Number	Name	Description
22	/INT	Interrupt request pin, active low / high programmable
23	/RES	Reset input pin, active low
47	MODE0	Interface mode pin 0
48	MODE1	Interface mode pin 1
10	SPI_TX	SPI transmit data output
11	SPI_RX	SPI receive data input
4	SPI_CLK	SPI clock input
6	/SPISEL	SPI device select, active low
100	SPI_INV	Invert SPI clock
17	DN0	SPI device number, bit 0
16	DN1	SPI device number, bit 1
15	DN2	SPI device number, bit 2
14	DN3	SPI device number, bit 3

Table 2.12: Overview of the SPI interface pins
--

XHFC-2S4U/4SU has a serial processor interface (SPI) which is compatible with Motorola's SPI. CPUs and MCUs with SPI interface are also available from a variety of semiconductor vendors. The SPI interface has four signal pins as shown in the upper part of Table 2.12. Additional pins are used for SPI clock inversion and SPI device number selection.

SPI interface mode is selected by MODE0 = '0' and MODE1 = '0' (pins 47 and 48). XHFC-2S4U/4SU support only SPI slave mode.

Any register access consists of two transactions – an address write transaction first and a data read or write transaction afterwards. SPI transactions of XHFC-2S4U/4SU have either a length of 16 bits for single byte accesses or 40 bits for high performance accesses. The first byte is a control byte in both cases, whereas the following bits are either one data byte or four data bytes. Control and data bytes are transmitted with MSB first.

2.3.1 SPI control byte

Tables 2.13 and 2.14 show an overwiev of the control byte construction. R and A are used to specify read/write and address/data transaction types. The meaning of bit position 5 depends on the value of A; broadcasting can be enabled with an address transaction and single or multiple data bytes is selected with a data transaction.

Up to 16 microchips of the XHFC series can be connected to the SPI interface and can operate with the same /SPISEL signal. The desired microchip is selected with the device address C3 ... C0 within an address transaction. Every XHFC microchip must specify its address with DN3..DN0 pins (device number) connected to ground or power supply. A microchip is selected with C3..C0 = DN3..DN0 where all numbers in the range 0..15 are allowed.

In addition to the chip selection, an SPI write access writes its data into *all* connected XHFC microchips if broadcast is used. SPI read accesses with enabled broadcast execute the register read access in all connected XHFC microchips, but only the specified chip delivers its data to the SPI master. The broadcast write access is useful for initialization procedures, e.g., for those registers, which must be initialized in all connected XHFC microchips.

Table 2.15 summarizes the SPI control commands which are coded in the control byte.

2.3.2 SPI transactions

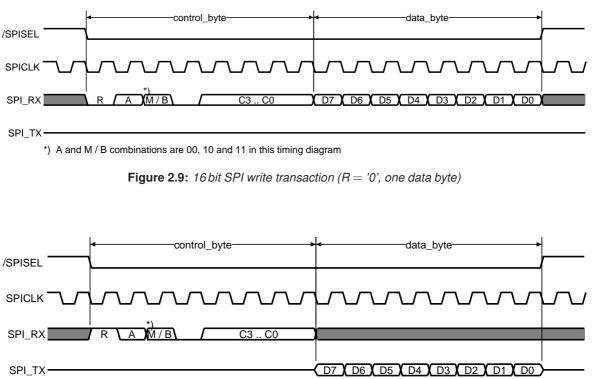
Table 2.13: SPI control byte with A = '0'

The waveforms of an address or data write transaction with 16 bits length are shown in Figure 2.9. XHFC-2S4U/4SU receives the control byte and the data byte with R = '0' on the SPI_RX line. The

Bit	Name	Description	Bit	Nam
7	R	'0' = write '1' = read	7	R
6	А	'0' = register data	6	А
5	Μ	'0' = single data byte '1' = multi data bytes (4 bytes)	5	В
4	'0'	This bit must be zero in all SPI transactions	4	'0'
30	'0000'	Must be zero in data transac- tions	30	C3 .

Table 2.14: SPI control byte with A = '1'

Bit	Name	Description
7	R	'0' = write
		'1' = read
6	А	'1' = register address
5	В	'0' = no broadcast
		'1' = broadcast
4	,0,	This bit must be zero in all SPI transactions
30	C3C0	Device address (used for chip select generation)


Table 2.15: SPI control commands for register read and write operations

	Control byte				R	Α	M/B	Timing
R	А	M/B	0	C3C0				diagram
0	0	0	0	0000	write	data	single data byte	Fig. 2.9
1	0	0	0	0000	read	data	single data byte	Fig. 2.10
0	1	0	0	CCCC	write	address	no broadcast	Fig. 2.9
1	1	0	0	CCCC	read	address	no broadcast	Fig. 2.10
0	0	1	0	0000	write	data	multiple data bytes	Fig. 2.11
1	0	1	0	0000	read	data	multiple data bytes	Fig. 2.12, 2.13
0	1	1	0	CCCC	write	address	broadcast	Fig. 2.9
1	1	1	0	CCCC	read	address	broadcast	Fig. 2.10
Х	Х	Х	1	XXXX	not all	owed		_

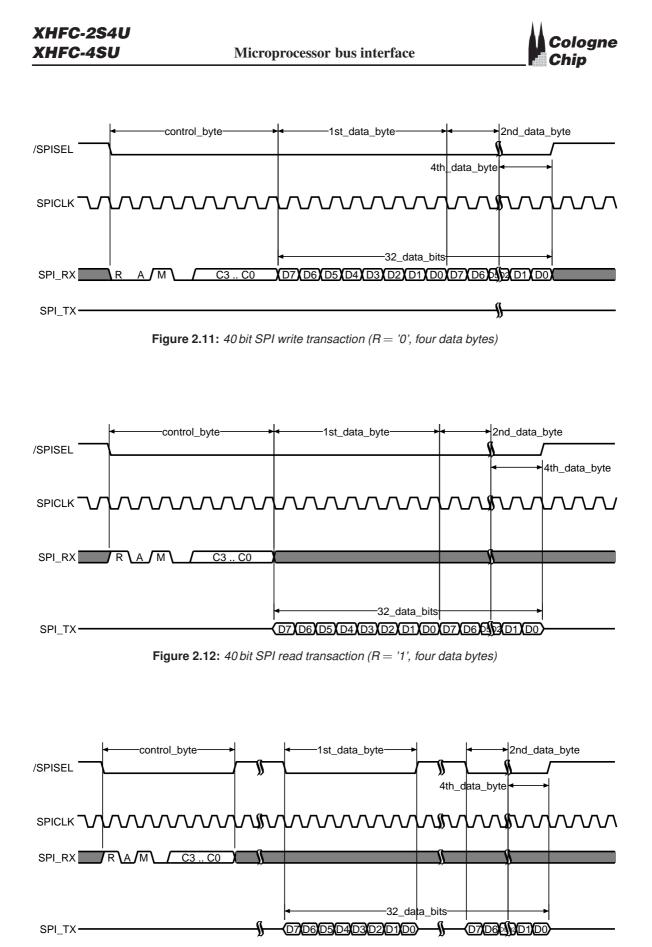
SPI_TX pin is not used for write transactions and has tri-state level all the time.

A read transaction is shown in Figure 2.10. XHFC-2S4U/4SU receives the control byte on the SPI_RX line and transmits the requested data byte on the SPI_TX line afterwards.

*) A and M / B combinations are 00, 10 and 11 in this timing diagram

Figure 2.10: 16 bit SPI read transaction (R = '1', one data byte)

A = '0' and M = '1' specify a 40 bit transaction. This is shown in Figures 2.11 and 2.12 for SPI write and read transactions.


Any SPI transactions can be split by the SPI master into the control byte and the data bytes with /SPISEL = '1'. In this case the transmission pauses and will be continued after /SPISEL returns to low level. An example for a split read transaction with multiple data bytes is shown in Figure 2.13. Write transactions can be split in the same way.

The SPI host is not allowed to break an SPI transaction by an interrupt service routine which executes any access to XHFC-2S4U/4SU. Otherwise master and slave could have different views wether a specific byte is a control or a data byte. If the SPI master cannot ensure this characteristic, interrupts must be disabled between control byte and data byte.

2.3.3 Transaction duration

16 bit SPI transaction have a minimal length of 16 clock cycles. With $f_{\text{SPICLK}} = 4 \text{ MHz}$, e.g., a 16 bit transaction takes 4 µs. XHFC-2S4U/4SU can operate with a maximum SPI clock of 25 MHz which leads to a minimal 16 bit transaction time of

 $T_{\rm trans 16, min} = \frac{16}{25\,{\rm MHz}} = 640\,{\rm ns}$.

Figure 2.13: Split 40 bit SPI read transaction (R = '1')

40 bit SPI transaction have a minimal length of 40 clock cycles. With $f_{\text{SPICLK}} = 4 \text{ MHz}$, e.g., a 40 bit transaction takes 10 µs. With the maximum SPI clock of 25 MHz, the minimal 40 bit transaction time is

$$T_{\rm trans40,min} = \frac{40}{25\,\rm MHz} = 1.6\,\mu\rm s$$

which leads to to data rate of 400 ns/byte.

The XHFC-2S4U/4SU SPI protocol defines the following rules for transactions:

- 1. The SPI master is allowed to stop the SPI clock at any time. When the SPI clock is restarted afterwards, the transaction is continued as if it has not been stopped.
- 2. When a write or read transaction is split with /SPISEL = '1' within the control byte, it is ignored and the next received byte is expected to be a control byte.
- 3. When a write transaction is split with /SPISEL = '1' within the data byte, it is ignored and the next received byte is expected to be the data byte again.
- 4. When a read transaction is split with /SPISEL = '1' within the data byte, the transaction quits immediately (SPI_TX is always tri-state when /SPISEL = '1'). The next received byte is expected to be the data byte again.

2.3.4 Register write access

Register write accesses consist always of a transaction sequence with an address write transaction first and one or several data write transactions afterwards. XHFC-2S4U/4SU offers four ways of executing register write accesses:

A register write access is a sequence of two SPI write transactions as shown in Figure 2.14. With the first transaction the SPI master specifies the register address (control byte is '01X0 CCCC'). Afterwards, the new register value is transferred from the SPI master to XHFC-2S4U/4SU (control byte is '0000 0000').

X' = 0' disables broadcast so that 'CCCC' must specify the desired microchip. Alternatively, broadcast is enabled with 'X' = '1' and 'CCCC' is ignored in this case.

- 2. It is allowed to execute multiple data write transactions to the same register address without address write transactions in between. This is shown in Figure 2.15 and is typically used for transmit FIFO data.
- 3. Another way of writing multiple bytes into the same register is available with the 40 bit write transaction (Figure 2.16). With the first transaction (16 bits) the SPI master specifies the register address (control byte is '01X0 CCCC'). Afterwards, four new register values are transferred from the SPI master to XHFC-2S4U/4SU (control byte is '0010 0000').

Broadcasting is handled in the same way as described in (1).

4. Finally, a combination of (2) and (3) can be used to write a multiple of four bytes. First, the control byte '01X0 CCCC' executes the address write transaction, and afterwards four data bytes can be written several times with the control byte '0010 0000' in each 40 bit write transaction.

Figures 2.14 to 2.16 show /SPISEL = '1' between the transactions. This splits the sequence into an address write transaction and one or several data write transactions. The split time has an arbitrary duration. It can also decrease to zero, which means that /SPISEL remains '0' for several transactions.

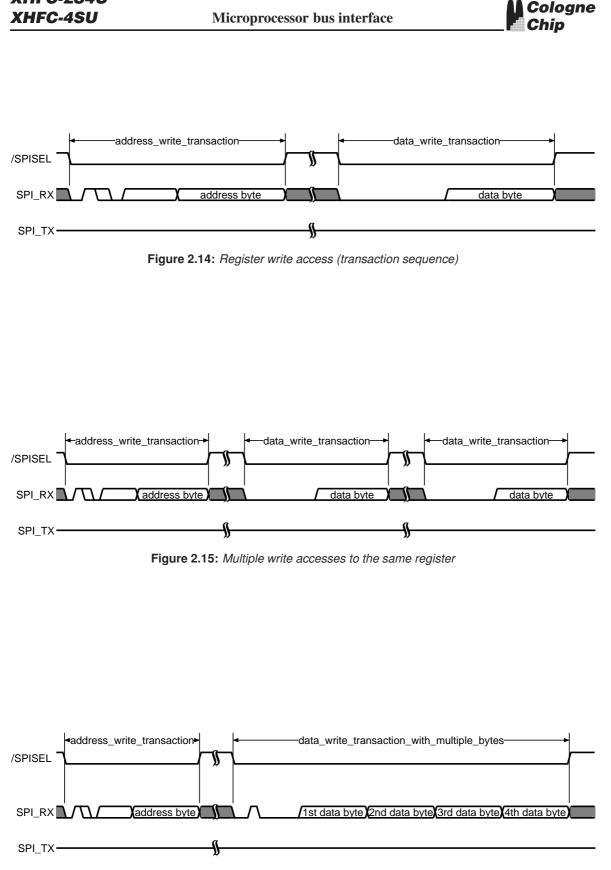


Figure 2.16: Register write access with a 40 bit transaction

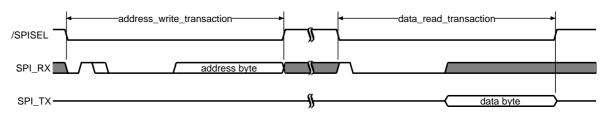
XHFC-2S4U

The XHFC-2S4U/4SU SPI protocol defines the following rules for transaction sequences:

- 1. Every data write transaction stores the received data byte into the register which has been selected with the last address write transaction.
- 2. When several consecutive address write transactions occur, the last address write transaction specifies the address for the next data access. All previous address write accesses are ignored, i.e. they have no effect to the XHFC-2S4U/4SU status.

2.3.5 Register read access

Register read accesses consist always of a transaction sequence with an address write transaction first and one or several data read transactions afterwards. XHFC-2S4U/4SU offers four ways of executing register read accesses:


1. A register read access is a sequence of one SPI write address transactions and one SPI read data transaction as shown in Figure 2.17. With the first transaction the SPI master specifies the register address (control byte is '01X0 CCCC'). Afterwards, XHFC-2S4U/4SU transfers the register value to the SPI master (control byte is '1000 0000').

X' = 0' disables broadcast so that 'CCCC' must specify the desired microchip. Alternatively, broadcast is enabled with 'X' = '1' and 'CCCC' is ignored in this case.

- 2. It is allowed to execute multiple data read transactions to the same register address without address write transactions in between. This is shown in Figure 2.18 and is typically used for receiving FIFO data.
- 3. Another way of reading multiple bytes from the same register is available with the 40 bit read transaction (Figure 2.19). With the first transaction (16 bits) the SPI master specifies the register address (control byte is '01X0 CCCC'). Afterwards, four register values are transferred from XHFC-2S4U/4SU to the SPI master (control byte is '1010 0000').

Broadcasting is handled in the same way as described in (1).

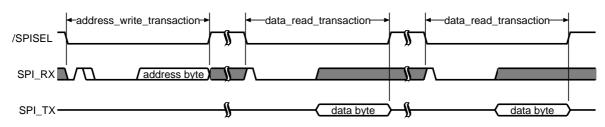

4. Finally, a combination of (2) and (3) can be used to read a multiple of four bytes. First, the control byte '01X0 CCCC' executes the address write transaction, and afterwards four data bytes can be read several times with the control byte '1010 0000' in each 40 bit read transaction.

Figure 2.17: *Register read access (transaction sequence)*

Figures 2.17 to 2.19 show /SPISEL = '1' between the transactions. This splits the sequence into an address write transaction and one or several data read transactions. The split time has an arbitrary duration. It can also decrease to zero, which means that /SPISEL remains '0' for several transactions.

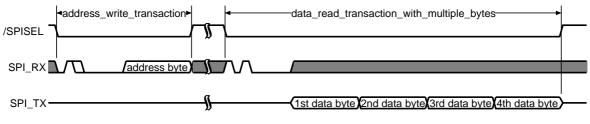


Figure 2.19: Register read access with a 40 bit transaction

2.3.6 Register access duration

There are several SPI data rates due to the different register access types. Table 2.16 gives some examples for $f_{\text{SPICLK}} = 25 \text{ MHz}$ and either one or 16 accesses to the same register.

Sequence duration and data rates are always calculated without split times neither within nor between transactions.

SPI data transaction control byte	Single or multiple data bytes	Number of accesses to the same register	Minimum number of clock cycles	Sequence duration	Data rate for $f_{SPICLK} = 25 \mathrm{MHz}$ and $N = 16$, e.g.
'X000 0000'	single	1	32	$T = \frac{32}{f_{\rm SPICLK}}$	$DR = \frac{1}{T} = 781 \mathrm{kByte/s}$
'X000 0000'	single	Ν	$(N+1) \cdot 16$	$T = \frac{(N+1)\cdot 16}{f_{\text{SPICLK}}}$	$DR = \frac{N}{T} = 1471 \mathrm{kByte/s}$
'X0100000'	multiple	4	56	$T = \frac{56}{f_{\rm SPICLK}}$	$DR = \frac{4}{T} = 1786 \mathrm{kByte/s}$
'X0100000'	multiple	4N	$16 + N \cdot 40$	$T = \frac{16 + N \cdot 40}{f_{\text{SPICLK}}}$	$DR = \frac{4N}{T} = 2439 \mathrm{kByte/s}$

2.3.7 Register address read-back capability

The address read transaction with the control byte '11X0 CCCC' can be executed to read the address of the currently selected register.

This address read transaction does not perform a register read access. Thus it can be used even on those registers that change their contents on a read access, i.e. register contents is changed not until a data read transaction has been executed.

2.3.8 Problems with interrupts during transaction sequences

The address read-back capability is useful for interrupt procedures, e.g., to save and restore the previous state:

interrupt procedure: - execute address read transaction and store the register address
- ... (execute the interrupt service routine)
- address write transaction to restore the previous register address

This procedure is important to avoid data read or write to an unexpected register address after the transaction sequence has been split between transactions by an interrupt service routine which executes any access to XHFC-2S4U/4SU. Please note, that transactions are not allowed to be split from the SPI master (see Section 2.3.2).

2.3.9 SPI timing diagrams

Figure 2.20 shows the timing diagram for data write transactions (data from master to slave). Four different variations of the SPI clock are shown. SPI clock can be inverted with $SPI_INV = '1'$. Further, idle intervals are allowed during non-selected phases where /SPISEL = '1'. During idle intervals, SPI clock must be low for $SPI_INV = '0'$ and it must be high otherwise.

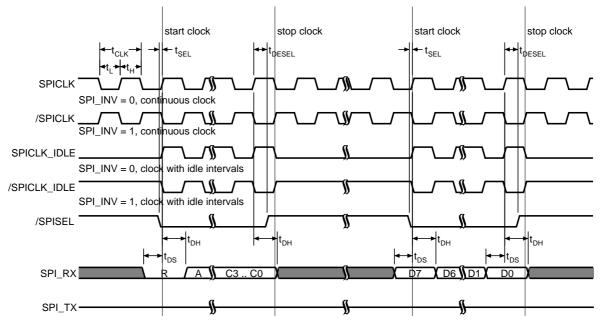
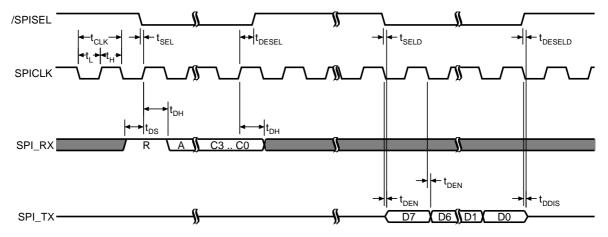


Figure 2.20: SPI timing diagram for data write transactions

Address and data is sampled on the rising edge of SPI_CLK when SPI_INV = '0'. The SPI selection signal /SPISEL must be '0' with this edge at the latest.

When the SPI access is splitted by the SPI master, the rising edge of /SPISEL is required to be $t_{\text{DESEL}} \ge 2$ ns after the sampling time at the earliest. When clock idle intervals are used, it is necessary to have at least one clock edge after the last sample edge (marked with 'stop clock' in Figure 2.20). This is important to terminate the access internally.

The timing diagram for data read transactions (data from slave to master) is shown in Figure 2.21. The same different variations of the SPI clock which are shown in Figure 2.20 are valid for data read



Symbol	min / ns	max / ns	Characteristic
t _{CLK}	40		SPI clock cycle time
$t_{\rm L}$	15		Clock low time
<i>t</i> _H	15		Clock high time
$t_{\rm SEL}$	0		SPI selection to sample edge setup time
t _{DESEL}	2		SPI deselection delay
$t_{\rm DS}$	7		Data setup time
$t_{\rm DH}$	7		Data hold time

 Table 2.17: Symbols of write access in Figure 2.20

transactions but only continiuos clock with $SPI_INV = '0'$ is shown here.

Address is sampled on the rising edge of SPI_CLK when SPI_INV = '0'. The SPI selection signal /SPISEL must be '0' with this edge at the latest. Data is put out $t_{\text{DEN}} \leq 10$ ns after the falling edge of SPI_CLK at the latest.

Figure 2.21: SPI timing diagram for data read transactions (see Figure 2.20 for additional clock signals /SPICLK, SPICLK_IDLE and /SPICLK_IDLE)

Table 2.18: Symbols of read access in Figure 2.21

Symbol	min / ns	max / ns	Characteristic
t _{CLK}	40		SPI clock cycle time
tL	15		Clock low time
t _H	15		Clock high time
$t_{\rm SEL}$	0		SPI selection to sample edge setup time
t _{DESEL}	2		SPI deselection delay
$t_{\rm DS}$	7		Data setup time
t _{DH}	7		Data hold time
t _{SELD}	0	10	SPI selection to data enable delay
t _{DESELD}	0		SPI deselection to data disable delay
t _{DEN}	0	10	Clock to data enable setup time
t _{DDIS}	0	10	Clock to data disable setup time

2.3.10 SPI connection circuitry

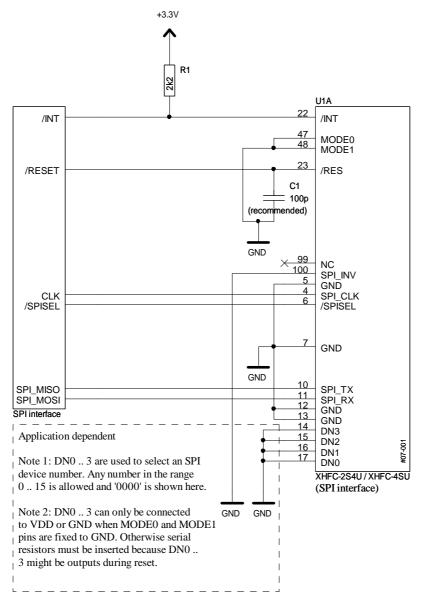


Figure 2.22: SPI connection circuitry

2.4 Auto-EEPROM mode

Please contact Cologne Chip for details if you are interested in using the Auto-EEPROM mode.

2.5 Register description

2.5.1 Write only registers

R_C	CTRL			(w)	(Reset group: H)	0x01		
Con	Common control register							
]	Bits	Reset value	Name	Des	cription			
(0	0	(reserved)	Mus	at be '0'.			
]	1	0	V_FIFO_LPRIO	'0' =	O access priority for host access normal priority low priority	es		
2	2	0	(reserved)	reserved) Must be '0'.				
	3	0	V_NT_SYNC	The can '0' = '1' = (see Not for a	chronization source for NT mode transmit data path of the Universa be synchronized to different signal FOI is used as NT synchronization F1_7 is used as NT synchronizati register R_SL_SEL7 for time slot e: This bit selects the synchronizati all Universal ISDN Ports in NT/L2 ther. It is ignored in TE mode.	l ISDN Ports ls. n source on source t selection) tion source		
2	4	0	(reserved)	Mus	t be '0'.			
2	5	0	V_OSC_OFF	'0' = '1' = This XHF WAł	able oscillator normal operation clock oscillator is switched off bit is reset at every write access to C-2S4U/4SU or with a wake-up s KEUP. Any chip access is valid no llator frequency is stable again.	signal on pin		
	76	0	V_SU_CLK	The syste '00' '01' '10' '11'	e interface clock selection line interface clock f_{SU} is derived em clock f_{SYS} = $f_{SYS} / 2$ = $f_{SYS} / 4$ = f_{SYS} (normally unused) = $f_{SYS} / 8$ (normally unused) must be 12.288 MHz.	from the		

R_	_RAM_A	DDR		(w)	(Reset group: H, 0)	0x08
A	ddress po	ointer, low	er part			
	wer addı	ess hyte fo	or SRAM access.			
	Jwer addi	ess byte it	i Sitt ivi decess.			
	Bits	Reset value	Name	Des	cription	
	70	0x00	V RAM ADDR0	Ado	lress bits 70	

(See Section 13 on page 351 for a fault description and workaround of an address decoding problem which concerns this register among others.)

R_	_RAM_C	TRL	(v	(Reset group: $H, 0$) 0x09			
	SRAM access control register High address bits and control bits for SRAM access.						
	Bits	Reset value	Name	Description			
	30	0	V_RAM_ADDR1	Address bits 118			
	54	0	(reserved)	Must be '00'.			
	6	0	V_ADDR_RES	Address reset '0' = normal operation '1' = address bits 011 are set to zero This bit is automatically cleared.			
	7	0	V_ADDR_INC	Address increment '0' = no address increment '1' = automatically increment of the address after every write or read on register R_RAM_DATA			

2.5.2 Read only registers

R_	_RAM_U	SE		(r)	(Reset group: -)	0x15
SF	RAM dut	y factor				
Us	sage of Sl	RAM acce	ss bandwidth by the i	nternal data process	sor.	
	Bits	Reset value	Name	Descri	ption	
	70		V_SRAM_USE	0×00 =	ve duty factor 0% bandwidth used = 100% bandwidth used	

R	R_CHIP_ID		(r)	(Reset group: H)	0x16	
C	hip identi	fication re	egister			
	Bits	Reset value	Name	Desc	ription	
	70		V_CHIP_ID	'0110 '0110 The I reaso Note : comp can b	identification code 10010' (0x62) means XHFC-2S4 10011' (0x63) means XHFC-4SU 2SB should be masked out for co ns. XHFC-2S4U and XHFC-4SU ar 10atible and software compatible. e exchanged on the same hardwa but software adaption when LSB	ompatibility re pin Thus, they are platform

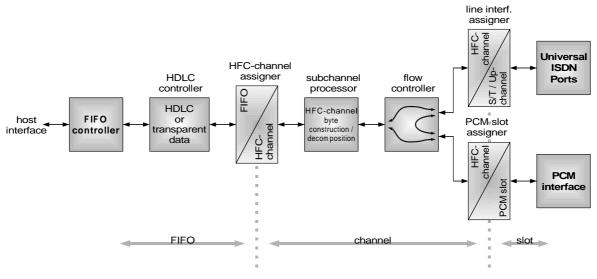
(See Section 9.4.4.1 on page 303 to avoid unexpected line interface interrupts when using XHFC-2S4U.)

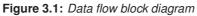
R_CHIP_RV				(r)	(Reset group: H)	0x1F
XHFC-2S4U/4SU revision						
	Bits	Reset value	Name	Desci	ription	
	30	0	V_CHIP_RV	Chip	revision 0	
	74		(reserved)			

R_	_INT_DA	ATA		(r)	(Reset group: -)	0x88	
In	Internal data register						
This register can be read to access data with Read* method.							
	-						
	Bits	Reset value	Name	Desci	ription		
				_			
	70		V_INT_DATA	Inter	nal data buffer		

(See Section 2.2.3.2 on page 47 for details on Read* access.)

2.5.3 Read/write register


R	_RAM_D	ATA		(r*/w)	(Reset group: -)	0xC0
SI	RAM dat	a access				
Di	irect acce	ess to the in	ternal SRAM			
	Bits	Reset value	Name	Descr	iption	
	70		V_RAM_DATA	The ad	M data access ddress must be written into regis M_ADDR and R_RAM_CTRL	


(See Section 2.2.3.2 on page 47 for details on Read* access.)

Chapter 3

XHFC-2S4U/4SU data flow

3.1 Data flow concept

3.1.1 Overview

XHFC-2S4U/4SU has a programmable data flow unit, in which the FIFOs are connected to the PCM and the ST/ U_p interfaces. Moreover the data flow unit can directly connect PCM and ST/ U_p interfaces or two PCM time slots with each other ¹.

The fundamental features of the XHFC-2S4U/4SU data flow are as follows:

- programmable interconnection capability between FIFOs, PCM time slots and channels of the Universal ISDN Ports
- XHFC-2S4U: 2 Universal ISDN Ports (combined ST/U_p interfaces) and 2 additional U_p interfaces, XHFC-4SU: 4 Universal ISDN Ports (combined ST/U_p interfaces)
- in transmit and receive direction there are
 - up to 16 FIFOs each
 - 12, 32, 64 or 128 PCM time slots each in PCM master mode
 - 1...128 PCM time slots each in PCM slave mode
 - 16 HFC-channels each to connect the above-mentioned data interfaces
- 3 data flow modes to satisfy different application tasks
- subchannel processing for bitwise data handling

The complete XHFC-2S4U/4SU data flow block diagram is shown in Figure 3.1. Basically, data routing requires an allocation number at each block. So there are three areas where numbering is based on FIFOs, HFC-channels and PCM time slots.

FIFO handling and HDLC controller, PCM and ST/U_p interfaces are described in Chapters 4 to 6. So this chapter deals with the data flow unit which is located between and including the HFC-channel assigner, the PCM slot assigner and the line interface assigner.

3.1.2 Term definitions

Figure 3.2 clarifies the relationship and the differences between the numbering of FIFOs, HFCchannels and PCM time slots. The inner circle symbolizes the HFC-channel oriented part of the data flow, while the outer circle shows the connection of three data sources and data drains respectively. The ST/U_p interfaces have a fixed mapping between HFC-channels and ST/U_p-channels so that there is no need of a separate ST/U_p-channel numbering.

- **FIFO:** The FIFOs are buffers between the microprocessor bus interface and the PCM and ST/U_p interfaces. The HDLC controllers are located on the non host bus side of the FIFOs. The number of FIFOs depends on the FIFO size configuration (see Section 4.3) and starts with number 0. The maximum FIFO number is 15. Furthermore data directions transmit and receive are associated with every FIFO number.
- **HFC-channel:** HFC-channels are used to define data paths between FIFOs on the one side and PCM and ST/U_p interfaces on the other side. The HFC-channels are numbered 0..15. Furthermore data directions transmit and receive are associated with every HFC-channel number.

¹In this data sheet the shorter expression "slot" instead of "time slot" is also used with the same meaning.

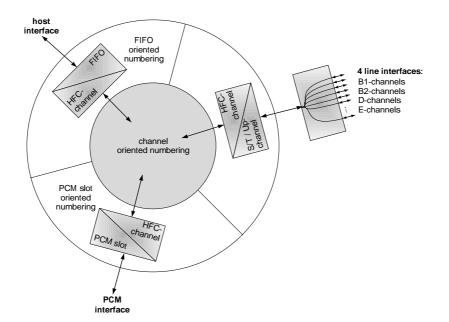


Figure 3.2: Areas of FIFO oriented, HFC-channel oriented and PCM time slot oriented numbering

It is important not to mix up the HFC-channels of the here discussed data flow (inner circle of Figure 3.2) with the ST/U_p -channels of the multiple ST/U_p interfaces.

PCM time slot: The PCM data stream is organized in time slots. The number of PCM time slots depends on the data rate, i.e. there are 32 time slots with 2 MBit/s (numbered 0..31), 64 time slots with 4 MBit/s (numbered 0..63) or 128 time slots with 8 MBit/s (numbered 0..127). Every PCM time slot exists both in transmit and receive data directions.

Every FIFO, HFC-channel and PCM time slot number exist for transmit and receive direction. The data rate is always 8 kByte/s for every ST/U_{p} -channel and every PCM time slot. FIFOs, HFC-channels, ST/U_{p} -channels and PCM time slots have always a width of 8 bit.

3.2 Flow controller

3.2.1 Overview

The various connections between FIFOs, ST/U_p -channels and PCM time slots are set up by programming the flow controller, the HFC-channel assigner and the PCM slot assigner.

The flow controller sets up connections between FIFOs and the ST/U_p interfaces, FIFOs and the PCM interface and between the ST/U_p interfaces and the PCM interface. Bitmap V_DATA_FLOW in register A_CON_HDLC (which exists for each FIFO) configures these connections. The numbering of transmit and corresponding receive FIFOs, HFC-channels and PCM time slots is independent from each other. But in practice the connection table is more clear if the same number is chosen for corresponding transmit and receive direction.

A direct connection between two PCM time slots can be set up inside the PCM slot assigner and will be described in Section 3.3.

The flow controller operates on HFC-channel data. Nevertheless it is programmed with a bitmap of

a FIFO-indexed array register. With this concept it is possible to change the FIFO-to-HFC-channel assignment of a ready-configured FIFO without re-programming its parameters again.

The internal structure of the flow controller contains

- 4 switching buffers, i.e. one for the ST/U_p and PCM interfaces in transmit and receive direction each and
- 3 switches to control the data paths.

3.2.2 Switching buffers

The switching buffers decouple the data inside the flow controller from the data that is transmitted to or received from the ST/U_p and PCM interfaces. With every 125 µs cycle the switching buffers change their pointers.

If a byte is read from the FIFO and written into a switching buffer, it is transmitted by the connected interface during the *next* 125 μ s cycle. In the reverse case, a received byte which is stored in a switching buffer is copied to the FIFO during the next 125 μ s cycle.

A direct PCM-to-ST/ U_p connection delays each data byte two cycles. That means the received byte is stored in the switching buffer during the first 125 μ s cycle, then copied into the transmit buffer during the second 125 μ s cycle and finally transmitted from the interface during the third 125 μ s cycle.

3.2.3 Timed sequence

The data transmission algorithm of the flow controller is FIFO-oriented and handles all FIFOs, and of course all connected HFC-channels, every $125 \,\mu s$ in the following sequence:

FIFO[0,TX] FIFO[0,RX] FIFO[1,TX] FIFO[1,RX] . . FIFO[*n*,TX] FIFO[*n*,RX]

The number of existing FIFOs, and consequently the value of *n*, depends on the FIFO configuration (see Table 4.2 on page 130). In any case *n* cannot exceed 15. There are other configurations with n = 7 and n = 3.

Due to the FIFO oriented operation, the number of existing FIFOs also defines the number of processed HFC-channels. HFC-channel numbers can be used in the full range 0..15 but with every processed FIFO just one HFC-channel is processed within the same cycle.

If a faulty configuration writes data from several sources into the same switching buffer, the last write access overwrites the previous ones. Only in this case it is necessary to know the process sequence of the flow controller.

XHFC-2S4U/4SU has three data flow modes. One of them (*FIFO sequence mode*) is used to configure a programmable FIFO sequence which can be used instead of the ascending FIFO numbering. This is explained in Section 3.4.

3.2.4 Transmit operation (FIFO in transmit data direction)

In transmit operation one HDLC or transparent byte is read from a FIFO and can be transmitted to the ST/U_p and the PCM interface as shown in Figure 3.3. Furthermore, data can be transmitted from the ST/U_p interface to the PCM interface. From the flow controller point of view, the switches select the source for outgoing data. They are controlled by bitmap V_DATA_FLOW[2..1] in register A_CON_HDLC[*n*,TX] where *n* is a FIFO number. Transmit operation is configured with V_FIFO_DIR = '0' in the multi-register R_FIFO.

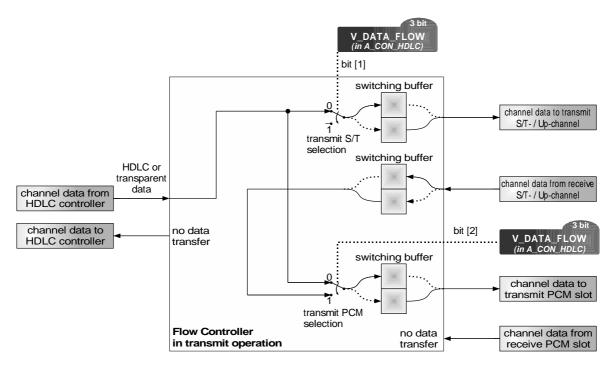


Figure 3.3: The flow controller in transmit operation

- FIFO data is only transmitted to the line interface if $V_DATA_FLOW[1] = '0'$.
- The PCM interface can transmit a data byte which comes either from the FIFO or from the line interface. Bit V_DATA_FLOW[2] selects the source for the PCM transmit slot (see Figure 3.3). The receiving ST / U_p-channel has always the same number as the transmitting S/T / U_p-channel.
- Bit V_DATA_FLOW[0] is ignored in transmit operation.

3.2.5 Receive operation (FIFO in receive data direction)

Figure 3.4 shows the flow controller structure in receive operation. The two switches are controlled by bitmap V_DATA_FLOW[1..0] in register A_CON_HDLC[n,RX] where n is a FIFO number. Receive operation is configured with V_FIFO_DIR = '1' in the multi-register R_FIFO. FIFO data can either

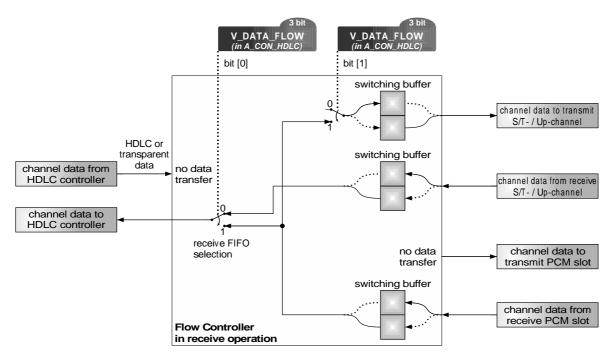


Figure 3.4: The flow controller in receive FIFO operation

be received from the ST/U_p or from the PCM interface. Furthermore, data can be transmitted from the PCM interface to the ST/U_p interface.

- Bit V_DATA_FLOW[0] selects the source for the receive FIFO which can either be the PCM or the line interface.
- Furthermore, the received PCM byte can be transferred to the line interface. This requires bit $V_DATA_FLOW[1] = '1'$.
- Bit V_DATA_FLOW[2] is ignored in receive FIFO operation.

3.2.6 Connection summary

Table 3.1 shows the flow controller connections as a whole. Bidirectional connections 2 are pointed out with a gray box because they are typically used to establish the data transmissions. All rows have an additional connection to a second destination.

The most important connections are bidirectional data transmissions. For these connections it is possible to manage the configuration programming of V_DATA_FLOW with only three different values for transmit and receive FIFO operations. Table 3.2 shows the suitable programming values which can be used to simplify the programming algorithm.

²In fact, all connections are unidirectional. However, in typical applications there is always a pair of transmit and receive data channels which belong together. Instead of "transmit and corresponding receive data connection" the shorter expression "bidirectional connection" is used in this data sheet.

V_DATA_FLOW		nsmit _DIR = '0')	Receive $(V_FIFO_DIR = '1')$		
'000' '001'	$\begin{array}{rcl} \mbox{FIFO} & \rightarrow & \mbox{PCM} \\ \mbox{FIFO} & \rightarrow & \mbox{ST}/\mbox{U}_p \end{array}$	$\begin{array}{rcl} FIFO & \rightarrow & ST/U_p \\ FIFO & \rightarrow & PCM \end{array}$	$\begin{array}{rcl} \text{FIFO} & \leftarrow & \text{ST}/\text{U}_{\text{p}} \\ \text{FIFO} & \leftarrow & \text{PCM} \end{array}$		
'010' '011'	$FIFO \rightarrow PCM$	$\rm FIFO \ \rightarrow \ PCM$	$FIFO \leftarrow ST/U_p$ $FIFO \leftarrow PCM$	$\begin{array}{rcl} ST/U_p & \leftarrow & PCM \\ ST/U_p & \leftarrow & PCM \end{array}$	
'100' '101'	$\begin{array}{rcl} ST/U_p & \rightarrow & PCM \\ & FIFO & \rightarrow & ST/U_p \end{array}$	$\begin{array}{rcl} FIFO & \rightarrow & ST/U_p \\ ST/U_p & \rightarrow & PCM \end{array}$	$\begin{array}{rcl} FIFO & \leftarrow & ST/U_p \\ FIFO & \leftarrow & PCM \end{array}$		
'110' '111'		$\begin{array}{rcl} ST/U_p & \rightarrow & PCM \\ ST/U_p & \rightarrow & PCM \end{array}$	$\begin{array}{rcl} ST/U_p & \leftarrow & PCM \\ ST/U_p & \leftarrow & PCM \end{array}$	$\begin{array}{rcl} \text{FIFO} & \leftarrow & \text{ST}/\text{U}_p\\ \text{FIFO} & \leftarrow & \text{PCM} \end{array}$	

Table 3.1: Flow controller connectivity

Connec	tion		V_FIFO_DIR	Required V_DATA_FLOW	Recommended V_DATA_FLOW
FIFO FIFO	\rightarrow	ST/U _p ST/U _p	'0' (TX) '1' (RX)	'x0x' 'xx0'	'000'
FIFO		PCM	'0' (TX)	'0xx'	
FIFO	\leftarrow	PCM	'1' (RX)	'xx1'	'001'

'1xx'

'x1x'

'110'

'0' (TX)

'1' (RX)

Table 3.2: V_DATA_FLOW programming values for bidirectional connections

 $ST/\,U_p \quad \rightarrow \quad PCM$

 $ST/U_p \quad \leftarrow \quad PCM$

3.3 Assigners

The data flow block diagram in Figure 3.1 contains three assigners. These functional blocks are used to connect FIFOs, ST/U_p -channels and PCM time slots to the HFC-channels.

3.3.1 HFC-channel assigner

The HFC-channel assigner interconnects FIFOs and HFC-channels. Its functionality depends on the data flow mode described in Section 3.4.

3.3.2 PCM slot assigner

The PCM slot assigner can connect each PCM time slot to an arbitrary HFC-channel. Therefore, for a selected time slot³ the connected HFC-channel number and data direction must be written into register A_SL_CFG[SLOT] as follows:

Register	setup:
----------	--------

A_SL_CFG[SLOT]: V_CH_SDIR = <HFC-channel data direction> : V_CH_SNUM = <HFC-channel number>

Typically, the data direction of a HFC-channel and its connected PCM time slot is the same.

If two PCM time slots are connected to each other, incoming data on a slot is transferred to the PCM slot assigner and stored in the PCM receive switching buffer of the connected HFC-channel. From there it is read (i.e. same HFC-channel) and transmitted to a transmit PCM time slot.

3.3.3 Line interface assigner

Table 3.3 shows the assignment between HFC-channels and the ST/U_p -channels. There is no possibility to change this allocation, so there is no register for programming the line interface assigner.

If ST/Up-channels are coded as

B1-channel = 0B2-channel = 1D-channel = 2E-channel = 3

it is possible to calculate

HFC-channel number = interface number $\cdot 4 + S/T$ -channel code .

For a given HFC-channel number the belonging ST/U_p-channel is calculated with⁴

interface number = HFC-channel number div 4 ST/U_p-channel code = HFC-channel number mod 4.

 3 A time slot is specified by writing its number and data direction into register R_SLOT. Then all accesses to the slot array registers belong to this time slot. Please see Chapter 6 for details.

⁴div is the integer division. mod is the division remainder. $i \mod j = (i/j - i \dim j) \cdot j$.

HFC-channel	ST/U _p -chan	nel	HFC-channel	ST/U _p -channel
number direction	interface channel	direction	number direction	interface channel direction
[0,TX]	#0 B1	TX	[8,TX]	#2 B1 TX
[0,RX]	#0 B1	RX	[8,RX]	#2 B1 RX
[1,TX]	#0 B2	TX	[9,TX]	#2 B2 TX
[1,RX]	#0 B2	RX	[9,RX]	#2 B2 RX
[2,TX]	#0 D	TX	[10,TX]	#2 D TX
[2,RX]	#0 D	RX	[10,RX]	#2 D RX
[3,TX]	#0 BAC/S	TX	[11,TX]	#2 BAC/S TX
[3,RX]	#0 E	RX	[11,RX]	#2 E RX
[4,TX]	#1 B1	TX	[12,TX]	#3 B1 TX
[4,RX]	#1 B1	RX	[12,RX]	#3 B1 RX
[5,TX]	#1 B2	TX	[13,TX]	#3 B2 TX
[5,RX]	#1 B2	RX	[13,RX]	#3 B2 RX
[6,TX]	#1 D	TX	[14,TX]	#3 D TX
[6,RX]	#1 D	RX	[14,RX]	#3 D RX
[7,TX]	#1 BAC/S	TX	[15,TX]	#3 BAC/S TX
[7,RX]	#1 E	RX	[15,RX]	#3 E RX

Table 3.3: Line interface assigner

In both cases the equivalence

HFC-channel direction = ST/U_p-channel direction

is valid.

3.3.4 Assigner summary

The three different assigner types of XHFC-2S4U/4SU are shown in Figure 3.5. Assigner programming is always handled with array registers. This can be a FIFO array register or a PCM slot array register.

- The line interface assigner is not programmable. Every HFC-channel is connected to a specific ST/U_p -channel like shown in Table 3.3.
- The PCM slot assigner is programmed by register A_SL_CFG[SLOT]. The PCM time slot must be selected before by writing the desired slot number and direction into register R_SLOT.
- The HFC-channel assigner programming depends on the data flow mode which is described in Section 3.4. This section explains in what cases the assigner is programmable and how this can be done. Figure 3.5 gives a hint, that the programming procedure is handled with array register A_CHANNEL[FIFO]. Please see section 3.4 for details and restrictions.

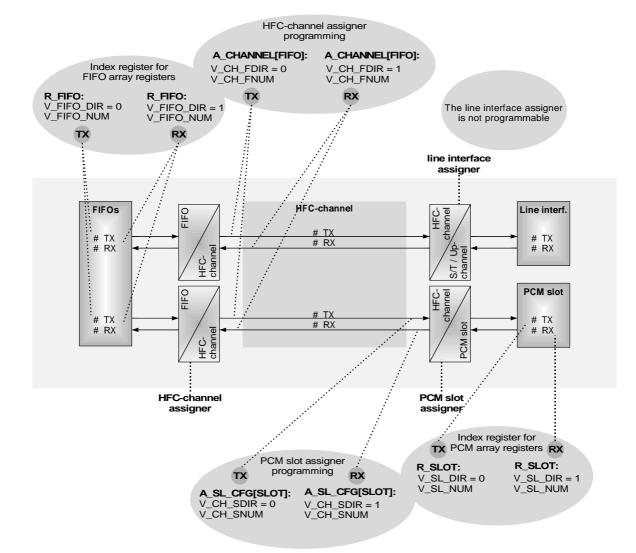


Figure 3.5: Overview of the assigner programming

3.4 Data flow modes

The internal operation of the HFC-channel assigner and the subchannel processor as well depends on the selected data flow mode. Three modes are available and will be described in this section:

- Simple Mode (SM),
- Channel Select Mode (CSM) and
- FIFO Sequence Mode (FSM)

Various array registers are available to configure the data flow. Unused FIFOs and PCM time slots should remain in their reset state.

FIFO array registers are indexed by R_FIFO in most cases. But there are some exceptions depending on the data flow mode and the target array register. Table 3.4 shows all FIFO array registers and their index registers at the different data flow modes.

3.4.1 Simple Mode (SM)

3.4.1.1 Mode description

In *Simple Mode* (SM) only one-to-one connections are possible. That means one FIFO, one ST/U_p channel or one PCM time slot can be connected to each other. The number of connections is limited by the number of FIFOs. It is possible to establish as many connections as there are FIFOs⁵. The actual number of FIFOs depends on the FIFO setup (see Section 4.3).

Simple Mode is selected with $V_DF_MD = '00'$ in register R_FIFO_MD . All FIFO array registers are indexed by the multi-register R_FIFO (address 0x0F) in this data flow mode.

The FIFO number is always the same as the HFC-channel number. Thus, the HFC-channel assigner cannot be programmed in *Simple Mode*. In contrast to this, the PCM time slot number can be chosen independently from the HFC-channel number.

Due to the fixed correspondence between FIFO number and HFC-channel, a pair of transmit and receive FIFOs is allocated even if a bidirectional data connection between the PCM interface and the line interface is established without using the FIFO. <u>Nevertheless, in this case the FIFO must be</u> enabled to enable the data transmission.

A direct coupling of two PCM time slots uses a PCM switching buffer and no FIFO has to be enabled. This connection requires a HFC-channel number (resp. the same FIFO number). An arbitrary HFC-channel number can be chosen. If there are less than 16 transmit and receive FIFOs each, it is usefull to choose a HFC-channel number that is greater than the maximum FIFO number. This saves FIFO resources where no data is stored in a FIFO.

⁵Except PCM-to-PCM connections which do not need a FIFO resource if the involved HFC-channel number is higher than the maximum FIFO number.

Context
FIFO data
FIFO fram

88 of 376

	Array	register		Index reg	ister in		Index mea	ning in		
Context	name	address	I/O mode	SM	CSM	FSM	SM	CSM	FSM	
FIFO data counters	0x04	A_Z1[FIFO]	r	R_FIFO	R_FIFO	R_FIFO	FIFO	FIFO	FIFO	
	0x06	A_Z2[FIFO]	r	R_FIFO	R_FIFO	R_FIFO	FIFO	FIFO	FIFO	
FIFO frame counters	0x0C	A_F1[FIFO]	r	R_FIFO	R_FIFO	R_FIFO	FIFO	FIFO	FIFO	
	0x0D	A_F2[FIFO]	r	R_FIFO	R_FIFO	R_FIFO	FIFO	FIFO	FIFO	
FIFO configuration	0x0E	A_INC_RES_FIFO[FIFO]	W	R_FIFO	R_FIFO	R_FIFO	FIFO	FIFO	FIFO	
FIFO data access	0x80	A_FIFO_DATA[FIFO]	r/w	R_FIFO	R_FIFO	R_FIFO	FIFO	FIFO	FIFO	
	0x84	A_FIFO_DATA_NOINC[FIFO]	r/w	R_FIFO	R_FIFO	R_FIFO	FIFO	FIFO	FIFO	
Subchannel processor	0xF4	A_CH_MSK[FIFO]	r*/w	R_FIFO	R_FIFO	R_FIFO	HFC-channel	HFC-channel	HFC-channel	
FIFO configuration	0xFA	A_CON_HDLC[FIFO]	r*/w	R_FIFO	R_FIFO	R_FIFO	FIFO	FIFO	FIFO	Ĩ
Subchannel Processor	0xFB	A_SUBCH_CFG[FIFO]	r*/w	R_FIFO	R_FIFO	R_FSM_IDX	FIFO	FIFO	list index	
FIFO configuration	0xFC	A_CHANNEL[FIFO]	r*/w	R_FIFO	R_FIFO	R_FSM_IDX	FIFO	FIFO	list index	
FIFO configuration	0xFD	A_FIFO_SEQ[FIFO]	r*/w	R_FIFO	R_FIFO	R_FSM_IDX	FIFO	FIFO	list index	
FIFO configuration	0xFF	A_FIFO_CTRL[FIFO]	r*/w	R_FIFO	R_FIFO	R_FIFO	FIFO	FIFO	FIFO	

and the Please note !

The index of FIFO array registers is always denoted '[FIFO]' even if the meaning is different from this in particular cases (grey marked fields in Table 3.4).

A Cologne Chip

3.4.1.2 Subchannel processing

If the data stream of a FIFO does not require full 8 kByte/s data rate, the subchannel processor might be used. Unused bits can be masked out and replaced by bits of an arbitrary mask byte which can be specified in A_CH_MSK.

For D- and E-channel processing the subchannel functionality must be enabled. Only two bits of a data byte are processed every $125 \,\mu s$.

In transparent mode only the non-masked bits of a byte are processed. Masked bits are taken from register A_CH_MSK. So the effective FIFO data rate always remains 8 kByte/s whereas the usable data rate depends on the number of non-masked bits.

In HDLC mode the data rate of the FIFO is reduced according to how many bits are not masked out.

Please see Section 3.5 from page 110 for details concerning the subchannel processor.

3.4.1.3 Example for SM

Figure 3.6 shows an example with four bidirectional connections (\bigcirc FIFO-to-ST/U_p, \oslash FIFO-to-PCM, \boxdot PCM-to-ST/U_p and \boxdot PCM-to-PCM). The FIFO box on the left side contains the number and direction information of the used FIFOs. The ST/U_p and PCM boxes on the right side contain the ST/U_p-channels and PCM time slot numbers and directions which are used in this example. Black lines illustrate data paths, whereas dotted lines symbolize blocked resources. These are not used for the data transmission, but they are necessary to enable the settings.

Please note !

All settings in Figure 3.6 are configured in bidirectional data paths due to typical applications of XHFC-2S4U/4SU. However, transmit and receive directions are independent from each other and could occur one at a time as well.

The following settings demonstrate the required register values to establish the connections. All involved FIFOs have to be enabled with V_FIFO_IRQ $\neq 0$ in register A_CON_HDLC[FIFO].

The subchannel processor is not used in this example. For this reason, registers A_SUBCH_CFG and A_CH_MSK remain in their reset state.

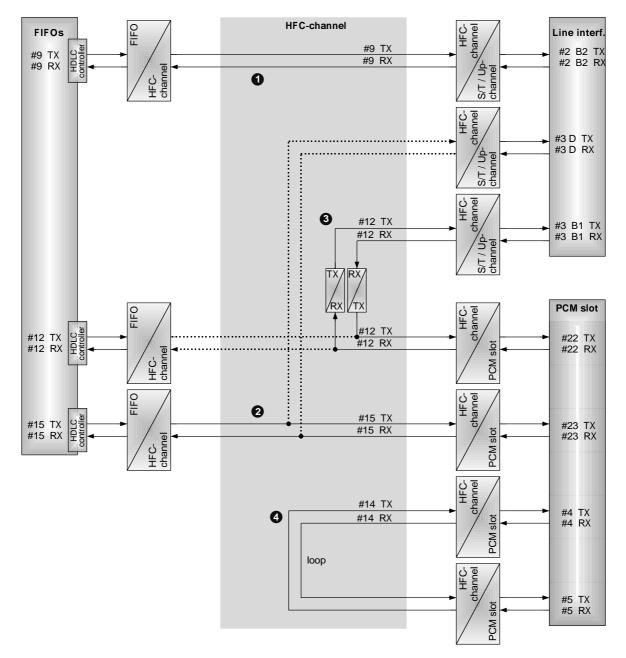


Figure 3.6: SM example

0 FIFO-to-ST/U_p

As HFC-channel and FIFO numbers are the same in SM, a selected ST/U_p -channel specifies the corresponding FIFO (and same in inverse, of course). There is no need of programming the HFC-channel assigner.

To set up a FIFO-to-ST/ U_p connection, the desired ST/ U_p -channel has to be chosen and the linked FIFO (see Table 3.3) has to be programmed. Due to the user's requirements, V_REV can be programmed either to normal or inverted bit order of the FIFO data.

HDLC or transparent mode (V_HDLC_TRP) can freely be chosen as well. In addition to the settings shown here, a periodic interrupt (in transparent mode) or a *end of frame* interrupt (in HDLC mode) can be enabled.

Register setup:		(SM 0 TX)
R_FIFO	: $V_FIFO_DIR = 0$	(transmit FIFO)
	: $V_FIFO_NUM = 9$	(FIFO #9)
	: $V_REV = 0$	(normal bit order)
A_CON_HDLC[9	P,TX]: V_IFF = 0	(0x7E as inter frame fill)
	: $V_HDLC_TRP = 0$	(HDLC mode)
	: $V_FIFO_IRQ = 7$	(enable FIFO)
	: V_DATA_FLOW = '000'	$(\text{FIFO} \rightarrow \text{ST/U}_p \text{ , FIFO} \rightarrow \text{PCM})$

Register setup:			(SM 1 RX)
R_FIFO	: V_FIFO_DIR = 1	(receive FIFO)	
	: $V_FIFO_NUM = 9$	(FIFO #9)	
	: $V_REV = 0$	(normal bit order)	
A_CON_HDLC[9,RX	$\mathbf{X}]: \mathbf{V}_{IFF} = 0$	(0x7E as inter frame fill)	
	: V_HDLC_TRP = 0	(HDLC mode)	
	: V_FIFO_IRQ = 7	(enable FIFO)	
	: V_DATA_FLOW = '000'	$(FIFO \leftarrow ST/U_p \)$	

2 FIFO-to-PCM

The FIFO-to-PCM connection can use different numbers for the involved HFC-channels and PCM time slots. The desired numbers are linked together in the PCM slot assigner.

As the line interface assigner links the HFC-channels to the ST/U_p-channels, every used HFC-channel blocks the connected ST/U_p-channel . In this example the E-channel of line interface #3 is blocked in both data directions. As this channel does only exist in S/T interface mode, there are no resources blocked if the line interface operates in U_p mode. As this interface does not exist for XHFC-2SU, in this case the HFC-channels are unassigned and do not block any ST/U_p resource.

Again, V_REV and V_HDLC_TRP can freely be chosen according to the user's requirements. As in the previous setting, a periodic interrupt in transparent mode or a *end of frame* interrupt in HDLC mode can be enabled.

Register setup:			(SM 2 TX)
R_FIFO	: V_FIFO_DIR	= 0	(transmit FIFO)
	: V_FIFO_NUM	= 15	(FIFO #15)
	: V_REV	= 0	(normal bit order)
A_CON_HDLC[15,TX	[]: V_IFF	= 0	(0x7E as inter frame fill)
	: V_HDLC_TRP	= 0	(HDLC mode)
	: V_FIFO_IRQ	= 7	(enable FIFO)
	: V_DATA_FLOW	/ = '001'	(FIFO \rightarrow ST / U_p , FIFO \rightarrow PCM)
R_SLOT	: V_SL_DIR	= 0	(transmit slot)
	: V_SL_NUM	= 23	(slot #23)
A_SL_CFG[23,TX]	: V_CH_SDIR	= 0	(transmit HFC-channel)
	: V_CH_SNUM	= 15	(HFC-channel #15)
	: V_ROUT	= '10'	(data to pin STIO1)

Register setup:				(SM 2 RX)
R_FIFO	: V_FIFO_DIR	= 1	(receive FIFO)	
	: V_FIFO_NUM	= 15	(FIFO #15)	
	: V_REV	= 0	(normal bit order)	
A_CON_HDLC[15,RX	(]: V_IFF	= 0	(0x7E as inter frame fill)	
	: V_HDLC_TRP	= 0	(HDLC mode)	
	: V_FIFO_IRQ	= 7	(enable FIFO)	
	: V_DATA_FLOW	/ = '001'	$(FIFO \leftarrow PCM)$	
R_SLOT	: V_SL_DIR	= 1	(receive slot)	
	: V_SL_NUM	= 23	(slot #23)	
A_SL_CFG[23,RX]	: V_CH_SDIR	= 1	(receive HFC-channel)	
	: V_CH_SNUM	= 15	(HFC-channel #15)	
	: V_ROUT	= '10'	(data from pin STIO2)	

O PCM-to-ST/U_p

A direct PCM-to-ST/U_p coupling is shown in the third connection set. The array registers of FIFO[12,TX] and FIFO[12,RX] contain the data flow settings, so they must be configured and the FIFOs must be enabled to switch on the data transmission. This is done with V_FIFO_IRQ $\neq 0$ in register A_CON_HDLC[FIFO].

In receive direction, data is stored in the connected FIFO. But it is not used and needs not to be read. A FIFO overflow has no effect and can be ignored. Consequently, the V_HDLC_TRP setting has no effect to the transferred data between the PCM and the ST/U_p interface neither in receive nor in transmit direction. A PCM-to- ST/U_p connection operates always in transparent mode.

For a PCM-to-ST/ U_p connection, the data direction changes between the two interfaces. In detail, data is received on a RX line and then transmitted on a TX line to the other interface. Therefore, a TX-RX-exchanger is inserted for this connection. The blocked FIFOs are on the PCM side of the TX-RX-exchanger. Like shown in the register setting below, data direction of FIFO, ST/ U_p and PCM lines are never mixed up when programming the assigners in *Simple Mode*.

Register setup:				(SM 3 TX)
R_FIFO	: V_FIFO_DIR	= 0	(transmit FIFO)	
	: V_FIFO_NUM	= 12	(FIFO #12)	
	: V_REV	= 0	(normal bit order)	
A_CON_HDLC[12,TX	[]: V_IFF	= 0	(0x7E as inter frame fill)	
	: V_HDLC_TRP	= 1	(transparent mode)	
	: V_FIFO_IRQ	= 7	(enable data transmission)	
	: V_DATA_FLOW	/ = '110'	$(ST/U_p \ \rightarrow PCM)$	
R_SLOT	: V_SL_DIR	= 0	(transmit slot)	
	: V_SL_NUM	= 22	(slot #22)	
A_SL_CFG[22,TX]	: V_CH_SDIR	= 0	(transmit HFC-channel)	
	: V_CH_SNUM	= 12	(HFC-channel #12)	
	: V_ROUT	= '10'	(data to pin STIO1)	

Register setup:			(SM 🕄 RX)
R_FIFO	: V_FIFO_DIR	= 1	(receive FIFO)
	: V_FIFO_NUM	= 12	(FIFO #12)
	: V_REV	= 0	(normal bit order)
A_CON_HDLC[12,RX]: V_IFF	= 0	(0x7E as inter frame fill)
	: V_HDLC_TRP	= 1	(transparent mode)
	: V_FIFO_IRQ	= 7	(enable data transmission)
	: V_DATA_FLOW	= '110'	$(FIFO \leftarrow ST/U_p \text{ , } ST/U_p \leftarrow PCM)$
R_SLOT	: V_SL_DIR	= 1	(receive slot)
	: V_SL_NUM	= 22	(slot #22)
A_SL_CFG[22,RX]	: V_CH_SDIR	= 1	(receive HFC-channel)
	: V_CH_SNUM	= 12	(HFC-channel #12)
	: V_ROUT	= '10'	(data from pin STIO2)

4 PCM-to-PCM

A PCM-to-PCM configuration does not occupy any FIFO resources. An example is shown in the last connection set. HFC-channel[14,RX] is used to connect PCM slot[4,RX] to PCM slot[5,TX]. Data from PCM slot[5,RX] to PCM slot[4,TX] is transferred through HFC-channel[14,TX].

A HFC-channel loop is easily established by linking two PCM time slots to the same HFC-channel.

Register setu	p:		(SM 4 no. 1)
R_SLOT	$: V_SL_DIR = 1$	(receice slot)	
A SI CEG[4	$: V_SL_NUM = 4$ $[RX]: V_CH_SDIR = 1$	(slot #4) (receive HFC-channel)	
	$: V_CH_SNUM = 14$	(HFC-channel #14)	
	$: V_ROUT = '11'$	(data from pin STIO1)	
R_SLOT	: $V_SL_DIR = 0$	(transmit slot)	
	$: V_SL_NUM = 5$	(slot #5)	
A_SL_CFG[5	$[TX]: V_CH_SDIR = 1$	(receive HFC-channel)	
	: $V_CH_SNUM = 14$	(HFC-channel #14)	
	$: V_ROUT = '11'$	(data to pin STIO2)	

Register setu	p:	(SM 🔮 no.	. 2)
R_SLOT	$: V_SL_DIR = 1$	(receice slot)	
A_SL_CFG[5	$: V_SL_NUM = 5$ 5,RX]: V_CH_SDIR = 0	(slot #5) (transmit HFC-channel)	
	$: V_CH_SNUM = 14$ $: V_ROUT = '10'$	(HFC-channel #14)	
		(data from pin STIO2)	
R_SLOT	$: V_SL_DIR = 0$ $: V_SL_NUM = 4$	(transmit slot) (slot #4)	
A_SL_CFG[4	$[4,TX]: V_CH_SDIR = 0$	(transmit HFC-channel)	
	: $V_CH_SNUM = 14$	(HFC-channel #14)	
	$: V_ROUT = '10'$	(data to pin STIO1)	

d Rule

In *Simple Mode* for every used FIFO[*n*] the HFC-channel[*n*] is also used. This is valid in reverse case, too, except for PCM-to-PCM configurations.

3.4.2 Channel Select Mode (CSM)

3.4.2.1 Mode description

The *Channel Select Mode* (CSM) allows an arbitrary assignment between a FIFO and the connected HFC-channel as shown in Figure 3.7 (left side). Beyond this, it is possible to connect several FIFOs to one HFC-channel (Fig. 3.7, right side). This works in transmit and receive direction and can be used to connect one 8 kByte/s ST/U_p-channel or PCM time slot to multiple FIFO data streams, with lower data rate each. In this case the subchannel processor must be used.

Figure 3.7: *HFC-channel assigner in CSM*

Channel Select Mode is selected with $V_DF_MD = '01'$ in register R_FIFO_MD . All FIFO array registers are indexed by the multi-register R_FIFO (address 0x0F) in this data flow mode.

3.4.2.2 HFC-channel assigner

The connection between a FIFO and a HFC-channel can be established by register A_CHANNEL which exists for every FIFO. For a selected FIFO, the HFC-channel to be connected must be written into V_CH_FNUM of register A_CHANNEL. Typically, the data direction in V_CH_FDIR is the same as the FIFO data direction V_FIFO_DIR in the multi-register R_FIFO. With the following register settings the HFC-channel assigner connects the selected FIFO to HFC-channel *n*.

Register setup:
A_CHANNEL[FIFO] : V_CH_FDIR = V_FIFO_DIR
: $V_CH_FNUM = n$

A direct connection between a PCM time slot and an ST/ U_p -channel allocates one FIFO although this FIFO does not store any data. In *Channel Select Mode* – in contrast to *Simple Mode* – an arbitrary FIFO can be chosen. This FIFO must be enabled to switch on the data transmission.

3.4.2.3 Subchannel Processing

If more than one FIFO is connected to one HFC-channel, this HFC-channel number must be written into the V_CH_FNUM bitmap of all these FIFOs. In this case every FIFO contributes one or more bits to construct one HFC-channel byte. Unused bits of a HFC-channel byte can be set with an arbitrary mask byte in register A_SUBCH_CFG.

In transparent mode the FIFO data rate always remains 8 kByte/s. In HDLC mode the FIFO data rate is determined by the number of bits transmitted to the HFC-channel.

Please see Section 3.5 on page 110 for details concerning the subchannel processor.

3.4.2.4 Example for CSM

The example for a *Channel Select Mode* configuration in Figure 3.8 shows three bidirectional connections (**1** FIFO-to-ST/U_p, **2** FIFO-to-PCM and **3** PCM-to-ST/U_p). The black lines illustrate data paths, whereas the dotted lines symbolize blocked resources. These are not used for data transmission, but they are necessary to enable the settings.

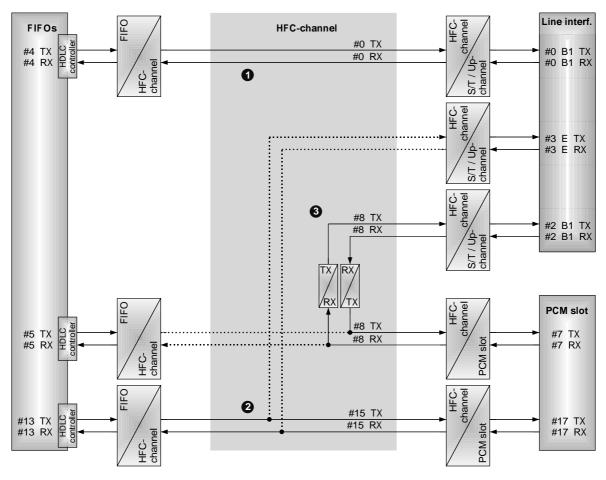


Figure 3.8: CSM example

The following settings demonstrate the required register values to establish the connections. All involved FIFOs have to be enabled with V_FIFO_IRQ $\neq 0$ in register A_CON_HDLC[FIFO].

The subchannel processor is not used in this example. For this reason, registers A_SUBCH_CFG and A_CH_MSK remain in their reset state.

1 FIFO-to-ST/U_p

HFC-channel and FIFO numbers can be chosen independently from each other. This is shown in the FIFO-to-ST/ U_p connection.

Due to the user's requirements, V_REV can be programmed either to normal or inverted bit order of the FIFO data.

HDLC or transparent mode (V_HDLC_TRP) can freely be chosen as well. In addition to the settings shown here, a periodic interrupt (in transparent mode) or a *end of frame* interrupt (in HDLC mode) can be enabled.

Register setup:			(CSM 1 TX)
R_FIFO	: V_FIFO_DIR	= 0	(transmit FIFO)
	: V_FIFO_NUM	= 4	(FIFO #4)
	: V_REV	= 0	(normal bit order)
A_CON_HDLC[4,TX]]: V_IFF	= 0	(0x7E as inter frame fill)
	: V_HDLC_TRP	= 0	(HDLC mode)
	: V_FIFO_IRQ	= 7	(enable FIFO)
	: V_DATA_FLOW	= '000'	(FIFO \rightarrow ST / U_p , FIFO \rightarrow PCM)
A_CHANNEL[4,TX]	: V_CH_FDIR	= 0	(transmit HFC-channel)
	: V_CH_FNUM	= 0	(HFC-channel #0)

Register setup:				(CSM 0 RX)
R_FIFO	: V_FIFO_DIR	= 1	(receive FIFO)	
	: V_FIFO_NUM	= 4	(FIFO #4)	
	: V_REV	= 0	(normal bit order)	
A_CON_HDLC[4,RX]	: V_IFF	= 0	(0x7E as inter frame fill)	
	: V_HDLC_TRP	= 0	(HDLC mode)	
	: V_FIFO_IRQ	= 7	(enable FIFO)	
	: V_DATA_FLOW	= '000'	$(FIFO \leftarrow ST/U_p)$	
A_CHANNEL[4,RX]	: V_CH_FDIR	= 1	(receive HFC-channel)	
	: V_CH_FNUM	= 0	(HFC-channel #0)	

2 FIFO-to-PCM

The FIFO-to-PCM connection blocks one transmit and one receive ST/U_p -channel .

In this example, the selected ST/U_p -channel exists only in S/T interface mode. So there are no resources blocked if this interface operates in U_p mode.

Again, V_REV and V_HDLC_TRP can freely be chosen according to the user's requirements. As in the previous setting, HDLC mode is selected and the FIFOs are enabled with V_FIFO_IRQ = 1.

Register setup:			(CSM 2 TX)
R_FIFO	: V_FIFO_DIR	= 0	(transmit FIFO)
	: V_FIFO_NUM	= 13	(FIFO #13)
	: V_REV	= 0	(normal bit order)
A_CON_HDLC[13,TX]	: V_IFF	= 0	(0x7E as inter frame fill)
	: V_HDLC_TRP	= 0	(HDLC mode)
	: V_FIFO_IRQ	= 7	(enable FIFO)
	: V_DATA_FLOW	= '001'	(FIFO \rightarrow ST / U_p , FIFO \rightarrow PCM)
A_CHANNEL[13,TX]	: V_CH_FDIR	= 0	(transmit HFC-channel)
	: V_CH_FNUM	= 15	(HFC-channel #15)
R_SLOT	: V_SL_DIR	= 0	(transmit slot)
	: V_SL_NUM	= 17	(slot #17)
A_SL_CFG[17,TX]	: V_CH_SDIR	= 0	(transmit HFC-channel)
	: V_CH_SNUM	= 15	(HFC-channel #15)
	: V_ROUT	= '10'	(data to pin STIO1)

Register setup:				(CSM 2 RX)
R_FIFO	: V_FIFO_DIR	= 1	(receive FIFO)	
	: V_FIFO_NUM	= 13	(FIFO #13)	
	: V_REV	= 0	(normal bit order)	
A_CON_HDLC[13,RX]: V_IFF	= 0	(0x7E as inter frame fill)	
	: V_HDLC_TRP	= 0	(HDLC mode)	
	: V_FIFO_IRQ	= 7	(enable FIFO)	
	: V_DATA_FLOW	/ = '001'	$(\text{FIFO} \leftarrow \text{PCM})$	
A_CHANNEL[13,RX]	: V_CH_FDIR	= 1	(receive HFC-channel)	
	: V_CH_FNUM	= 15	(HFC-channel #15)	
R_SLOT	: V_SL_DIR	= 1	(receive slot)	
	: V_SL_NUM	= 17	(slot #17)	
A_SL_CFG[17,RX]	: V_CH_SDIR	= 1	(receive HFC-channel)	
	: V_CH_SNUM	= 15	(HFC-channel #15)	
	: V_ROUT	= '10'	(data from pin STIO2)	

\Theta PCM-to-ST/U_p

The PCM-to-ST/ U_p connection blocks one transmit and one receive FIFO. Although these FIFOs are not used, they must be enabled to switch on the data transmission between the PCM and the ST/ U_p interface.

In receive direction, data is stored in the connected FIFO. But it is not used and needs not to be read. A FIFO overflow has no effect and can be ignored. Consequently, the V_HDLC_TRP setting has no effect to the transferred data between the PCM and the ST/U_p interface neither in receive nor in transmit direction. A PCM-to-ST/U_p connection operates always in transparent mode.

For a PCM-to-ST/ U_p connection, the data direction changes between the two interfaces. In detail, data is received on a RX line and then transmitted on a TX line to the other interface. Therefore, a TX-RX-exchanger is inserted for this connection. The blocked FIFOs are on the PCM side of the TX-RX-exchanger, typically.⁶

Register setup:				(CSM ³ TX)
R_FIFO	: V_FIFO_DIR	= 0	(transmit FIFO)	
	: V_FIFO_NUM	= 5	(FIFO #5)	
	: V_REV	= 0	(normal bit order)	
A_CON_HDLC[5,TX]: V_IFF	= 0	(0x7E as inter frame fill)	
	: V_HDLC_TRP	= 1	(transparent mode)	
	: V_FIFO_IRQ	= 7	(enable data transmission)	
	: V_DATA_FLOW	= '110'	$(ST/U_p \ \rightarrow PCM)$	
A_CHANNEL[5,TX]	: V_CH_FDIR	= 0	(transmit HFC-channel)	
	: V_CH_FNUM	= 8	(HFC-channel #8)	
R_SLOT	: V_SL_DIR	= 0	(transmit slot)	
	: V_SL_NUM	= 7	(slot #7)	
A_SL_CFG[7,TX]	: V_CH_SDIR	= 0	(transmit HFC-channel)	
	: V_CH_SNUM	= 8	(HFC-channel #8)	
	: V_ROUT	= '10'	(data to pin STIO1)	

Register setup:			(CSM ^{(CSM}) RX)
R_FIFO	: V_FIFO_DIR	= 1	(receive FIFO)
	: V_FIFO_NUM	= 5	(FIFO #5)
	: V_REV	= 0	(normal bit order)
A_CON_HDLC[5,RX]]:V_IFF	= 0	(0x7E as inter frame fill)
	: V_HDLC_TRP	= 1	(transparent mode)
	: V_FIFO_IRQ	= 7	(enable data transmission)
	: V_DATA_FLOW	= '110'	$(FIFO \leftarrow ST/U_p , ST/U_p \leftarrow PCM)$
A_CHANNEL[5,RX]	: V_CH_FDIR	= 1	(receive HFC-channel)
	: V_CH_FNUM	= 8	(HFC-channel #8)
R_SLOT	: V_SL_DIR	= 1	(receive slot)
	: V_SL_NUM	= 7	(slot #7)
A_SL_CFG[7,RX]	: V_CH_SDIR	= 1	(receive HFC-channel)
	: V_CH_SNUM	= 8	(HFC-channel #8)
	: V_ROUT	= '10'	(data from pin STIO2)

 $^{^{6}}$ It is not forbidden to connect the blocked FIFOs at the ST/U_p side of the TX-RX-exchanger. 'Advanced users' might find configurations where this is useful. But all typical configuration settings do not require this exceptional option.

Rule

In Channel Select Mode

- Every used HFC-channel requires at least one enabled FIFO (except for the PCM-to-PCM connection) with the same data direction.
- Every used PCM time slot requires one HFC-channel (except for the PCM-to-PCM connection where a full duplex connection with four time slots allocates only two HFC-channels).

3.4.3 FIFO Sequence Mode (FSM)

3.4.3.1 Mode description

In contrast to the PCM and ST/U_p -channels, the FIFO data rate is not fixed to 8 kByte/s in *FIFO* Sequence Mode. In the previous section the CSM allows the functional capability of a FIFO data rate with less than 8 kByte/s. This section shows how to use FIFOs with a data rate which is higher than 8 kByte/s. In transmit direction one FIFO can cyclically distribute its data to several HFC-channels. In opposite direction, received data from several HFC-channels can be collected cyclically in one FIFO (see Fig. 3.9, right side). A one-to-one connection between FIFO and HFC-channel is also possible in FSM, of course (Fig. 3.9, left side).

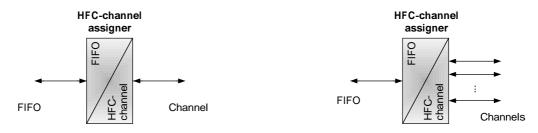


Figure 3.9: HFC-channel assigner in FSM

FIFO Sequence Mode is selected with $V_DF_MD = '11'$ in register R_FIFO_MD . This data flow mode selects the multi-register R_FSM_IDX at the address 0x0F for some FIFO array registers (see Table 3.4 on page 88).

3.4.3.2 FIFO sequence

To achieve a FIFO data rate higher than 8 kByte/s, a FIFO must be connected to more than one HFCchannel. As there is only one register A_CHANNEL[FIFO] for each FIFO, the FSM programming method must differ from the previous modes. Some array registers which are indexed by R_FIFO must be indexed by R_FSM_IDX in *FIFO Sequence Mode* (see Table 3.4).

In FSM all FIFOs are organized in a list with up to 32 entries. Every list entry is assigned to a FIFO. The FIFO configuration can be set up as usual, i.e. HFC-channel allocation, flow controller programming and subchannel processing can be configured as described in the previous sections. Additionally, each list entry specifies the next FIFO of the sequence. The list is terminated by an 'end of list' entry. This procedure is shown in Figure 3.10 with j + 1 list entries. The first FIFO of the sequence must be specified in register R_FIRST_FIFO.

A quite simple FSM configuration with every FIFO and every HFC-channel specified only one time in the list, would have the same data transmission result as the CSM with an equivalent FIFO \longleftrightarrow HFC-channel setup. But if a specific FIFO is selected *n* times in the list and connected to *n* different HFC-channels, the FIFO data rate is $n \cdot 8$ kByte/s.

The complete list is processed every $125 \,\mu s$ with ascending list index beginning with 0. Suppose the transmit FIFO *m* occurs several times in the list. Then the first FIFO byte is transferred to the first connected HFC-channel, the second byte of FIFO *m* to the second connected HFC-channel and so on. This is similar in receive data direction. The first byte written into FIFO *m* comes from the first connected HFC-channel, the second byte from the second connected HFC-channel and so on.

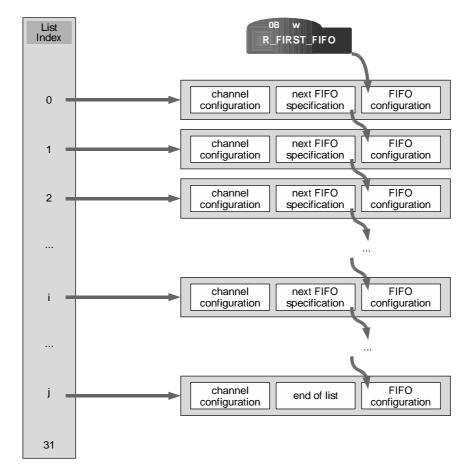


Figure 3.10: FSM list processing

3.4.3.3 FSM programming

Register R_FSM_IDX specifies the list index with bitmap V_IDX in the range of 0..31. R_FSM_IDX is a multi-register and has the same address as R_FIFO because in FSM it replaces R_FIFO for the list programming of the HFC-channel based registers. The array registers A_CHANNEL, A_FIFO_SEQ and A_SUBCH_CFG are indexed with the list index V_IDX instead of the FIFO number (see Table 3.4 on page 88). All other FIFO array registers remain indexed by R_FIFO.

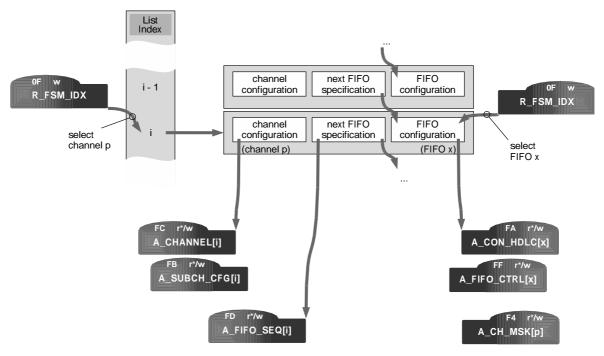


Figure 3.11: FSM list programming

The first processed FIFO has to be specified in register R_FIRST_FIFO with the direction bit V_FIRST_FIFO_DIR and the FIFO number V_FIRST_FIFO_NUM. The next FIFO has to be specified in register A_FIFO_SEQ[V_IDX = 0].

A FIFO handles more than one HFC-channel if a FIFO is specified several times in the 'next FIFO' entries.

The FIFO sequence list terminates with $V_SEQ_END = '1'$ in register A_FIFO_SEQ . The other list entries must specify $V_SEQ_END = '0'$ to continue the sequence processing with the next entry.

Programming of the HFC-channel and FIFO registers is shown in Figure 3.11. The connected HFCchannel array registers are indexed by the list index which is written into register R_FSM_IDX. On the other hand, FIFO array registers are indexed by register R_FIFO as usual.

- After writing the list index *i* into register R_FSM_IDX, the registers A_CHANNEL[*i*] and A_SUBCH_CFG[*i*] can be programmed to assign and configure an HFC-channel.
- The next FIFO in the sequence must be specified in register A_FIFO_SEQ[*i*].
- Supposed, that the previous list entry i-1 has specified A_FIFO_SEQ[i-1] = FIFO x, then the corresponding FIFO array registers have to be programmed by first setting R_FIFO = x. Afterwards, registers A_CON_HDLC[x], A_FIFO_CTRL[x] and A_CH_MSK can be programmed

in the usual way. Please note, that register A_CH_MSK requires the addressed HFC-channel to be specified in register R_FIFO (see remark on page 111).

3.4.3.4 Example for FSM

Figure 3.12 shows an example with three bidirectional connections (① 8 kByte/s-FIFO-to-ST/U_p, ② 8 kByte/s-FIFO-to-PCM and ③ 16 kByte/s-FIFO-to-ST/U_p). The black lines illustrate data paths, whereas the dotted lines symbolize blocked HFC-channels. These are not used for data transmission, but they are necessary to enable the settings.

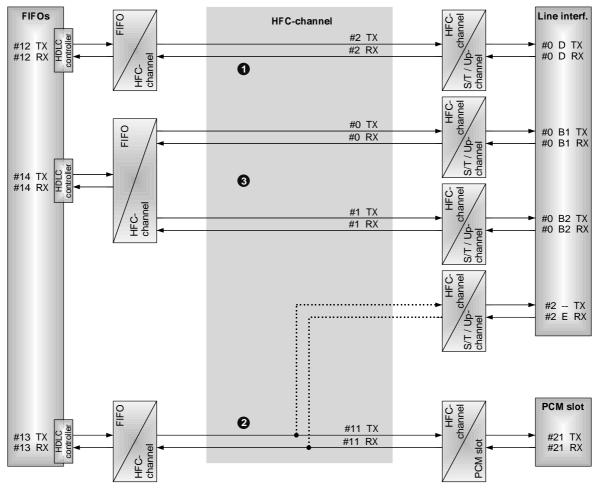


Figure 3.12: FSM example

The following settings demonstrate the required register values to establish the connections. All involved FIFOs have to be enabled with V_FIFO_IRQ $\neq 0$ in register A_CON_HDLC[FIFO].

The subchannel processor is not used in this example. For this reason, registers A_SUBCH_CFG and A_CH_MSK remain in their reset state.

All FIFOs can be arranged in arbitrary order. In the example the list specification of Table 3.5 is chosen. To select FIFO[12,TX] beeing the first FIFO, R_FIRST_FIFO is set as follows:

Register setup:	
$R_FIRST_FIFO: V_FIRST_FIFO_DIR = '0'$	(transmit FIFO)
: V_FIRST_FIFO_NUM = 12	(FIFO #12)

Table 3.5: List specification of the example in Figure 3.12

Example number	List index		Co	nnection
0	0	FIFO[12,TX]	\rightarrow	ST/U _p interf. #0, D TX
0	1	FIFO[12,RX]	\leftarrow	ST/U _p interf. #0, D RX
0	2	FIFO[13,RX]	\leftarrow	PCM time slot[21,RX]
0	3	FIFO[13,TX]	\rightarrow	PCM time slot[21,TX]
8	4	FIFO[14,TX]	\rightarrow	ST/U _p interf. #0, B1 TX
3	5	FIFO[14,RX]	\leftarrow	ST/U _p interf. #0, B1 RX
8	6	FIFO[14,TX]	\rightarrow	ST/U _p interf. #0, B2 TX
8	7	FIFO[14,RX]	\leftarrow	ST/U _p interf. #0, B2 RX

1 FIFO-to-ST/U_p

The bidirectional FIFO-to-ST/ U_p connection use the list indices 0 and 1. Registers A_CHANNEL and A_FIFO_SEQ are indexed by the list index.

Register setup:		(FSM 1 list indices 0 and 1)
R_FSM_IDX : V_IDX	= 0	(List index #0, used for FIFO[12,TX])
A_CHANNEL[#0] : V_CH_FDIR	= 0	(transmit HFC-channel)
: V_CH_FNUM	= 2	(HFC-channel #2)
A_FIFO_SEQ[#0]: V_NEXT_FIFO_DIR	= 1	(next: receive FIFO)
: V_NEXT_FIFO_NUM	= 12	(next: FIFO #12)
: V_SEQ_END	= 0	(continue)
R_FSM_IDX : V_IDX	= 1	(List index #1, used for FIFO[12,RX])
A_CHANNEL[#1] : V_CH_FDIR	= 1	(receive HFC-channel)
: V_CH_FNUM	= 2	(HFC-channel #2)
A_FIFO_SEQ[#1]: V_NEXT_FIFO_DIR	= 1	(next: receive FIFO)
: V_NEXT_FIFO_NUM	= 13	(next: FIFO #13)
: V_SEQ_END	= 0	(continue)

The FIFO programming sequence is indexed by the FIFO number and direction. V_REV, V_HDLC_TRP and V_FIFO_IRQ can be programmed due to the user's requirements. FIFO[12,TX] and FIFO[12,RX] must both be enabled.

Register setup:			(FSM 1 FIFO programming for list indices 0 and 1)
R_FIFO	: V_FIFO_DIR	= 0	(transmit FIFO)
	: V_FIFO_NUM	= 12	(FIFO #12)
	: V_REV	= 0	(normal bit order)
A_CON_HDLC[12,TX]	: V_IFF	= 0	(0x7E as inter frame fill)
	: V_HDLC_TRP	= 0	(HDLC mode)
	: V_FIFO_IRQ	= 7	(enable FIFO)
	: V_DATA_FLOW	= '000'	(FIFO \rightarrow ST / U_p , FIFO \rightarrow PCM)
R_FIFO	: V_FIFO_DIR	= 1	(receive FIFO)
	: V_FIFO_NUM	= 12	(FIFO #12)
	: V_REV	= 0	(normal bit order)
A_CON_HDLC[12,RX]	: V_IFF	= 0	(0x7E as inter frame fill)
	: V_HDLC_TRP	= 0	(HDLC mode)
	: V_FIFO_IRQ	= 7	(enable FIFO)
	: V_DATA_FLOW	= '000'	$(FIFO \leftarrow ST/U_p)$

2 FIFO-to-PCM

The following two list entries (indices 2 and 3) define the bidirectional FIFO-to-PCM connection.

Two ST/ U_p -channels are blocked. But ST/ U_p -channel resources are saved because the HFCchannels are assigned to an E-channel which is normally not used and an unused transmit channel.

Register setup:		(FSM 2 list indices 2 and 3)
R_FSM_IDX : V_IDX	= 2	(List index #2, used for FIFO[13,RX])
A_CHANNEL[#2] : V_CH_FDIR	= 1	(receive HFC-channel)
: V_CH_FNUM	= 11	(HFC-channel #11)
A_FIFO_SEQ[#2] : V_NEXT_FIFO_DIR	= 0	(next: transmit FIFO)
: V_NEXT_FIFO_NUM	= 13	(next: FIFO #13)
: V_SEQ_END	= 0	(continue)
R_FSM_IDX : V_IDX	= 3	(List index #3, used for FIFO[13,TX])
A_CHANNEL[#3] : V_CH_FDIR	= 0	(transmit HFC-channel)
: V_CH_FNUM	= 11	(HFC-channel #11)
A_FIFO_SEQ[#3] : V_NEXT_FIFO_DIR	= 0	(next: transmit FIFO)
: V_NEXT_FIFO_NUM	= 14	(next: FIFO #14)
: V_SEQ_END	= 0	(continue)

Register setup:		(FSM 2	RX FIFO programming for list indices 2 and 3)
R_FIFO	: V_FIFO_DIR	= 1	(receive FIFO)
	: V_FIFO_NUM	= 13	(FIFO #13)
	: V_REV	= 0	(normal bit order)
A_CON_HDLC[13,RX]	: V_IFF	= 0	(0x7E as inter frame fill)
	: V_HDLC_TRP	= 0	(HDLC mode)
	: V_FIFO_IRQ	= 7	(enable FIFO)
	: V_DATA_FLOW	= '001'	$(FIFO \leftarrow PCM)$
R_SLOT	: V_SL_DIR	= 1	(receive slot)
	: V_SL_NUM	= 21	(slot #21)
A_SL_CFG[21,RX]	: V_CH_SDIR	= 1	(receive HFC-channel)
	: V_CH_SNUM	= 11	(HFC-channel #11)
	: V_ROUT	= '10'	(data from pin STIO2)

Register setup:		(FSM 2	TX FIFO programming for list indices 2 and 3)
R_FIFO	: V_FIFO_DIR	= 0	(transmit FIFO)
	: V_FIFO_NUM	= 13	(FIFO #13)
	: V_REV	= 0	(normal bit order)
A_CON_HDLC[13,TX]	: V_IFF	= 0	(0x7E as inter frame fill)
	: V_HDLC_TRP	= 0	(HDLC mode)
	: V_FIFO_IRQ	= 7	(enable FIFO)
	: V_DATA_FLOW	= '001'	(FIFO \rightarrow ST / U_p , FIFO \rightarrow PCM)
R_SLOT	: V_SL_DIR	= 0	(transmit slot)
	: V_SL_NUM	= 21	(slot #21)
A_SL_CFG[21,TX]	: V_CH_SDIR	= 0	(transmit HFC-channel)
	: V_CH_SNUM	= 11	(HFC-channel #11)
	: V_ROUT	= '10'	(data to pin STIO1)

③ FIFO to multiple ST/U_p-channels

The last setting shows a channel bundling configuration of one FIFO to two B-channels of the ST/U_p interface for both transmit and receive directions. The FIFOs have a data rate of $16 \, kByte/s$ each.

Register setup:			(FSM 3 list indices 4 and 5)
R_FSM_IDX :	V_IDX	= 4	(List index #4, used for FIFO[14,TX])
A_CHANNEL[#4] :	V_CH_FDIR	= 0	(transmit HFC-channel)
:	V_CH_FNUM	= 0	(HFC-channel #0)
A_FIFO_SEQ[#4] :	V_NEXT_FIFO_DIR	= 1	(next: receive FIFO)
:	V_NEXT_FIFO_NUM	= 14	(next: FIFO #14)
:	V_SEQ_END	= 0	(continue)
R_FSM_IDX :	V_IDX	= 5	(List index #5, used for FIFO[14,RX])
A_CHANNEL[#5] :	V_CH_FDIR	= 1	(receive HFC-channel)
:	V_CH_FNUM	= 0	(HFC-channel #0)
A_FIFO_SEQ[#5] :	V_NEXT_FIFO_DIR	= 0	(next: transmit FIFO)
:	V_NEXT_FIFO_NUM	= 14	(next: FIFO #14)
:	V_SEQ_END	= 0	(continue)

Register setup:		(FSM ③ FIFO programming for list indices 4 and 5)
R_FIFO	: V_FIFO_DIR	= 0	(transmit FIFO)
	: V_FIFO_NUM	= 14	(FIFO #14)
	: V_REV	= 0	(normal bit order)
A_CON_HDLC[14,TX]]: V_IFF	= 0	(0x7E as inter frame fill)
	: V_HDLC_TRP	= 0	(HDLC mode)
	: V_FIFO_IRQ	= 7	(enable FIFO)
	: V_DATA_FLOW	— '000'	$(FIFO \rightarrow ST/U_p$, $FIFO \rightarrow PCM)$
R_FIFO	: V_FIFO_DIR	= 1	(receive FIFO)
	: V_FIFO_NUM	= 14	(FIFO #14)
	: V_REV	= 0	(normal bit order)
A_CON_HDLC[14,RX]: V_IFF	= 0	(0x7E as inter frame fill)
	: V_HDLC_TRP	= 0	(HDLC mode)
	: V_FIFO_IRQ	= 7	(enable FIFO)
	: V_DATA_FLOW	= '000'	$(FIFO \leftarrow ST/U_p)$

When the FIFO[14,TX] and FIFO[14,RX] are used for the second time, they need not to be programmed again. So just the HFC-channels have to programmed for the list indices #6 and #7.

Register setup:		(FSM 3 list indices 6 and 7)
R_FSM_IDX : V_IDX	= 6	(List index #6, used for FIFO[14,TX])
A_CHANNEL[#6] : V_CH_FDIR	= 0	(transmit HFC-channel)
: V_CH_FNUM	= 1	(HFC-channel #1)
A_FIFO_SEQ[#6]: V_NEXT_FIFO_DIR	= 1	(next: receive FIFO)
: V_NEXT_FIFO_NUM	= 14	(next: FIFO #14)
: V_SEQ_END	= 0	(continue)
R_FSM_IDX : V_IDX	= 7	(List index #7, used for FIFO[14,RX])
A_CHANNEL[#7] : V_CH_FDIR	= 1	(receive HFC-channel)
: V_CH_FNUM	= 1	(HFC-channel #1)
A_FIFO_SEQ[#7]: V_NEXT_FIFO_DIR	= 0	
: V_NEXT_FIFO_NUM	= 0	
: V_SEQ_END	= 1	(end of list)

3.5 Subchannel Processing

3.5.1 Overview

Data transmission between a FIFO and the connected HFC-channel can be controlled by the subchannel processor. The behavior of this functional unit depends on the selected data flow mode (SM, CSM or FSM) and the operation mode of the HDLC controller (transparent or HDLC mode). The subchannel controller allows to process less than 8 bits of the transferred FIFO data bytes.

The subchannel processor cannot be used for direct PCM-to-ST/ U_p or PCM-to-PCM connections, because a FIFO must participate in the data flow.

A general overview of the subchannel processor in transmit direction is shown as a simplified example in Figure 3.13. Three transmit FIFOs are connected to one HFC-channel. Details of subchannel processing are described in the following sections, partitioned into the different modes of the data flow and the HDLC controller.

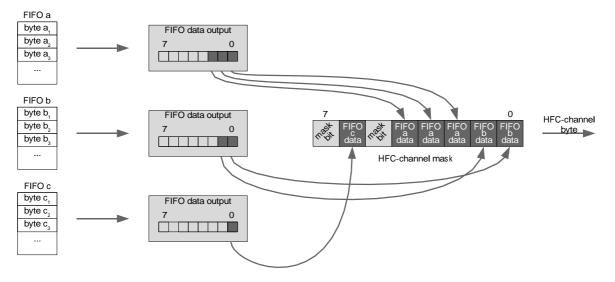


Figure 3.13: General structure of the subchannel processor shown with an example of three connected FIFOs

The essence of the subchannel processor is a bit extraction/insertion unit for every FIFO and a byte mask for every HFC-channel. Therefore, the subchannel processor is divided into two parts A and B like shown in Figure 3.14. The behaviour of the FIFO oriented part A depends on the HDLC or transparent mode selection. The HFC-channel oriented part B has a different behaviour due to the selected data flow SM or CSM/FSM.

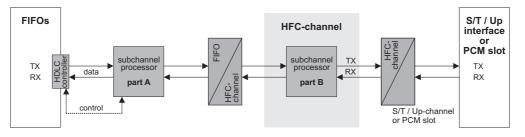


Figure 3.14: Location of the subchannel parts A and B in the data flow diagram

3.5.2 Subchannel registers

The FIFO bit extraction/insertion requires two register settings. V_BIT_CNT defines the number of bits to be extracted/inserted. These bits are always aligned to position 0 in the FIFO data. This bit field can freely be placed in the HFC-channel byte. For this, the start bit can be selected with V_START_BIT in the range of 0..7. Both values are located in register A_SUBCH_CFG[FIFO].

The HFC-channel mask can be stored in register A_CH_MSK[FIFO]. This mask is only used for transmit data. The processed FIFO bits are stored in this register, so it must be re-initialized after changing the settings in A_SUBCH_CFG[FIFO]. Each HFC-channel has its own mask byte. To write this byte for HFC-channel [n,TX], the HFC-channel must be written into the multi-register R_FIFO first. The desired mask byte m can be written with A_CH_MSK = m after this index selection.

Important!

Typically, the multi-register R_FIFO contains always a FIFO index. There is one exception where the R_FIFO value has a different meaning: The HFC-channel mask byte A_CH_MSK is programmed by writing the <u>HFC-channel</u> into the R_FIFO register.

The default subchannel configuration in register A_SUBCH_CFG leads to a transparent behavior. That means, only complete data bytes are transmitted in receive and transmit direction.

3.5.3 Details of the FIFO oriented part of the subchannel processor (part A)

The subchannel processor part A lies between the HDLC controller and the HFC-channel assigner. Figure 3.15 shows the block diagram for both receive and transmit data directions.

At the HDLC controller side, there are a data path and two control lines. These communicate the number of bits to be processed and the HDLC/transparent mode selection between the two modules. In transparent mode always one byte is transferred between the HDLC controller and the subchannel controller part A every 125 μ s cycle. In HDLC mode the number of bits is specified by the subchannel bitmap V_BIT_CNT in register A_SUBCH_CFG[FIFO].

On the other side, the data path between subchannel processor part A and the HFC-channel assigner transfers always one byte in transmit and receive direction during every $125 \,\mu s$ cycle.

3.5.3.1 FIFO transmit operation in transparent mode

In transparent mode every FIFO has a data rate of 8 kByte/s. Every $125 \,\mu\text{s}$ one byte of a FIFO is processed. The number of bits specified in V_BIT_CNT is placed at position V_START_BIT + V_BIT_CNT - 1...V_START_BIT while the other bits are not used and will be overwritten from the HFC-channel mask in part B of the subchannel processor.

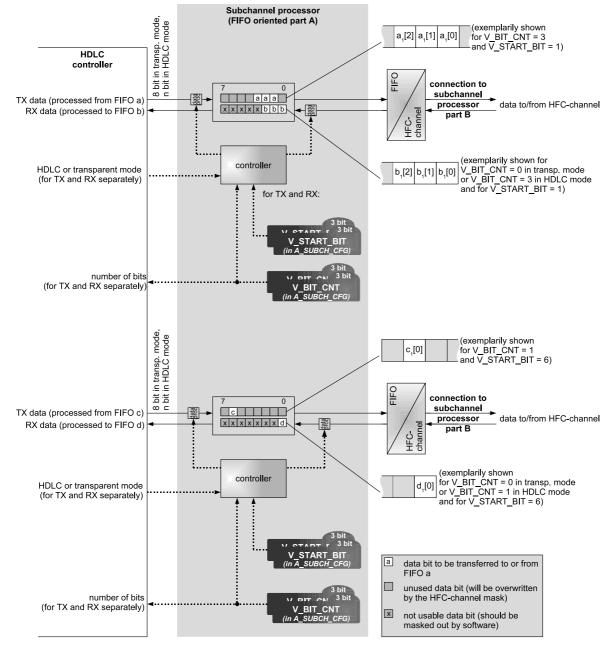


Figure 3.15: Part A of the subchannel processor

3.5.3.2 FIFO transmit operation in HDLC mode

The HDLC mode allows to reduce the data rate of a FIFO. With every $125 \,\mu s$ cycle the subchannel processor requests V_BIT_CNT bits from the HDLC controller. The FIFO data rate is

$$DR_{FIFO} = \begin{cases} V_BIT_CNTkBit/s : V_BIT_CNT > 0\\ 8kBit/s : V_BIT_CNT = 0 \end{cases}$$

or might be a little lower due to the bit stuffing (zero insertion).

3.5.3.3 FIFO receive operation in transparent mode

The subchannel processor part A receives one byte every $125 \,\mu s$ cycle. Typically, only some bits – depending on the usage mode of this receive channel – contain valid data. V_START_BIT defines the position of the valid bit field in the received HFC-channel byte. The subchannel processor part A shifts the valid bit field to position 0 before a whole byte is transferred to the HDLC controller. The invalid bits must be masked out by software. The FIFO data rate is always 8 kByte/s in this configuration.

If transparent mode is selected, V_BIT_CNT must always be '000' in receive direction. The number of valid bits must be handled by the software.

3.5.3.4 FIFO receive operation in HDLC mode

From every received HFC-channel data byte only V_BIT_CNT bits beginning at position V_START_BIT contain valid data. Only these bits are transferred to the HDLC controller. So the FIFO data rate is

$$DR_{FIFO} = \begin{cases} V_BIT_CNTkBit/s : V_BIT_CNT > 0\\ 8kBit/s : V_BIT_CNT = 0 \end{cases}$$

or might be a little lower due to the bit stuffing (zero deletion).

3.5.4 Details of the HFC-channel oriented part of the subchannel processor (part B)

Part B of the subchannel processor is located inside the HFC-channel area. With every 125 μ s cycle it transmits and receives always one data byte to / from the connected interface (either PCM or ST/U_p interface). On the other side, to / from every connected HFC-channel assigner one byte is transferred in both transmit and receive directions. Figure 3.16 shows the block diagram of this module.

3.5.4.1 FIFO transmit operation in SM

As the FIFO and HFC-channel numbers are the same in *Simple Mode*, only one FIFO can be connected to a HFC-channel. Subchannel processing can do nothing more than masking out some bits of every transmitted data byte.

The specified bit field is put into the HFC-channel mask byte before the data byte is transmitted to the connected interface.

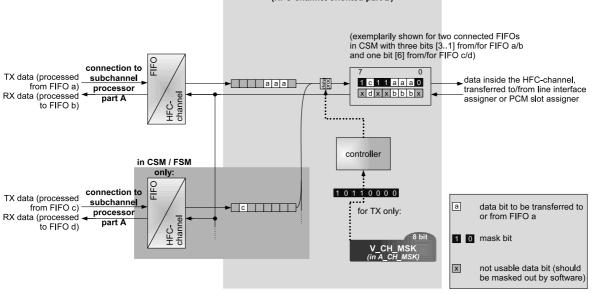


Figure 3.16: Part B of the subchannel processor

3.5.4.2 FIFO transmit operation in CSM and FSM

In *Channel Select Mode* and *FIFO Sequence Mode*, several FIFOs can contribute data to one HFCchannel data byte. From every connected HFC-channel assigner, one or more bits are extracted and are joined to a single HFC-channel data byte.

Here, the subchannel processor works in the same way as in *Simple Mode*, except that multiple bit insertion is performed. All FIFOs which contribute data bits to the HFC-channel byte should specify different bit locations to avoid overwriting data.

3.5.4.3 FIFO receive operation in SM

The received data byte is transferred to the HFC-channel assigner without modification. Part B of the subchannel processor has no effect to the receive data. Typically, only some bits contain valid data which will be extracted by the part A of the subchannel processor.

3.5.4.4 FIFO receive operation in CSM and FSM

If there are several FIFOs connected to one receive HFC-channel in *Channel Select Mode* or *FIFO Sequence Mode*, every received data byte is transferred to all connected HFC-channel assigners without modification. Part B of the subchannel processor has no effect to the receive data. Typically, the HFC-channel data byte contains bit fields for several FIFOs which will be extracted by their part A of the subchannel processor.

3.5.5 Subchannel example for SM

The subchannel processing example in Figure 3.17 shows two bidirectional configurations (\bigcirc FIFO-to-ST/U_p and \oslash FIFO-to-PCM) in *Simple Mode*.

Please note !

All subchannel examples in this document have always the same number of bits and the same start bit for corresponding transmit and receive FIFOs. Actually, transmit and receive configuration settings are independently from each other. The settings are chosen for clearness and can simply be reproduced with looped data pathes.

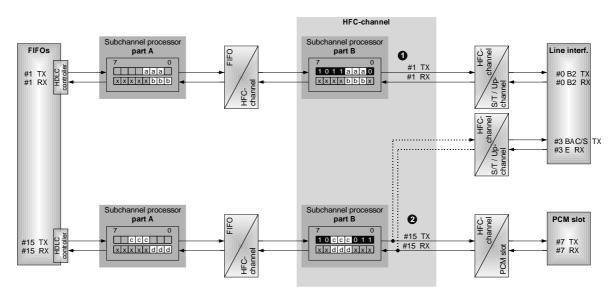


Figure 3.17: SM example with subchannel processor

① FIFO-to-ST/U_p (TX)

The first setting shows a FIFO-to-ST/ U_p data transmission in transparent mode.

Register A_SUBCH_CFG[FIFO] defines three bits [2..0] to be transmitted from each FIFO byte. These bits have the position [3..1] in the HFC-channel data byte.

All other data bits in the HFC-channel byte are defined by the HFC-channel mask $V_CH_MSK = '1011\,0000'$ in register A_CH_MSK. This array register must be selected by writing the HFC-channel number and direction into register R_FIFO. The mask bits [3..1] are *don't care* because they are overwritten from the FIFO data.

A detailed overview of the transmitted data is shown in Table 3.6. The first data byte in FIFO[1,TX] is a_1 , the second byte is a_2 , and so on. In transparent mode only $(a_1[2..0], a_2[2..0], ...)$ are placed in the HFC-channel bytes at the location [3..1] and $(a_1[7..3], a_2[7..3], ...)$ are ignored and replaced by the HCF-channel mask.

Data flow

Register setup:			(SM 1 TX)
R_FIFO	: V_FIFO_DIR	= 0	(transmit FIFO)
	: V_FIFO_NUM	= 1	(FIFO #1)
	: V_REV	= 0	(normal bit order)
A_CON_HDLC[1,TX]	: V_IFF	= 0	(0x7E as inter frame fill)
	: V_HDLC_TRP	= 1	(transparent mode)
	: V_FIFO_IRQ	= 7	(enable FIFO)
	: V_DATA_FLOW	— '000'	$(FIFO \rightarrow ST/U_p$, $FIFO \rightarrow PCM)$
A_SUBCH_CFG[1,TX]]: V_BIT_CNT	= 3	(process 3 bits)
	: V_START_BIT	= 1	(start with bit 1)
	: V_LOOP_FIFO	= 0	(normal operation)
	: V_INV_DATA	= 0	(normal data transmission)
R_FIFO	: V_FIFO_DIR	= 0	(transmit HFC-channel)
	: V_FIFO_NUM	= 1	(HFC-channel #1)
	: V_REV	= 0	(normal bit order)
A_CH_MSK[1,TX]	: V_CH_MSK	= '1011 0000'	(mask byte)

① FIFO-to-ST/U_p (RX)

Only three bits [3..1] from the received HFC-channel byte are assumed to be valid data. Nevertheless, the number of received bits must be set to the value V_BIT_CNT = 0 which means 'one byte'. The start position is specified with V_START_BIT = 1 in register A_SUBCH_CFG. As the received bit field is aligned to position 0, these bits represent FIFO data b[2..0].

A detailed overview of the received data is shown in Table 3.7. The first data byte in FIFO[1,RX] is b_1 , the second byte is b_2 , and so on. Only $(b_1[2..0], b_2[2..0], ...)$ contain valid data and $(b_1[7..3], b_2[7..3], ...)$ must be masked out by software.

Register setup:				(SM 1 RX)
R_FIFO	: V_FIFO_DIR =	1	(receive FIFO)	
	: V_FIFO_NUM =	1	(FIFO #1)	
	: V_REV =	0	(normal bit order)	
A_CON_HDLC[1,RX]	: V_IFF =	0	(0x7E as inter frame fill)	
	: V_HDLC_TRP $=$	1	(transparent mode)	
	: $V_FIFO_IRQ =$	7	(enable FIFO)	
	: V_DATA_FLOW =	'000'	$(FIFO \leftarrow ST/U_p)$	
A_SUBCH_CFG[1,RX]]: V_BIT_CNT =	0	(process 8 bits)	
	: V_START_BIT =	1	(start with bit 1)	
	: V_LOOP_FIFO $=$	0	(normal operation)	
	: V_INV_DATA =	0	(normal data transmission)	

	7 0
HFC-channel mask:	1 0 1 1 0 0 0 0
HFC-channel transmit byte 1:	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$
HFC-channel transmit byte 2:	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$
HFC-channel transmit byte 3:	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$

 Table 3.6:
 Subchannel processing according to Figure 3.17 (SM ① TX, transparent mode)

 Table 3.7: Subchannel processing according to Figure 3.17 (SM ① RX, transparent mode)

	7	0
HFC-channel receive byte 1:	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	x
HFC-channel receive byte 2:	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	x
HFC-channel receive byte 3:	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	x

2 FIFO-to-PCM (TX)

The second *Simple Mode* configuration connects a FIFO in HDLC mode with the PCM interface ⁷. Bitmap V_BIT_CNT in register A_SUBCH_CFG[FIFO] defines three FIFO data bits to be transmitted during every 125 μ s cycle. The bit field location in the HFC-channel data byte is specified by bitmap V_START_BIT in the same register.

All other data bits in the HFC-channel are defined by the HFC-channel mask in register A_CH_MSK . This array register must be selected by writing the HFC-channel number and direction into register R_FIFO . The mask bits [5..3] are *don't care* because they are overwritten from the FIFO data.

A detailed overview of the transmitted data is shown in Table 3.8. The first data byte in FIFO[15,TX] is c_1 , the second byte is c_2 , and so on. In HDLC mode, FIFO bytes are dispersed among several HFC-channel bytes.

⁷HDLC bit stuffing is not shown in this example.

Data flow

Register setup:			(SM 2 TX)
R_FIFO	: V_FIFO_DIR	= 0	(transmit FIFO)
	: V_FIFO_NUM	= 15	(FIFO #15)
	: V_REV	= 0	(normal bit order)
A_CON_HDLC[15,TX]	: V_IFF	= 0	(0x7E as inter frame fill)
	: V_HDLC_TRP	= 0	(HDLC mode)
	: V_FIFO_IRQ	= 7	(enable FIFO)
	: V_DATA_FLOW	= '001'	(FIFO \rightarrow ST / U_p , FIFO \rightarrow PCM)
A_SUBCH_CFG[15,TX]	I: V_BIT_CNT	= 3	(process 3 bits)
	: V_START_BIT	= 3	(start with bit 3)
	: V_LOOP_FIFO	= 0	(normal operation)
	: V_INV_DATA	= 0	(normal data transmission)
R_FIFO	: V_FIFO_DIR	= 0	(transmit HFC-channel)
	: V_FIFO_NUM	= 15	(HFC-channel #15)
	: V_REV	= 0	(normal bit order)
A_CH_MSK[15,TX]	: V_CH_MSK	= '1011 0011'	(mask byte)
R_SLOT	: V_SL_DIR	= 0	(transmit slot)
	: V_SL_NUM	= 7	(slot #7)
A_SL_CFG[7,TX]	: V_CH_SDIR	= 0	(transmit HFC-channel)
	: V_CH_SNUM	= 15	(HFC-channel #15)
	: V_ROUT	= '10'	(data to pin STIO1)

2 FIFO-to-PCM (RX)

Only three bits [5..3] from the received HFC-channel byte are assumed to be valid data. This is done with bitmaps V_BIT_CNT = 3 and V_START_BIT = 3 in register A_SUBCH_CFG. The bit field is aligned to position 0 and transferred to the HDLC controller. There, FIFO data bytes are constructed from several received bit fields.

A detailed overview of the received data is shown in Table 3.9. The first data byte in FIFO[15,RX] is d_1 , the second byte is d_2 , and so on. In HDLC mode, FIFO bytes are constructed from several HFC-channel bytes.

Register setup:				(SM 2 RX)
R_FIFO	: V_FIFO_DIR	= 1	(receive FIFO)	
	: V_FIFO_NUM	= 15	(FIFO #15)	
	: V_REV	= 0	(normal bit order)	
A_CON_HDLC[15,RX]	: V_IFF	= 0	(0x7E as inter frame fill)	
	: V_HDLC_TRP	= 0	(HDLC mode)	
	: V_FIFO_IRQ	= 7	(enable FIFO)	
	: V_DATA_FLOW	= '001'	$(FIFO \leftarrow PCM)$	
A_SUBCH_CFG[15,RX]]: V_BIT_CNT	= 3	(process 3 bits)	
	: V_START_BIT	= 3	(start with bit 3)	
	: V_LOOP_FIFO	= 0	(normal operation)	
	: V_INV_DATA	= 0	(normal data transmission)	
R_SLOT	: V_SL_DIR	= 1	(receive slot)	
	: V_SL_NUM	= 7	(slot #7)	
A_SL_CFG[7,RX]	: V_CH_SDIR	= 1	(receive HFC-channel)	
	: V_CH_SNUM	= 15	(HFC-channel #15)	
	: V_ROUT	= '10'	(data from pin STIO2)	

Table 3.8: Subchannel processing according to Figure 3.17 (SM 2 TX, HDLC mode)

	7 0
HFC-channel mask:	1 0 0 0 0 1 1
HFC-channel transmit byte 1:	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$
HFC-channel transmit byte 2:	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$
HFC-channel transmit byte 3:	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$
HFC-channel transmit byte 4:	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$

Table 3.9: Subchannel processing according to Figure 3.17 (SM 2 RX, HDLC mode)

	7							0
HFC-channel receive byte 1:	x	x	$d_1[2]$	$d_1[1]$	$d_1[0]$	x	x	x
HFC-channel receive byte 2:	x	x	$d_1[5]$	$d_1[4]$	$d_1[3]$	x	x	x
HFC-channel receive byte 3:	x	x	$d_{2}[0]$	$d_1[7]$	$d_1[6]$	x	x	x
HFC-channel receive byte 4:	x	x	$d_2[3]$	$d_{2}[2]$	$d_2[1]$	x	x	x

3.5.6 Subchannel example for CSM

In *Channel Select Mode* up to 8 FIFOs can be assigned to one HFC-channel if only 1 bit is processed by every FIFO. The example in Figure 3.18 shows two bidirectional configurations (\bigcirc FIFO-to-ST/U_p and \bigcirc FIFO-to-PCM) with two FIFOs per direction each.

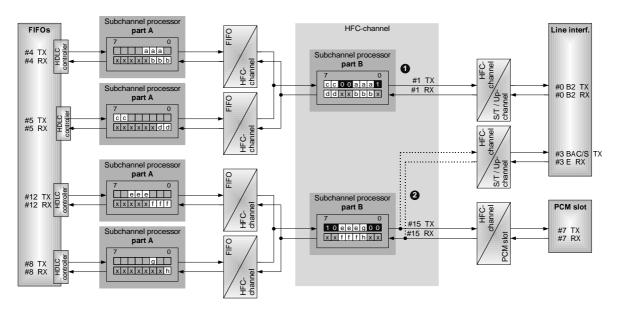


Figure 3.18: CSM example with subchannel processor

① FIFO-to-ST/U_p (TX)

In the first setting two transmit FIFOs are connected to one HFC-channel. Transparent mode is selected in this example.

Registers A_SUBCH_CFG[FIFO] of FIFO[4,TX] and FIFO[5,TX] define both, the number of bits to be extracted from the FIFO data bytes and their position in the HFC-channel byte.

The HFC-channel mask in register A_CH_MSK defines the bit values that are not used for FIFO data. The array register must be selected by writing the HFC-channel number and direction into register R_FIFO. The mask bits [7..6, 3..1] are *don't care* because they are overwritten from the FIFO data.

A detailed overview of the transmitted data is shown in Table 3.10. The first data byte in FIFO[4,TX] is a_1 , the second byte is a_2 , and so on. FIFO[5,TX] is represented by the data bytes c_1 , c_2 , and so on.

Register setup:			(CSM 0 TX)
R_FIFO	: V_FIFO_DIR	= 0	(transmit FIFO)
	: V_FIFO_NUM	= 4	(FIFO #4)
	: V_REV	= 0	(normal bit order)
A_CON_HDLC[4,TX]	: V_IFF	= 0	(0x7E as inter frame fill)
	: V_HDLC_TRP	= 1	(transparent mode)
	: V_FIFO_IRQ	= 7	(enable FIFO)
	: V_DATA_FLOW	— '000'	$(\mbox{FIFO} \rightarrow \mbox{ST} / \mbox{U}_p$, $\mbox{FIFO} \rightarrow \mbox{PCM})$
A_CHANNEL[4,TX]	: V_CH_FDIR	= 0	(transmit HFC-channel)
	: V_CH_FNUM	= 1	(HFC-channel #1)
A_SUBCH_CFG[4,TX]	I: V_BIT_CNT	= 3	(process 3 bits)
	: V_START_BIT	= 1	(start with bit 1)
	: V_LOOP_FIFO	= 0	(normal operation)
	: V_INV_DATA	= 0	(normal data transmission)
R_FIFO	: V_FIFO_DIR	= 0	(transmit FIFO)
	: V_FIFO_NUM	= 5	(FIFO #5)
	: V_REV	= 0	(normal bit order)
A_CON_HDLC[5,TX]	: V_IFF	= 0	(0x7E as inter frame fill)
	: V_HDLC_TRP	= 1	(transparent mode)
	: V_FIFO_IRQ	= 7	(enable FIFO)
	: V_DATA_FLOW	= '000'	(FIFO \rightarrow ST / U_p , FIFO \rightarrow PCM)
A_CHANNEL[5,TX]	: V_CH_FDIR	= 0	(transmit HFC-channel)
	: V_CH_FNUM	= 1	(HFC-channel #1)
A_SUBCH_CFG[5,TX]	I: V_BIT_CNT	= 2	(process 2 bits)
	: V_START_BIT	= 6	(start with bit 6)
	: V_LOOP_FIFO	= 0	(normal operation)
	: V_INV_DATA	= 0	(normal data transmission)
R_FIFO	: V_FIFO_DIR	= 0	(transmit HFC-channel)
	: V_FIFO_NUM	= 1	(HFC-channel #1)
	: V_REV	= 0	(normal bit order)
A_CH_MSK[0,TX]	: V_CH_MSK	= '0000 0001'	(mask byte)

0 FIFO-to-ST/ U_p (RX)

The received HFC-channel byte is distributed to two FIFOs. The bit fields [7..6] and [3..1] from the received HFC-channel byte are assumed to be valid data. Nevertheless, the number of received bits must be set to the value V_BIT_CNT = 0 which means 'one byte'. The start position is specified with V_START_BIT in register A_SUBCH_CFG. As the received bit fields are aligned to position 0, these bits represent FIFO data b[2..0] and d[1..0].

A detailed overview of the received data is shown in Table 3.11. The first data byte in FIFO[4,RX] is b_1 , the second byte is b_2 , and so on. FIFO[5,RX] data bytes are d_1 , d_2 , and so on.

Data flow

Register setup:				(CSM 1 RX)
R_FIFO	: V_FIFO_DIR	= 1	(receive FIFO)	
	: V_FIFO_NUM	= 4	(FIFO #4)	
	: V_REV	= 0	(normal bit order)	
A_CON_HDLC[4,RX]	: V_IFF	= 0	(0x7E as inter frame fill)	
	: V_HDLC_TRP	= 1	(transparent mode)	
	: V_FIFO_IRQ	= 7	(enable FIFO)	
	: V_DATA_FLOW	= '000'	$(FIFO \leftarrow ST/U_p \)$	
A_CHANNEL[4,RX]	: V_CH_FDIR	= 1	(receive HFC-channel)	
	: V_CH_FNUM	= 1	(HFC-channel #1)	
A_SUBCH_CFG[4,RX]	: V_BIT_CNT	= 0	(process 8 bits)	
	: V_START_BIT	= 1	(start with bit 1)	
	: V_LOOP_FIFO	= 0	(normal operation)	
	: V_INV_DATA	= 0	(normal data transmission)	
R_FIFO	: V_FIFO_DIR	= 1	(receive FIFO)	
	: V_FIFO_NUM	= 5	(FIFO #5)	
	: V_REV	= 0	(normal bit order)	
A_CON_HDLC[5,RX]	: V_IFF	= 0	(0x7E as inter frame fill)	
	: V_HDLC_TRP	= 1	(transparent mode)	
	: V_FIFO_IRQ	= 7	(enable FIFO)	
	: V_DATA_FLOW	= '000'	$(FIFO \leftarrow ST/U_p \)$	
A_CHANNEL[5,RX]	: V_CH_FDIR	= 1	(receive HFC-channel)	
	: V_CH_FNUM	= 1	(HFC-channel #1)	
A_SUBCH_CFG[5,RX]	: V_BIT_CNT	= 0	(process 8 bits)	
	: V_START_BIT	= 6	(start with bit 6)	
	: V_LOOP_FIFO	= 0	(normal operation)	
	: V_INV_DATA	= 0	(normal data transmission)	

 Table 3.10: Subchannel processing according to Figure 3.18 (CSM ① TX, transparent mode)

	7 0
HFC-channel mask:	0 0 0 0 0 0 0 1
HFC-channel transmit byte 1:	$c_1[1]$ $c_1[0]$ 0 0 $a_1[2]$ $a_1[1]$ $a_1[0]$ 1
HFC-channel transmit byte 2:	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$
HFC-channel transmit byte 3:	$c_{3}[1]$ $c_{3}[0]$ 0 0 $a_{3}[2]$ $a_{3}[1]$ $a_{3}[0]$ 1

	7						0
HFC-channel transmit byte 1:	$d_1[1]$	$d_1[0]$	x x	$b_1[2]$	$b_1[1]$	$b_{1}[0]$	x
HFC-channel transmit byte 2:	$d_2[1]$	$d_2[0]$	x x	$b_{2}[2]$	$b_2[1]$	$b_{2}[0]$	x
HFC-channel transmit byte 3:	$d_3[1]$	$d_{3}[0]$	x x	$b_{3}[2]$	$b_3[1]$	$b_{3}[0]$	x

 Table 3.11: Subchannel processing according to Figure 3.18 (CSM I RX, transparent mode)

2 FIFO-to-PCM (TX)

A FIFO-to-PCM configuration in HDLC mode with two FIFOs in transmit and receive direction each is shown in the second example setting ⁸.

Registers A_SUBCH_CFG[FIFO] of FIFO[12,TX] and FIFO[8,TX] define both, the numbers of FIFO data bits to be transmitted during every $125 \,\mu s$ cycle and their position in the HFC-channel byte.

All other data bits in the HFC-channel are defined by the HFC-channel mask in register A_CH_MSK . This array register must be selected by writing the HFC-channel number and direction into register R_FIFO . The mask bits [5..2] are *don't care* because they are overwritten from the FIFO data.

A detailed overview of the transmitted data is shown in Table 3.12. The first data byte in FIFO[12,TX] is e_1 , the second byte is e_2 , and so on. FIFO[8,TX] transmits bytes g_1 , g_2 , and so on. In HDLC mode, FIFO bytes are dispersed among several HFC-channel bytes.

⁸HDLC bit stuffing is not shown in this example.

Data flow

Register setup:			(CSM 2 TX)
R_FIFO	: V_FIFO_DIR	= 0	(transmit FIFO)
	: V_FIFO_NUM	= 12	(FIFO #12)
	: V_REV	= 0	(normal bit order)
A_CON_HDLC[12,TX]	: V_IFF	= 0	(0x7E as inter frame fill)
	: V_HDLC_TRP	= 0	(HDLC mode)
	: V_FIFO_IRQ	= 7	(enable FIFO)
	: V_DATA_FLOW	= '001'	(FIFO \rightarrow ST / U_p , FIFO \rightarrow PCM)
A_CHANNEL[12,TX]	: V_CH_FDIR	= 0	(transmit HFC-channel)
	: V_CH_FNUM	= 15	(HFC-channel #15)
A_SUBCH_CFG[12,TX]]: V_BIT_CNT	= 3	(process 3 bits)
	: V_START_BIT	= 3	(start with bit 3)
	: V_LOOP_FIFO	= 0	(normal operation)
	: V_INV_DATA	= 0	(normal data transmission)
R_FIFO	: V_FIFO_DIR	= 0	(transmit FIFO)
	: V_FIFO_NUM	= 8	(FIFO #8)
	: V_REV	= 0	(normal bit order)
A_CON_HDLC[8,TX]	: V_IFF	= 0	(0x7E as inter frame fill)
	: V_HDLC_TRP	= 0	(HDLC mode)
	: V_FIFO_IRQ	= 7	(enable FIFO)
	: V_DATA_FLOW	= '001'	$(FIFO \rightarrow ST/U_p$, $FIFO \rightarrow PCM)$
A_CHANNEL[8,TX]	: V_CH_FDIR	= 0	(transmit HFC-channel)
	: V_CH_FNUM	= 15	(HFC-channel #15)
A_SUBCH_CFG[8,TX]	: V_BIT_CNT	= 1	(process 1 bit)
	: V_START_BIT	= 2	(start with bit 2)
	: V_LOOP_FIFO	= 0	(normal operation)
	: V_INV_DATA	= 0	(normal data transmission)
R_FIFO	: V_FIFO_DIR	= 0	(transmit HFC-channel)
	: V_FIFO_NUM	= 15	(HFC-channel #15)
	: V_REV	= 0	(normal bit order)
A_CH_MSK[15,TX]	: V_CH_MSK	= '1000 1100'	(mask byte)
			-
R_SLOT	: V_SL_DIR	= 0	(transmit slot)
	: V_SL_NUM	= 7	(slot #7)
A_SL_CFG[7,TX]	: V_CH_SDIR	= 0	(transmit HFC-channel)
	: V_CH_SNUM	= 15	(HFC-channel #15)
	: V_ROUT	= '10'	(data to pin STIO1)

2 FIFO-to-PCM (RX)

HFC-channel[15,RX] receives data bits that are to be distributed to FIFO[12,RX] and FIFO[8,RX].

Registers A_SUBCH_CFG[FIFO] of FIFO[12,RX] and FIFO[8,RX] define the numbers of valid data bits and their positions in the HFC-channel byte. These bits are dispersed to FIFO[12,RX] and FIFO[8,RX] where they are aligned to bit 0.

A detailed overview of the received data is shown in Table 3.13. The first data byte in FIFO[12,RX] is f_1 , the second byte is f_2 , and so on. FIFO[8,RX] receives bytes h_1 , h_2 , and so on. In HDLC mode, FIFO bytes are collected from several HFC-channel bytes.

Register setup:				(CSM 2 RX)
R_FIFO	: V_FIFO_DIR	= 1	(receive FIFO)	
	: V_FIFO_NUM	= 12	(FIFO #12)	
	: V_REV	= 0	(normal bit order)	
A_CON_HDLC[12,RX]	: V_IFF	= 0	(0x7E as inter frame fill)	
	: V_HDLC_TRP	= 0	(HDLC mode)	
	: V_FIFO_IRQ	= 7	(enable FIFO)	
	: V_DATA_FLOW	= '001'	$(FIFO \leftarrow PCM)$	
A_CHANNEL[12,RX]	: V_CH_FDIR	= 1	(receive HFC-channel)	
	: V_CH_FNUM	= 15	(HFC-channel #15)	
A_SUBCH_CFG[12,TX]]: V_BIT_CNT	= 3	(process 3 bits)	
	: V_START_BIT	= 3	(start with bit 3)	
	: V_LOOP_FIFO	= 0	(normal operation)	
	: V_INV_DATA	= 0	(normal data transmission)	
R_FIFO	: V_FIFO_DIR	= 1	(receive FIFO)	
	: V_FIFO_NUM	= 8	(FIFO #8)	
	: V_REV	= 0	(normal bit order)	
A_CON_HDLC[8,RX]	: V_IFF	= 0	(0x7E as inter frame fill)	
	: V_HDLC_TRP	= 0	(HDLC mode)	
	: V_FIFO_IRQ	= 7	(enable FIFO)	
	: V_DATA_FLOW	= '001'	$(FIFO \leftarrow PCM)$	
A_CHANNEL[8,RX]	: V_CH_FDIR	= 1	(receive HFC-channel)	
	: V_CH_FNUM	= 15	(HFC-channel #15)	
A_SUBCH_CFG[8,TX]	: V_BIT_CNT	= 1	(process 1 bit)	
	: V_START_BIT	= 2	(start with bit 2)	
	: V_LOOP_FIFO	= 0	(normal operation)	
	: V_INV_DATA	= 0	(normal data transmission)	
R_SLOT	: V_SL_DIR	= 1	(receive slot)	
	: V_SL_NUM	= 7	(slot #7)	
A_SL_CFG[7,RX]	: V_CH_SDIR	= 1	(receive HFC-channel)	
	: V_CH_SNUM	= 15	(HFC-channel #15)	
	: V_ROUT	= '10'	(data from pin STIO2)	

	7 0
HFC-channel mask:	1 0 0 0 1 0 0
HFC-channel transmit byte 1:	$1 0 e_1[2] e_1[1] e_1[0] g_1[0] 0 0$
HFC-channel transmit byte 2:	$1 0 e_1[5] e_1[4] e_1[3] g_1[1] 0 0$
HFC-channel transmit byte 3:	$1 0 e_2[0] e_1[7] e_1[6] g_1[2] 0 0$
HFC-channel transmit byte 4:	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$

Table 3.12: Subchannel processing according to Figure 3.18 (CSM 2 TX, HDLC mode)

Table 3.13: Subchannel processing according to Figure 3.18 (CSM 2 RX, HDLC mode)

	7 0)
HFC-channel transmit byte 1:	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$;
HFC-channel transmit byte 2:	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$;
HFC-channel transmit byte 3:	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$;
HFC-channel transmit byte 4:	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$;

Chapter 4

FIFO handling and HDLC controller

Write only	v registers:		Read / wri	te registers:	
Address	Name	Page	Address	Name	Page
0x0B	R_FIRST_FIFO	135	0x80	A_FIFO_DATA	147
0x0C	R_FIFO_THRES	136	0x84	A_FIFO_DATA_NOINC	147
0x0D	R_FIFO_MD	137	0xF4	A_CH_MSK	148
0x0E	A_INC_RES_FIFO	138	0xFA	A_CON_HDLC	149
0x0F	R_FIFO	139	0xFB	A_SUBCH_CFG	151
0x0F	R_FSM_IDX	139	0xFC	A_CHANNEL	152
			0xFD	A_FIFO_SEQ	153
Read only	register:		0xFF	A_FIFO_CTRL	154
Address	Name	Page			
0x04	A_Z1	140			
0x06	A_Z2	140			
0x0C	A_F1	140			
0x0D	A_F2	141			
0x0E	A_FIFO_STA	142			
0x14	A_USAGE	143			
0x24	R_FILL_BL0	143			
0x25	R_FILL_BL1	144			
0x26	R_FILL_BL2	145			
0x27	R_FILL_BL3	146			

4.1 Overview

There are up to 16 receive FIFOs and up to 16 transmit FIFOs with 32 HDLC controllers in whole. The HDLC controllers are located on the ST/U_p interface side of the FIFOs. Thus plain data is always stored in the FIFOs. Automatic zero insertion is done in HDLC mode when HDLC data goes from the FIFOs to the ST/U_p interface or to the PCM bus (transmit FIFO operation). Automatic zero deletion is done in HDLC mode when the HDLC data comes from the ST/U_p interface or PCM bus (receive FIFO operation).

There is a transmit and a receive FIFO for every B-, D- and E-channel.

The FIFO control registers are used to select and control the FIFOs of XHFC-2S4U/4SU. The FIFO register set exists for every FIFO number and receive/transmit direction. A FIFO is selected by the FIFO select register R_FIFO.

All FIFOs are disabled after reset (hardware reset, global software reset or HFC reset). With register A_CON_HDLC the selected FIFO is enabled by setting V_FIFO_IRQ to a value different from zero.

4.2 FIFO counters

The FIFOs are realized as ring buffers in the internal SRAM. They are controlled by counters. The counter sizes depend on the setting of the FIFO sizes. *Z*1 is the FIFO input counter and *Z*2 is the FIFO output counter.

Each counter points to a byte position in the SRAM. On a FIFO input operation Z1 is incremented. On an output operation Z2 is incremented. If Z1 = Z2 and F1 = F2 the FIFO is empty.

After every pulse on the F0IO signal, HDLC bytes are written into the ST/U_p interface (from a transmit FIFO) and HDLC bytes are read from the ST/U_p interface (to a receive FIFO). A connection to the PCM interface is also possible.

The D-channel data is processed in exactly the same way as the B-channel data, except that the D-FIFO data rate is reduced in HDLC mode.

Additionally there are two 4 bit counters F1 and F2 for every FIFO. They count the HDLC frames and form a ring buffer as Z1 and Z2 do, too.

*F*1 is incremented when a complete frame has been received and stored in the FIFO. *F*2 is incremented when a complete frame has been read from the FIFO. If F1 = F2 there is no complete frame in the FIFO.

The reset state of the Z- and F-counters are

- $Z1 = Z2 = Z_{MAX}^{1}$ and
- $F1 = F2 = F_{MAX} = 0x07$.

This initialization can be carried out with a global software reset or a HDLC reset. For this, bits V_SRES or V_HFC_RES in register R_CIRM have to be set. Individual FIFOs can be reset with bit V_RES_FIFO in register A_INC_RES_FIFO.

In addition, a hardware reset initializes the counters.

¹See Z_{max} value in Table 4.2.

Please note !

Abort D-channel transmission

A FIFO reset should never be initiated while an HDLC ending flag is just in transmission. If this cannot be ensured – or to be on the safe side – any FIFO reset can be wrapped in a D-channel reset as shown below.

Additionally, V_RES_FIFO_ERR should always be set together with a FIFO reset even if no FIFO error is pending. This can be done with a single register write access.

Register setup:					
R_FIFO	:	V_FIFO_DIR	=	dir	Select FIFO data direc- tion *
	:	V_FIFO_NUM	=	n	Select FIFO number
repeat until					
R_STATUS	:	V_BUSY	=	0	Wait until not busy
R_SU_SEL	:	V_SU_SEL	=	т	Select interface number
A_SU_CTRL1[ST/Up]	:	V_D_RES	=	1	D-channel reset
A_INC_RES_FIFO[FIFO])]:	V_RES_FIFO_ERR	=	1	Reset FIFO error *
	:	V_RES_FIFO	=	1	Reset selected FIFO
repeat until					
R_STATUS	:	V_BUSY	=	0	Wait until not busy
A_SU_CTRL1[ST/Up]	:	V_D_RES	=	0	Normal D-channel oper- ation
* Single register write acce	ess	together with the follo	owi	ing comma	and.

Important !

Busy status after FIFO change, FIFO reset and F1/F2 incrementation

Changing a FIFO, reseting a FIFO or incrementing the *F*-counters causes a short BUSY period of XHFC-2S4U/4SU. This means an access to FIFO control registers is <u>not allowed until BUSY status is cleared</u> (bit V_BUSY in register R_STATUS). The maximum duration takes 25 clock cycles ($\sim 1 \mu s$). Status, interrupt and control registers can be read and written at any time.

Please note !

The counter state Z_{MIN} (resp. F_{MIN}) of the Z-counters (resp. F-counters) follows counter state Z_{MAX} (resp. F_{MAX}) in the FIFOs.

Please note that Z_{MIN} and Z_{MAX} depend on the FIFO number and FIFO size (s. Section 4.3 and Table 4.2).

4.3 FIFO size setup

Table 4.2 shows how the FIFO size can be varied. Additionally, the initial Z_{max} and Z_{min} values are given in Table 4.2. A global software reset should be initiated after changing the FIFO size.

Normal operation with transmit and receive FIFOs is configured with V_UNIDIR_MD = '0' in register R_FIFO_MD. Some applications may use only transmit or only receive FIFOs. In this case V_UNIDIR_MD = '1' provides two settings as shown in Table 4.2. The data direction can be chosen either with V_UNIDIR_RX = '0' (only transmit FIFOs available) or with V_UNIDIR_RX = '1' (only receive FIFOs available). V_UNIDIR_RX is ignored if V_UNIDIR_MD = '0'.

V_FIFO_MD	V_UNIDIR_MD	FIF numl		$\mathbf{Z}_{\mathrm{MIN}}$	$\mathbf{Z}_{\mathrm{MAX}}$	FIFO size (byte)
'00'	·0'	0	15	0x00	0x3F	64
'01'	'0'	0	7	0x00	0x7F	128
'10'	'0'	0	3	0x00	0xFF	256
'00'	'1'	0	15	0x00	0x7F	128
'01'	'1'	0	7	0x00	0xFF	256

Table 4	1.2:	FIFO	size	setup	,
---------	------	------	------	-------	---

*: Please note, that any configuration that uses *receive FIFOs beyond the maximum FIFO number* can store data in the RAM. This may destroy data from other FIFOs.

4.4 FIFO operation

Important !

The HDLC controller needs F0IO and either C4IO or C2IO clocks for operation. These clocks are generated from XHFC-2S4U/4SU if PCM master mode is selected (V_PCM_MD = '1').

In PCM slave mode (V_PCM_MD = '0'), F0IO and either C4IO or C2IO clocks must be feed into these pins (see Figure 6.5 on page 231, signal C4I is required).

4.4.1 HDLC transmit FIFOs

Data can be transmitted from the host bus interface to the FIFO with write access to registers A_FIFO_DATA and A_FIFO_DATA_NOINC. XHFC-2S4U/4SU converts the data into HDLC code and transfers it from the FIFO to the ST/U_p or the PCM bus interface.

XHFC-2S4U/4SU checks Z1 and Z2. If Z1 = Z2 (FIFO empty), XHFC-2S4U/4SU generates a HDLC flag ('0111 1110') or continuous '1's (depending on bit V_IFF in register A_CON_HDLC) and transmits it to the ST/U_p interface. In this case Z2 is not incremented. If also F1 = F2 only HDLC flags

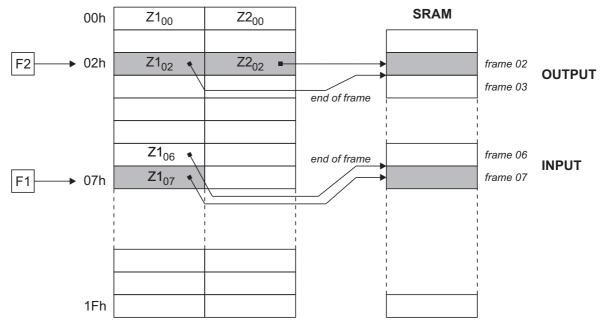


Figure 4.1: FIFO organization

or continuous '1's are sent to the ST/U_p interface and all counters remain unchanged. If the frame counters are unequal F2 is incremented and XHFC-2S4U/4SU tries to transmit the next frame. At the end of a frame (Z2 reaches Z1) it automatically generates the 16 bit CRC checksum and adds an ending flag. If there is another frame in the FIFO ($F1 \neq F2$) the F2 counter is incremented again.

With every byte being written from the host bus side to the FIFO, Z1 is incremented automatically. If a complete frame has been sent into the FIFO F1 must be incremented to transmit the next frame. If the frame counter F1 is incremented the Z-counters may also change because Z1 and Z2 are functions of F1 and F2. Thus there are Z1(F1), Z2(F1), Z1(F2) and Z2(F2) (see Fig. 4.1).

Z1(F1) is used for the frame which is just written from the host bus side. Z2(F2) is used for the frame which is just being transmitted to the PCM or ST/U_p interface side of XHFC-2S4U/4SU. Z1(F2) is the end of frame pointer of the current output frame.

In the transmit HFC-channels F1 is only incremented from the host interface side if the software driver wants to say "end of transmit frame". This is done by setting bit V_INC_F in register A_INC_RES_FIFO. Then the current value of Z1 is stored, F1 is incremented and Z1 is used as start address of the next frame.

4.4.2 Automatic D-channel frame repetition (for S/T in TE mode only)

The D-channel transmit FIFO has a special feature. If the ST/U_p interface signals a D-channel contention before the CRC is sent the Z2 counter is set to the starting address of the current frame and XHFC-2S4U/4SU tries to repeat the frame automatically.

Please note !

XHFC-2S4U/4SU begins to transmit the bytes from a FIFO at the moment the FIFO is changed (writing R_FIFO) or the *F*1 counter is incremented. Switching to the FIFO that is already selected also starts the transmission. Thus by selecting the same FIFO again transmission can be started.

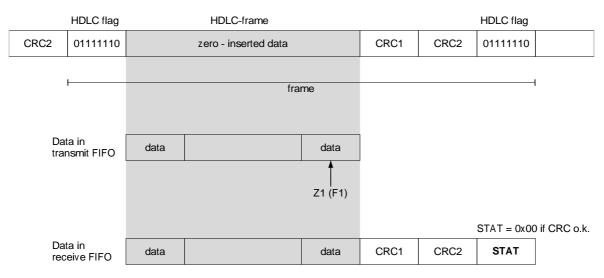


Figure 4.2: FIFO data organization in HDLC mode

4.4.3 HDLC receive FIFOs

The receive HFC-channels receive data from the ST/U_p or PCM bus interface read registers. The data is converted from HDLC into plain data and sent to the FIFO. The data can then be read via the host bus interface.

XHFC-2S4U/4SU checks the HDLC data coming in. If it finds a flag or more than 5 consecutive '1's it does not generate any output data. In this case Z1 is not incremented. Proper HDLC data being received is converted by XHFC-2S4U/4SU into plain data. After the ending flag of a frame, XHFC-2S4U/4SU checks the HDLC CRC checksum. If it is correct one byte with all '0's is inserted behind the CRC data in the FIFO named STAT (see Fig. 4.2). This last byte of a frame in the FIFO is different from all '0's if there is no correct CRC field at the end of the frame.

If the STAT value is 0xFF, the HDLC frame ended with at least 8 bits '1's. This is similar to an abort HDLC frame condition.

The ending flag of a HDLC frame can also be the starting flag of the next frame.

After a frame is received completely, F1 is incremented by XHFC-2S4U/4SU automatically and the next frame can be received.

After reading a frame via the host bus interface F2 has to be incremented. If the frame counter F2 is incremented also the Z-counters may change because Z1 and Z2 are functions of F1 and F2. Thus there are Z1(F1), Z2(F1), Z1(F2) and Z2(F2) (see Fig. 4.1).

Z1(F1) is used for the frame which is just received from the ST/U_p interface side of

XHFC-2S4U/4SU. Z2(F2) is used for the frame which is just beeing transmitted to the host bus interface. Z1(F2) is the end of frame pointer of the current output frame.

To calculate the length of the current receive frame the software has to evaluate Z1 - Z2 + 1. When Z2 reaches Z1 the complete frame has been read.

In the receive HFC-channels F2 must be incremented from the host interface side after the software detects an end of receive frame (Z1 = Z2) and $F1 \neq F2$. Then the current value of Z2 is stored, F2 is incremented and Z2 is copied as start address of the next frame. This is done by setting bit V_INC_F in register A_INC_RES_FIFO. If Z1 = Z2 and F1 = F2 the FIFO is totally empty. Z1(F1) can not be accessed.

Important!

Before reading a new frame, a change FIFO operation (write access to register R_FIFO) has to be done even if the desired FIFO is already selected. The change FIFO operation is required to update the internal buffer of XHFC-2S4U/4SU. Otherwise the first byte of the FIFO will be taken from the internal buffer and may be invalid.

4.4.4 Transparent mode of XHFC-2S4U/4SU

It is possible to switch off the HDLC operation for each FIFO independently by bit V_HDLC_TRP in register A_CON_HDLC. If this bit is set, data from the FIFO is sent directly to the ST/U_p or PCM bus interface and data from the ST/U_p or PCM bus interface is sent directly to the FIFO.

Be sure to switch into transparent mode only if F1 = F2. Being in transparent mode the *F*-counters remain unchanged. Z1 and Z2 are the input and output pointers respectively. Because F1 = F2, the Z-counters are always accessable and have valid data for FIFO input and output.

If a transmit FIFO changes to FIFO empty condition no CRC is generated and the last data byte written into the FIFO is repeated until there is new data.

Normally the last byte is undefined because of the *Z*-counter pointing to a previously unwritten address. To define the last byte, the last write access to the FIFO must be done without *Z* increment (see register A_FIFO_DATA_NOINC).

In receive HFC-channels there is no check on flags or correct CRCs and no status byte added.

Unlike in HDLC mode, where byte synchronization is achieved with HDLC flags, the byte boundaries are not arbitrary. The data is just the same as it comes from or is sent to the ST/U_p or PCM bus interface.

Transmit and receive transparent data can be done in two ways. The usual way is transporting FIFO data to the ST/U_p interface with the LSB first as usual in HDLC mode. The second way is transmitting the bytes in reverse bit order as usual for PCM data. So the first bit is the MSB. The bit order can be reversed by setting bit V_REV in register R_FIFO when the FIFO is selected.

Important !

For normal data transmission register A_SUBCH_CFG must be set to 0x00. To use 56 kbit/s restricted mode for U.S. ISDN lines, register A_SUBCH_CFG must be set to 0x07 for B-channels.

4.5 Register description

4.5.1 Write only registers

R_	_FIRST_	FIFO		(w)	(Reset group: H, 0, 1)	0x0B
			FO sequence sed in <i>FIFO Sequence Mo</i>	de, see reg	sister R_FIFO_MD for data flow me	ode selection.
	Bits	Reset value	Name	D	escription	
	0	0	V_FIRST_FIFO_DIR	Tl in '0'	Ata direction is bit defines the data direction of t FIFO sequence. = transmit FIFO data = receive FIFO data	he first FIFO
	41	0	V_FIRST_FIFO_NUM	TI	FO number is bitmap defines the number of the e FIFO sequence.	e first FIFO in
	75	0	(reserved)	М	ust be '000'.	

R_I	FIFO_TH	IRES		(w)	(Reset group: H, 0, 1, 2, 3)	0x0C
FIF	O fill lev	el contro	l register			
The FIF		ll level ca	n be controlled by a	theshold v	which is specified separately for transmit an	nd receive
	Bits	Reset value	Name		Description	
	30	1	V_THRES_TX		Threshold for all transmit FIFOs The threshold is a multiple of 16 bytes. 0 = 0 bytes 1 = 16 bytes 2 = 32 bytes 15 = 240 bytes	
	74	1	V_THRES_RX		Threshold for all receive FIFOs The threshold is a multiple of 16 bytes. 0 = 0 bytes 1 = 16 bytes 0 = 32 bytes	

(See Section 13 on page 351 for a fault description and workaround of an address decoding problem which concerns this register among others.)

. . .

15 = 240 bytes

R_	_FIFO_M	כ		(w) (Reset group: H) 02	x0D			
	FIFO mode configuration							
This register defines the FIFO number and size. The actual FIFO size depends also on the V_UNIDIF value.								
	Bits	Reset value	Name	Description				
	10	0	V_FIFO_MD	 FIFO mode This bitmap and V_UNIDIR_MD are used to organize the FIFOs. FIFO mode with V_UNIDIR_RX = '0': '00' = 16 FIFOs with 64 bytes for TX and RX e '01' = 8 FIFOs with 128 bytes for TX and RX e '10' = 4 FIFOs with 256 bytes for TX and RX e '11' = not allowed FIFO mode with V_UNIDIR_RX = '1': '00' = 16 FIFOs with 128 bytes for TX and RX e ach '01' = 8 FIFOs with 256 bytes for TX and RX e '10' = 16 FIFOs with 256 bytes for TX and RX e ach '01' = 8 FIFOs with 256 bytes for TX and RX e '10' = not allowed '11' = not allowed '11' = not allowed '11' = not allowed	ach ach			
	32	0	V_DF_MD	Data flow mode selection '00' = Simple Mode (SM) '01' = Channel Select Mode (CSM) '10' = not allowed '11' = FIFO Sequence Mode (FSM)				
	4	0	V_UNIDIR_MD	 Unidirectional FIFO data direction '0' = both transmit and receive FIFOs available (normal operation), V_UNIDIR_RX is ignored '1' = unidirectional FIFO mode, either transmit receive FIFOs available due to V_UNIDIR_RX value Unidirectional FIFO data is used for voice recording, e.g., and has double FIFO size. Note: The FIFOs of the unused data direction must not be enabled. 	or			
	5	0	V_UNIDIR_RX	FIFO data direction This bit is only used in unidirectional FIFO mod (V_UNIDIR_MD = '1'). '0' = only transmit FIFOs available '1' = only receive FIFOs available	de			
	76	0	(reserved)	Must be '00'.				

Α_	_INC_RE	S_FIFO []	FIFO] (v	(Reset group: H, 0, 1, 2, 3) 0x0E					
In	Increment and reset FIFO register								
Be	Before writing this array register the FIFO must be selected by register R_FIFO.								
	Bits	Reset value	Name	Description					
	0	0	V_INC_F	Increment the <i>F</i> -counters of the selected FIFO '0' = no increment '1' = increment This bit is automatically cleared after the counter increment has been processed.					
	1	0	V_RES_FIFO	FIFO reset '0' = no reset '1' = reset selected FIFO (<i>F</i> - and <i>Z</i> -counters and channel mask A_CH_MSK are reset) This bit is automatically cleared after the FIFO reset has been processed.					
	2	0	V_RES_LOST	LOST error bit reset '0' = no reset '1' = reset LOST This bit is automatically cleared with the LOST error bit reset.					
	3	0	V_RES_FIFO_ERR	 FIFO error reset '0' = no operation '1' = Resets bit V_FIFO_ERR in register A_FIFO_STA This bit automatically reset to '0' after the FIFO error reset has been executed. Note: for transmit FIFOs, this bit should be set to '1' not before V_ABO_DONE = '1' in register A_FIFO_STA to ensure a completed frame abort. 					
	74	0	(reserved)	Must be '0000'.					

R_FIFO (\mathbf{w}) (Reset group: H, 0, 1)	0x0F
---	------

FIFO selection register

This register is used to select a FIFO. Before a FIFO array register can be accessed, this index register must specify the desired FIFO number and data direction.

Note: This register is a multi-register. It is selected with bitmap V_DF_MD less than '11' in register R_FIFO_MD (SM and CSM). In FSM (V_DF_MD = '11') some FIFO array registers are indexed by the multi-register R_FSM_IDX instead, but most FIFO array registers remain indexed by this register.

Bits	Reset value	Name	Description
0	0	V_FIFO_DIR	FIFO data direction '0' = transmit FIFO data '1' = receive FIFO data
41	0	V_FIFO_NUM	FIFO number
65	0	(reserved)	Must be '00'.
7	0	V_REV	Bit order '0' = LSB first '1' = MSB first LSB first is used in HDLC mode while MSB first is used in transparent mode. The bit order is being reversed for the data written into the FIFO or when the data is read from the FIFO.

R	_FSM_ID	Х		(w)	(Reset group: H, 0, 1)	0x0F			
In	Index register of the FIFO sequence								
by	This register is used to select a list number in <i>FIFO Sequence Mode</i> . Some FIFO array registers are indexed by this list number. Before these registers can be accessed, this index register must specify the desired list number.								
In	FSM onl	0	O array registers		tmap V_DF_MD = '11' in register F is multi-register, but most FIFO a				
Bits Reset value Name				De	scription				
	40	0x00	V_IDX		t index e list index must be in the range 0.	.31.			
	75	0	(reserved)	Mu	st be '000'.				

4.5.2 Read only registers

A	_ Z1 [FIF0	[C		(r)	(Reset group: H, 0, 1)	0x04	
	FIFO input counter <i>Z</i> 1 Before reading this array register the FIFO must be selected by register R_FIFO.						
	Bits	Reset value	Name	Des	cription		
	70		V_Z1	The	Inter value of $Z1$ reset value is Z_{max} and depends of figuration.	on the FIFO	

(See Table 4.2 for reset value.)

A.	_ Z2 [FIF0	[C		(r)	(Reset group: H, 0, 1)	0x06
FIFO output counter <i>Z</i> 2 Before reading this array register the FIFO must be selected by register R_FIFO.						
	Bits	Bits Reset Name		D	Description	
	70		V_Z2	T	Counter value of Z^2 he reset value is Z_{max} and depends on figuration.	on the FIFO

(See Table 4.2 for reset value.)

A	_ F1 [FIF(D]		(r)	(Reset group: H, 0, 1)	0x0C		
FI	FIFO input HDLC frame counter <i>F</i> 1							
Ве	Before reading this array register the FIFO must be selected by register R_FIFO.							
	Bits	Reset value	Name	Des	cription			
	70	7	V_F1		inter value to 7 HDLC frames can be stored i	n every FIFO.		

Α_	_ F2 [FIF0	D]		(r)	(Reset group: H, 0, 1)	0x0D	
FIFO output HDLC frame counter F2							
Ве	tore read	ing this ar	ray register the F	IFO must be selecte	d by register R_FIFO.		
	Bits	Reset value	Name	De	escription		
	70	7	V_F2		ounter value to 7 HDLC frames can be stored ir	n every FIFO.	

(See Section 13 on page 351 for a fault description and workaround of an address decoding problem which concerns this register among others.)

A_FI	FO_ST/	A [FIFO]		(r) (Reset group: H, 0, 1) OxOE					
FIFO) status	register							
Befor	Before reading this array register the FIFO must be selected by register R_FIFO.								
в	Bits	Reset value	Name	Description					
0		0	V_FIFO_ERR	 FIFO error This status bit has different meaning for transmit and receive FIFOs. Transmit FIFO: There are two different situations for a FIFO to run empty. (1) A valid HDLC frame has been sent when the FIFO runs empty at the end of a frame and <i>F</i>1 = <i>F</i>2 gets true after <i>Z</i>2 increment. (2) An invalid HDLC frame has been sent when the FIFO runs empty within a frame, i.e. <i>F</i>1 = <i>F</i>2 is already valid during data transmission and <i>Z</i>2 increment cannot be executed. When V_FR_ABO = '0' in register A_FIFO_CTRL, this bit is set to '1' to indicate an empty FIFO (either situation 1 or situation 2). Transmitted frames are valid in any case, but the frame got split in situation 2. When V_FR_ABO = '1' in register A_FIFO_CTRL, this bit is only set to '1' to indicate an aborted frame (situation 2 only, invalid frame). As long as the FIFO is empty, interframe fill is repeatedly send in HDLC mode. Receive FIFO: This bit is set to '1' to indicate either a FIFO overflow (<i>Z</i>1 = <i>Z</i>2 after <i>Z</i>1 increment) or a frame counter overflow (<i>F</i>1 = <i>F</i>2 after <i>F</i>1 increment). Note: V_FIFO_ERR must be reset from host processor with V_RES_FIFO_ERR = '1'. 					
3	1		(reserved)						
4		0	V_ABO_DONE	Frame abort done This status bit is only used for transmit FIFOs and is not defined for receive FIFOs. This bit is set after sixteen consecutive '1's have been transmitted. It is reset together with V_FIFO_ERR.					
7	5		(reserved)						

Α_	_USAGE	[FIFO]		(r)	(Reset group: H, 0, 1)	0x14		
FI	FO fill le	evel						
Be	Before reading this array register the FIFO must be selected by register R_FIFO.							
	Bits	Reset value	Name	De	scription			
	70	0x00	V_USAGE		mber of bytes currently stored in e FIFO is empty when this register 00.			

R_FILL_BL0	(r)	(Reset group: H, 0, 1)	0x24
------------	--------------	------------------------	------

FIFO fill level for FIFO block 0

When a bit is set to '1', more than the specified number of bytes is currently being in the FIFO. The threshold is separately defined for transmit and receive FIFOs, V_THRES_TX for transmit FIFOs and V_THRES_RX for receive FIFOs in register R_FIFO_THRES.

Bits	Reset value	Name	Description
0	0	V_FILL_FIFO0_TX	FIFO[0,TX] fill level
1	0	V_FILL_FIFO0_RX	FIFO[0,RX] fill level
2	0	V_FILL_FIF01_TX	FIFO[1,TX] fill level
3	0	V_FILL_FIFO1_RX	FIFO[1,RX] fill level
4	0	V_FILL_FIFO2_TX	FIFO[2,TX] fill level
5	0	V_FILL_FIFO2_RX	FIFO[2,RX] fill level
6	0	V_FILL_FIFO3_TX	FIFO[3,TX] fill level
7	0	V_FILL_FIFO3_RX	FIFO[3,RX] fill level

R_FILL_BL1	(r)	(Reset group: H, 0, 1)	0x25
------------	--------------	------------------------	------

FIFO fill level for FIFO block 1

When a bit is set to '1', more than the specified number of bytes is currently being in the FIFO. The threshold is separately defined for transmit and receive FIFOs, V_THRES_TX for transmit FIFOs and V_THRES_RX for receive FIFOs in register R_FIFO_THRES.

Bits	Reset value	Name	Description
0	0	V_FILL_FIFO4_TX	FIFO[4,TX] fill level
1	0	V_FILL_FIFO4_RX	FIFO[4,RX] fill level
2	0	V_FILL_FIFO5_TX	FIFO[5,TX] fill level
3	0	V_FILL_FIFO5_RX	FIFO[5,RX] fill level
4	0	V_FILL_FIFO6_TX	FIFO[6,TX] fill level
5	0	V_FILL_FIFO6_RX	FIFO[6,RX] fill level
6	0	V_FILL_FIF07_TX	FIFO[7,TX] fill level
7	0	V_FILL_FIFO7_RX	FIFO[7,RX] fill level

R_FILL_BL2	(r)	(Reset group: H, 0, 1)	0x26
------------	--------------	------------------------	------

FIFO fill level for FIFO block 2

When a bit is set to '1', more than the specified number of bytes is currently being in the FIFO. The threshold is separately defined for transmit and receive FIFOs, V_THRES_TX for transmit FIFOs and V_THRES_RX for receive FIFOs in register R_FIFO_THRES.

Bits	Reset value	Name	Description
0	0	V_FILL_FIFO8_TX	FIFO[8,TX] fill level
1	0	V_FILL_FIFO8_RX	FIFO[8,RX] fill level
2	0	V_FILL_FIFO9_TX	FIFO[9,TX] fill level
3	0	V_FILL_FIFO9_RX	FIFO[9,RX] fill level
4	0	V_FILL_FIFO10_TX	FIFO[10,TX] fill level
5	0	V_FILL_FIFO10_RX	FIFO[10,RX] fill level
6	0	V_FILL_FIFO11_TX	FIFO[11,TX] fill level
7	0	V_FILL_FIFO11_RX	FIFO[11,RX] fill level

R_FILL_BL3	(r)	(Reset group: H, 0, 1)	0x27

FIFO fill level for FIFO block 3

When a bit is set to '1', more than the specified number of bytes is currently being in the FIFO. The threshold is separately defined for transmit and receive FIFOs, V_THRES_TX for transmit FIFOs and V_THRES_RX for receive FIFOs in register R_FIFO_THRES.

Bits	Reset value	Name	Description
0	0	V_FILL_FIFO12_TX	FIFO[12,TX] fill level
1	0	V_FILL_FIFO12_RX	FIFO[12,RX] fill level
2	0	V_FILL_FIFO13_TX	FIFO[13,TX] fill level
3	0	V_FILL_FIFO13_RX	FIFO[13,RX] fill level
4	0	V_FILL_FIFO14_TX	FIFO[14,TX] fill level
5	0	V_FILL_FIFO14_RX	FIFO[14,RX] fill level
6	0	V_FILL_FIFO15_TX	FIFO[15,TX] fill level
7	0	V_FILL_FIFO15_RX	FIFO[15,RX] fill level

4.5.3 Read/write registers

Α_	_FIFO_D	ATA [FIFC)]	(r/w)	(Reset group: -)	0x80
FI	FO data	register				
Be	fore writ	ing or read	ling this array registe	r the FIFO must be	selected by register R_FIFO.	
	Bits	Reset value	Name	Descri	ption	
	70		V_FIFO_DATA		yte write one byte from / to the FIF gister R_FIFO and increment 2	

Α_	_FIFO_D		IC [FIFO]	(r/w)	(Reset group: –)	0x84		
	FIFO data register Before writing or reading this array register the FIFO must be selected by register R_FIFO.							
	Bits	Reset value	Name	Descri	ption			
	70		V_FIFO_DATA_NOINC	Write selecte	byte one byte to or read one byte from d with register R_FIFO without eenting Z-counter.	the FIFO		

(This register can be used to store the last FIFO byte in transparent transmit mode. Then this byte is repeately transmitted.)

June 2012

A _	_CH_MSH	(FIFO]		(r*/w)	(Reset group: H, 0, 1)	0xF4		
HI	HFC-channel data mask for the selected transmit HFC-channel							
Fo	r receive l	FIFOs this	register is ignored.					
Be	fore writi	ng this arr	ay register, the HFC-c	hannel must be	e selected by register R_FIFO.			
	Bits	Reset value	Name	De	scription			
	70	0xFF	V_CH_MSK		sk byte s bitmap defines bit values for not pro	cessed		
					of a HFC-channel. All not processed C-channel are set to the value defined			
				U	ister.			
					s register has only a meaning when BIT_CNT $\neq 0$ in register A_SUBCH_	CFG.		
					· · · · · ·			

A_CON_H	DLC [FIFO] (r */w) (Reset group: H, 0, 1)	0xFA			
HDLC and	connectio	n settings of the selected FIF	0				
Before writing this array register the FIFO must be selected by register R_FIFO.							
Bits	Reset value	Name	Description				
0	0	V_IFF	Inter frame fill '0' = write HDLC flags 0x7E as inter frame '1' = write all '1's as inter frame fill Note: For D-channel this bit must be '1'.	fill			
1	0	V_HDLC_TRP	HDLC mode / transparent mode selection '0' = HDLC mode '1' = transparent mode Note: For D-channel this bit must be '0'.	l			
42	0	V_FIFO_IRQ	FIFO interrupt configuration This bitmap has a different meaning in HDI transparent mode.	LC and			
			Transparent mode (V_HDLC_TRP = '1'): The FIFO is enabled with any value $\neq 0$. A interrupt is generated all 2^n bytes when the [n-1:0] of the Z2-counter (in transmit direct the Z1-counter (in receive direction) change all '1's to all '0's. $n = V_FIFO_IRQ + 2$. $0 = FIFO$ disabled, no interrupt $1 = FIFO$ enabled, all $2^3 = 8$ bytes an interr generated $2 = FIFO$ enabled, all $2^4 = 16$ bytes an interr generated $3 = FIFO$ enabled, all $2^5 = 32$ bytes an interr generated $4 = FIFO$ enabled, all $2^6 = 64$ bytes an intergenerated $5 = FIFO$ enabled, all $2^7 = 128$ bytes an intergenerated $6 \dots 7 = FIFO$ enabled, no interrupt	FIFO bits ion) or from upt is rrupt is rrupt is rrupt is			
			HDLC mode (V_HDLC_TRP = '0'): The FIFO is enabled with any value $\neq 0$. A interrupt can be generated at end of frame. 0 = FIFO disabled, no interrupt $17 = FIFO$ enabled, interrupt enabled Note: When mixed interrupt generation is s with V_MIX_IRQ = '1' in register A_FIFO_FIFO interrupts occur at end of frame as we after 2^n bytes.	elected _CTRL,			
			Note: A FIFO must be enabled even for connections between line interface and PCN interface. No data transmission is performed disabled FIFO.				

(continued from previous page)

Rife	Reset value	Name	Description
75 0)	V_DATA_FLOW	Data flow configuration In transmit operation (V_FIFO_DIR = '0' in register R_FIFO):
			'000', '001' = FIFO \rightarrow ST/U _p , FIFO \rightarrow PCM '010', '011' = FIFO \rightarrow PCM '100', '101' = FIFO \rightarrow ST/U _p , ST/U _p \rightarrow PCM '110', '111' = ST/U _p \rightarrow PCM
			In receive operation (V_FIFO_DIR = '1' in register R_FIFO):
			'000', '100' = FIFO \leftarrow ST/U _p '001', '101' = FIFO \leftarrow PCM '010', '110' = FIFO \leftarrow ST/U _p , ST/U _p \leftarrow PCM '011', '111' = FIFO \leftarrow PCM, ST/U _p \leftarrow PCM Note: ST/U _p \leftrightarrow PCM configurations use V_FIFO_IRQ to enable the data transmission, i.e. V_FIFO_IRQ must not be zero. As received PCM-to-ST/U _p data is stored in the FIFO, interrupt generation can be used. ST/U _p -to-PCM data transmission is connected to a transmit FIFO and here no interrupt capability is available.

A	_SUBCH_	_CFG [FIF	⁷ O]	(r*/w)	(Reset group: H, 0, 1)	0xFB			
Sı	Subchannel parameters for bit processing of the selected FIFO								
Ве	Before writing this array register the FIFO must be selected by register R_FIFO.								
N	Note: For D- and E-channels this register must be 0x02.								
	Bits	Reset value	Name	Des	cription				
	20	0	V_BIT_CNT	HF In F fron alw only '000 '010 '010 '110 '110 '110	nber of bits to be processed in the C-channel byte HDLC mode, only this number of a or written into the FIFO. In transays a whole FIFO byte is read or written into the FIFO. The transays a whole FIFO byte is read or written into the FIFO. The transays a whole FIFO byte is read or written into the FIFO. In transays a written is reader with the fifther is process 3 bits (24 kbit/s) is process 4 bits (32 kbit/s) is process 5 bits (40 kbit/s) is process 5 bits (40 kbit/s) is process 7 bits (56 kbit/s) is process 7 bits (56 kbit/s) is process 4 bits (32 kbit/s) is process 7 bits (56 kbit/s) is process 4 bits (32 kbit/s) is process 7 b	bits is read sparent mode written, but			
	53	0	V_START_BIT	Thi the pos V_I thau HFe pro	rt bit in the HFC-channel byte s bitmap specifies the position of the HFC-channel byte. The bit field is ition V_START_BIT in the HFC-co BIT_CNT + V_START_BIT must a 7 to get the bit field completely in C-channel byte. Any value greater duces an undefined behavior of the cessor.	s located at channel byte. not be greater nside the than 7			
	6	0	V_LOOP_FIFO	'0' = '1' = tran	O loop - normal operation - repeat current FIFO data (useful sparent mode) e: This bit is ignored for receive I	·			
	7	0	V_INV_DATA	'0' =	erted data = normal data transmission = inverted data transmission				

A	_CHANN	IEL [FIFO]		(r*/w)	(Reset group: H, 0, 1)	0xFC			
H	HFC-channel assignment for the selected FIFO								
Tł	nis registe	er is only u	sed in Channel Selec	t Mode and FIF	O Sequence Mode.				
Be	efore wri	ting this arı	ay register the FIFO	must be selecte	d by register R_FIFO.				
	Bits	Reset value	Name	De	escription				
	0	0	V_CH_FDIR	'0' '1' Re as	FC-channel data direction = HFC-channel for transmit data = HFC-channel for receive data set value: This bitmap is reset to th the current FIFO, i.e. V_CH_FDIR _CHANNEL[number, direction] = dir	of			
	41	0	V_CH_FNUM	(0 Re as	FC-channel number 15) set value: This bitmap is reset to th the current FIFO, i.e. V_CH_FNUN _CHANNEL[number, direction] = nu	/ of			
	75		(reserved)	М	ust be '000' when written.				

A _	_FIFO_SI	EQ [FIFO]		(r*/w)	(Reset group: H, 0, 1)	0xFD			
FI	FIFO sequence list								
Th	This register is only used in FIFO Sequence Mode.								
Be	fore writi	ng this arr	ay register the FIFO mu	st be selecte	ed by register R_FIFO.				
	Bits	Reset value	Name	D	escription				
	0	0	V_NEXT_FIFO_DIR	TI in '0' '1' R as	FO data direction his bit defines the data direction of the FIFO sequence. = transmit FIFO data = receive FIFO data eset value: This bitmap is reset to the the current FIFO, i.e. V_NEXT_FIF _FIFO_SEQ[number, direction] = data	e same value ⊡_DIR of			
	41	0	V_NEXT_FIFO_NUM	TI FI R as	FO number his bitmap defines the FIFO number FO in the FIFO sequence. eset value: This bitmap is reset to th the current FIFO, i.e. V_NEXT_FIF _FIFO_SEQ[number, direction] = number.	e same value O_NUM of			
	5		(reserved)	М	ust be '0' when written.				
	6	0	V_SEQ_END	'0' '1 (V	<pre>nd of FIFO list = FIFO list goes on = FIFO list is terminated after this I _NEXT_FIFO_DIR and V_NEXT_I e ignored)</pre>				
	7		(reserved)	М	ust be '0' when written.				

Α_	_FIFO_CT	RL [FIFO	[(r*/w)	(Reset group: H, 0, 1)	0xFF	
Control register for the selected FIFO							
Be	Before writing this array register the FIFO must be selected by register R_FIFO.						
	Bits	Reset value	Name		Description		
	0	0	V_FIFO_IRQMSK		Interrupt mask for the selected FIFO '0' = The FIFO interrupt is not used for gene a signal on the interrupt pin 22. The interrup status can be read from registers R_FIFO_BL0_IRQR_FIFO_BL3_IRQ nevertheless. '1' = The FIFO interrupt event generates a si on the interrupt pin 22. Note: In addition to this interrupt mask, FIF interrupt must be enabled globally with V_FIFO_IRQ_EN = '1' in register R_IRQ_0	gnal O	
	1	0	V_BERT_EN		BERT enable '0' = BERT disabled, normal data is transmit and received '1' = BERT enabled, output of BERT genera transmitted and received data is checked by	tor is	
	2	0	V_MIX_IRQ		Mixed interrupt generation in HDLC mod This bit is only used in HDLC mode and it s be '0' in transparent mode. '0' = FIFO interrupts are generated either on <i>frame</i> (in HDLC mode) or periodically (in transparent mode) '1' = FIFO interrupts are generated both on <i>e</i> <i>frame</i> and periodically when the bits [n-1:0] Z2-counter (in transmit direction) or the Z1-counter (in receive direction) change from '1's to all '0's ($n = V_FIFO_IRQ + 3$ in regist A_CON_HDLC)	hould end of end of of the m all	

(continued from previous page)

Bits	Reset value	Name	Description
3	0	V_FR_ABO	 Frame abort This bit has a different meaning for transmit and receive FIFOs. Transmit FIFO (FIFO underrun indication): When the selected transmit FIFO runs empty within a frame, a frame abort can be generated, i.e. at least sixteen consecutive '1's are transmitted. The receiver gets an invalid frame in this case. '0' = no frame abort after FIFO empty '1' = generate frame abort when FIFO runs empty within a frame (Z1 = Z2 and already F1 = F2, F-increment cannot be executed) Empty FIFO condition can be watched with bit V_FIFO_ERR in register A_FIFO_STA. Receive FIFO (aborted frame received): When the HDLC controller of the selected receive FIFO gets seven or more consecutive '1's, a frame abort condition can be signaled. '0' = no frame abort indication, FIFO status byte indicates only CRC error with any value not equal to 0x00 '1' = frame abort is indicated with FIFO status byte 0x01 0xFE indicates a CRC error Note: V_FR_ABO should be '0' in transparent mode.
4	0	V_NO_CRC	Suppress CRC transmission '0' = CRC is transmitted at the end of a frame (normal operation) '1' = CRC bytes are not transmitted at the end of a frame (must be done by the host processor instead)
5	0	V_NO_REP	No automatic repetition on HDLC frames (D-channel) '0' = After D-channel contention, the frame is automatically repeated '1' = After D-channel ontention, the frame is not repeated and it is aborted.
76		(reserved)	Must be '00' when written.

Chapter 5

Universal ISDN Port

Write only	y registers:		Read only	registers:	
Address	Name	Page	Address	Name	Page
0x16	R_SU_SEL	195	0x13	R_AF0_OVIEW	211
0x30	A_SU_WR_STA	196	0x30	A_SU_RD_STA	212
0x31	A_SU_CTRL0	197	0x31	A_SU_DLYL	213
0x32	A_SU_CTRL1	199	0x32	A_SU_DLYH	214
0x33	A_SU_CTRL2	200	0x34	A_MS_RX	215
0x34	A_MS_TX	202	0x35	A_SU_STA	216
0x35	A_ST_CTRL3	203	0x3C	A_B1_RX	217
0x35	A_UP_CTRL3	204	0x3D	A_B2_RX	218
0x36	A_MS_DF	206	0x3E	A_D_RX	219
0x37	A_SU_CLK_DLY	207	0x3F	A_E_RX	220
0x3C	A_B1_TX	208			
0x3D	A_B2_TX	208			
0x3E	A_D_TX	209			
0x3F	A_BAC_S_TX	210			

Table 5.1: Overview of the ST/U_p interface registers

5.1 General overview of the S/T and U_p interfaces

The Universal ISDN Port consists of a line interface with both S/T and U_p signaling capability. It can be configured to TE or NT/LT mode.

5.1.1 Array registers and multiregisters

Every line interface can be switched either into S/T or U_p mode separately; so they are called *Universal ISDN Port*. For both modes there is a complete set of registers. These registers are multi-registers, which means they have the same address and I/O functionality (write or read) but different meaning or bitmap structure. Yet, most of them are very similar in S/T and U_p mode.

Furthermore, all registers are described to be array registers because there are several line interfaces in XHFC-2S4U/4SU and each has the complete set of registers. So, the Universal ISDN Port module – with multiple entities – has registers which are multi-registers *and* array registers at the same time.

Register accesses concerning the line interfaces have to be done as follows:

- 1. Array register selection: The line interface number must be selected first by writing the appropriate value into bitmap V_SU_SEL of register R_SU_SEL.
 - XHFC-2S4U: S/T interfaces 0..1 available, U_p interfaces 0..3 available
 - XHFC-4SU: S/T interfaces 0..3 available, U_p interfaces 0..3 available
- 2. Multiregister selection: Then the interface mode can be chosen (only in the initialization procedure). The selected line interface works in S/T mode with the bitmap value V_ST_SEL = '0' in register A_ST_CTRL3. The line interface can be switched into U_p mode with V_ST_SEL = '1'¹. It is strongly recommended to select the interface mode before any other register of the selected line interface is written.
- **3.** Any other register access: Now all registers of the selected line interface in its chosen mode (S/T or U_p) can be accessed.

These three steps describe the initialization procedure after reset. Afterwards, step 2 must not be executed again, of course.

Important !

The Universal ISDN Port is in S/T mode after reset. When U_p mode is required, it should be selected after reset, i.e. no other register of the line interface module should be written before.

5.1.2 Block diagram of the Universal ISDN Port module

The line interface module consists of the receive and transmit data pathes with a clock processing unit each, the clock distribution unit and the state machine. The overall connections of these units are shown in Figure 5.1.

¹Please note, that there is an array register at address 0x35 which is also a multi-register. For a line interface in S/T mode, A_ST_CTRL3 is used while a line interface in U_p mode uses A_UP_CTRL3.

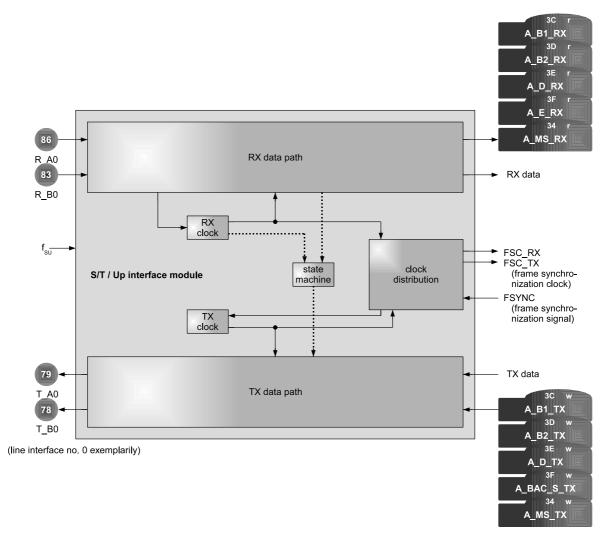


Figure 5.1: Overview of the Universal ISDN Port module (For details see Figures 5.13 or 5.5)

5.2 S/T interface description

5.2.1 Overview

The Universal ISDN Port is able to provide an S/T line interface in TE or NT mode according to ITU-T I.430 [9] and ETSI TBR 003[4] specifications.

The line interface is a four-wire interface and has separated transmitter and receiver with configurable behaviour. The ISDN data frame structure is handled by hardware. Thus plain data is processed on the host side of the S/T interface.

A specification conform state machine for TE and NT mode is implemented (see Section 5.2.6).

The S/T interface uses the modified AMI coding for input and output signals. This pseudo-ternary coding converts logical ones to 0 V level. Logical zeros are coded by alternating positive and negative voltage with 750 mV nominal amplitude on the line.

5.2.2 Frame Structure

The frame structures on the S/T interface are different for each direction of transmission. Both structures are illustrated in Figure 5.2. The raw data bit rate is 192 kBit/s in transmit and receive direction.

HDLC B-channel data starts with the LSB, PCM B-channel data starts with the MSB.

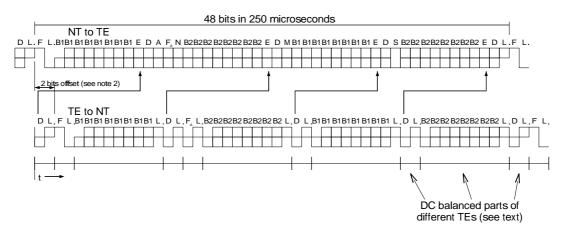


Figure 5.2: Frame structure at reference points S and T (see legend in Table 5.2 and specification [9])

The nominal 2 bit offset is as seen from the TE in Figure 5.2. The offset can be adjusted for TE mode with bitmap V_SU_CLK_DLY in register A_SU_CLK_DLY. The corresponding offset at the NT is not fixed and may be greater due to delay in the interface cable and varies by configuration.

The TE-to-NT transmission has 10 balancing bits within every frame to achieve independent DC balanced parts for different TEs. This is indicated by lines below the frame structure in Figure 5.2.

In the NT-to-TE direction there is only one real DC-balance bit at the end of the frame because all data comes from the same source. Another L-bit at the beginning of the frame belongs to the preceding F-bit and is used for code violation.

NT-to-	TE & TE-to-NT:	NT-to-TE only:			
Code	Description	Code	Description		
F	Framing bit, marks the start of the frame (1 bit/frame)	Е	Bit within the E-channel (D-echo- channel, 4 bit/frame)		
B1	Bit within the B1-channel (2 byte/frame)	М	Multiframing bit, marks the start of the multiframe in every 20th frame (1 bit/frame) Boolean complementation of the auxil- iary framing bit F_A , $N = \overline{F}_A$ (1 bit/frame)		
B2	Bit within the B2-channel (2 byte/frame)				
D	Bit within the D-channel (4 bit/frame)	Ν			
L	DC balancing bit (NT-to-TE: 2 bit/frame,				
_	 TE-to-NT: 10 bit/frame) F_A NT-to-TE: Auxiliary framing bit, marks the start of subchannel 1 in every 5th frame, a multiframe bit (S-bit) is transmitted in the same frame (1 bit/frame) 		S-bit of the multiframe (1 bit/frame)		
F _A			Activation bit (1 bit/frame)		
	TE-to-NT: Q-bit of the multiframe (1 bit/frame)				

Table 5.2: Legend for Figure 5.2

5.2.3 Multiframe structure

There is a higher frame structure called *multiframe*. A multiframe has the length of 4 bits and consists of the bits Q1, Q2, Q3 and Q4 (TE-to-NT) or S1, S2, S3 and S4 (NT-to-TE). Q1 and S1 are transmitted first. As there is one multiframe bit transferred every fifth 250 µs cycle, a complete multiframe is transferred every 5 ms. This means that a multiframe has a length of 20 S/T frames.

The F_{A} - and M-bits are used to identify the multiframes. Table 5.3 shows the position of the multiframe bits. A detailed specification of the multiframe structure is given in [9].

Multiframe transmission must be enabled with $V_ST_SQ_EN = '1'$ in register A_SU_CTRL0.

5.2.4 Data transmission

B-channel data on the line interface must be enabled for transmit and receive direction separately.

 $V_B1_TX_EN = '1'$ in register A_SU_CTRL0 enables data transmission for the B1-channel and $V_B2_TX_EN = '1'$ in the same register enables data transmission for the B2-channel.

 $V_B1_RX_EN = '1'$ in register A_SU_CTRL2 enables data receive for the B1-channel and $V_B2_RX_EN = '1'$ in the same register enables data receive for the B2-channel.

Disabled B-channel data means that all bits are forced to '1' on the line.

Figures 5.3 and 5.4 show the composition and decomposition of the S/T frames. B1-, B2-, D- and E-channel data is normally handled by the data flow controller. The HDLC controller as well as the PCM interface deliver data to the S/T interface and receive data from the S/T interface. For this reason, registers A_B1_TX, A_B2_TX, A_D_TX and A_BAC_S_TX as well as A_B1_RX, A_B2_RX, A_D_RX and A_E_RX are normally not written or read from the application software.

Multiframe bits can be handled by the data flow controller (involving registers A_BAC_S_TX and A_E_RX) or manually from the application software with registers A_MS_TX and A_MS_RX.

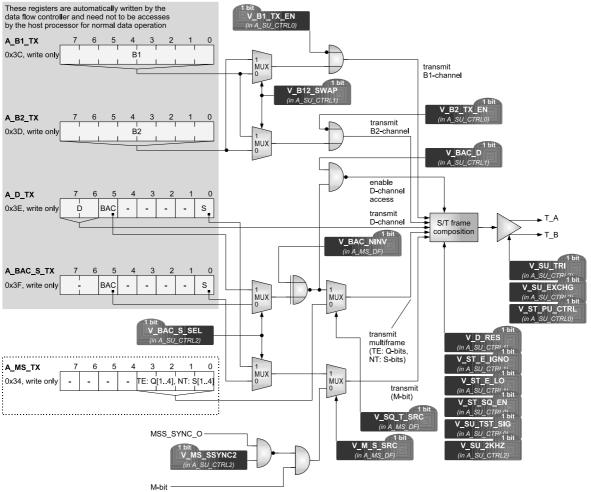

	NT-to- frame synchr		TE-to-NT multiframe	NT-to-TE multiframe
Frame number	F _A -bit	M-bit	Q-bits in F _A bit position *1	S-bits *2
1	'1'	'1'	Q1	S 1
2	'0'	'0'	'0'	'0'
3	'0'	'0'	,0,	'0'
4	'0'	'0'	'0'	'0'
5	'0'	'0'	'0'	'0'
6	'1'	'0'	Q2	S2
7	'0'	'0'	,0,	'0'
8	'0'	'0'	'0'	'0'
9	'0'	'0'	'0'	'O'
10	'0'	'0'	'0'	'0'
11	'1'	'0'	Q3	S 3
12	'0'	'0'	'0'	'0'
13	'0'	'0'	'0'	'0'
14	'0'	'0'	'0'	'0'
15	'0'	'0'	'0'	'0'
16	'1'	'0'	Q4	S4
17	'O'	'0'	,0,	'0'
18	'O'	'0'	,0,	'0'
19	,0,	'0'	,0,	'0'
20	'0'	'0'	,0,	'0'
1	'1'	'1'	Q1	S1
2	,0,	'0'	,0,	'0'

Table 5.3: Multiframe structure of the Q- and S-bits

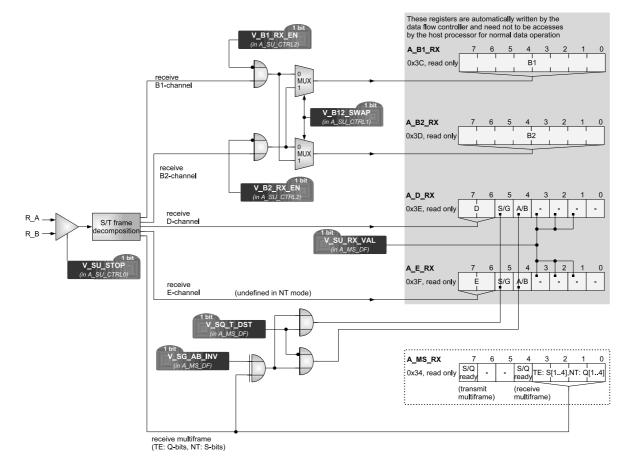
^{*1}: If the Q-bits are not used by a TE, the Q-bits shall be set to '1' (i.e. echoing of the received F_A bits).

^{*2}: The specification [9] defines five subchannels for the S-multiframe. Only subchannel 1 is used from XHFC-2S4U/4SU. All other subchannels are set to '0'.

(once every 20 S/T frames)

Figure 5.3: *S*/*T* frame composition for B1-, B2-, D- and multiframe bits (*S*/*T* interface mode, transmit direction)

5.2.5 INFO signals


Signals which are transmitted on the interface line are called *INFO signals*. INFO 0 is defined for both TE-to-NT and NT-to-TE directions. All other INFO signals are either for TE-to-NT signaling (INFO 1, INFO 3) or NT-to-TE signaling (INFO 2, INFO 4). The INFO signals are defined as follows ²:

INFO 0: No signal on line.

- **INFO 1:** Continuous signal at nominal bit rate with a '0011 1111' pattern which has a positive zero first and a negative zero following.
- **INFO 2:** Frames with A-bit and all B-, D- and E-bits in the frame are set to binary zero. The F_A -, N- and L-bits are set according to the normal coding rule.
- **INFO 3:** Synchronised frames with 2 bit offset and operational data on B- and D-channels.
- INFO 4: Frames with operational data on B-, D- and E-channels. The A-bit is set to binary one.

²Please see [9] for a detailed description of the INFO signals.

Figure 5.4: *S*/*T* frame decomposition for B1-, B2-, D-, E-channel and multiframe bits (S/T interface mode, receive direction)

5.2.6 State machine

A specification conform state machine for TE and NT mode is implemented [9]. So the current Fx or Gx state can be read out of register A_SU_RD_STA. However, it is possible to overwrite the current state by setting bit V_SU_LD_STA in register A_SU_WR_STA.

Activation and deactivation can be initiated by writing bitmap V_SU_ACT in the same register. This bitmap can be used for TE and NT mode and can start activation or deactivation from any state. Even in TE mode it can be used to initiate a deactivation from any state to F3. Such a deactivation should only be initiated if the state machine is not in F6 or F7, of course. Writing '11' (start activation) when the state machine is already activated (G2/G3 or F6/F7), will not change the current state.

Before starting the state machine, register A_SU_CLK_DLY of its S/T interface must be set. The default value is 0x0E for TE and 0x6C for NT mode.

Important !

The S/T state machine is stuck at F0 or G0 after a reset. The interface sends no signal on the S/T line (INFO 0) and is not able to activate it by incoming INFO x in this state. Writing '0' into bit V_SU_LD_STA of register A_SU_WR_STA starts the state machine.

NT mode: The NT state machine does not change automatically from G2 to G3 if the TE side sends INFO 3 frames. This transition must be activated each time by V_G2_G3 in register A_SU_RD_STA or it can permanently be enabled by setting bit V_G2_G3_EN in register A_SU_CTRL1.

Incoming INFO 0 at state F 6 cause a state change to F 3 normally. Sometimes an intermediate state F 7 occurs which stops timer T3. In this case another state change to F 3 comes up within 1 ms and F 7 can be ignored. V_SU_INFO0 in register A_SU_RD_STA should be checked with every state change from F 6 to F 7. When this bit is set, the state should be checked again after about 1 ms. When it is F 3, the intermediate state F 7 has to be ignored. ³

Tables 5.4 and 5.5 show the S/T interface activation and deactivation layer 1 of the finite state matrix in NT and TE mode.

³It might be useful to start a timer of approximately 1 ms to detect the F6 - F7 - F3 state changes.

State name:	Reset	Deactivated	Pending	Active	Pending
			activation		deactivation
State number:	G 0	G 1	G 2	G 3	G 4
INFO sent:	INFO 0	INFO 0	INFO 2	INFO 4	INFO 0
Event:					
State machine release *3	G 1				
Activate request	start T 1 *1 G 2	start T 1 *1 G 2			start T 1 ^{*1} G 2
Deactivate request			start T 2 G 4	start T 2 G 4	
Expiry T 1 ^{*1}			start T 2 G 4	/	
Expiry T 2 ^{*2}			_		G 1
Receiving INFO 0	_	—	_	G 2	G 1
Receiving INFO 1	—	start T 1 *1 G 2	_	/	
Receiving INFO 3	_	/	stop T 1 ^{*1,4} G 3	—	—
Lost framing	_	/	/	G 2	—
Legend: —	No state chang	ge			
/	Impossible sit	uation			
	-				

^{*1}: Timer T 1 is not implemented and must be implemented in software. T 1 is started with entering G2, runs during G2 state and is stopped when entering G3 or expiry. T 1 should expire after 100 ms .. 1000 ms [5].

Impossible by the definition of the layer 1 service

^{*2}: Timer T 2 prevents unintentional reactivation. Its value is $256 \cdot 125 \,\mu s = 32 \,ms$. This implies that a TE has to recognize INFO 0 and to react on it within this time.

 *3 : After reset the state machine is fixed to G 0.

^{*4}: Bit V_SU_SET_G2_G3 in register A_SU_WR_STA must be set to allow this transition or V_G2_G3_EN in register A_SU_CTRL1 must be set to allow automatic transition $G 2 \rightarrow G 3$.

State name: State number: INFO sent: Event:	ts SS F 0 INF00	son Survey F 2 INFO 0	Deactivated E 3	Maiting F 4 INFO 1	Input Input Input	pəziucılı Synchronized F 6 INFO 3	F 7 INF0 3	framing F 8 INFO 0
State machine release *1	F2	/	/	/	/	/	/	/
Activate request, receiving any signal receiving INFO 0			F 5 start T3 ^{*5} F 4		 	_		_
Expiry T 3 ^{*5}	—	/	—	F 3	F 3	—	—	F 3
Receiving INFO 0	—	F 3	_	_	—	F 3	F 3	F 3
Receiving any signal *2		_	_	F 5	—	/	/	_
Receiving INFO 2 *3	—	F 6	F 6	F6	F 6	—	F6	F 6
Receiving INFO 4 *3	—	F7	stop T3 ^{*5} F 7	stop T3 *5 F 7	⁵ stop T3 ^{*5} F 7	stop T3 ^{*5} F 7	—	stop T3 ^{*5} F 7
Lost framing *4	 No state	/	/	/	/	F 8	F 8	

Table 5 5: S/7	interface activation	deactivation laver 1	matrix for TE mode

Legend: — No state change

/ Impossible situation

Impossible by the definition of the layer 1 service

^{*1}: After reset the state machine is fixed to F0.

 *2 : This event reflects the case where a signal is received and the TE has not (yet) determined wether it is INFO 2 or INFO 4.

*³: Bit and frame synchronization achieved.

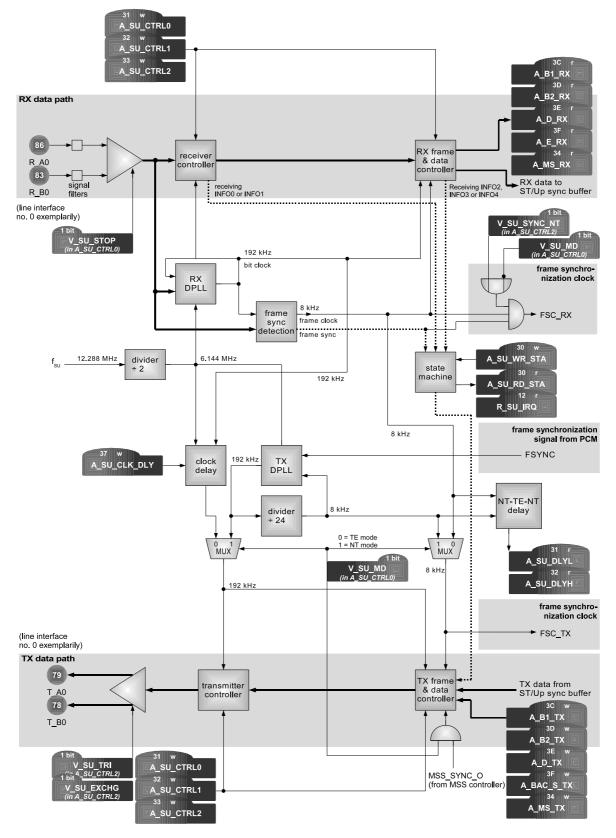
^{*4}: Loss of Bit or frame synchronization.

*5: Timer T 3 is not implemented and must be implemented in software.

5.2.7 Clock synchronization

A detailed view inside the line interface block diagram of Figure 5.1 is shown for the S/T interface mode in Figure 5.5. All clocks are derived from a 6.144 MHz clock which is $f_{SU}/2$. Frame synchronization is accomplished by evaluating the code violations in the S/T frame.

Received data from the pins R_A0...R_A3 and R_B0...R_B3 is passed through the RX data path to the switching buffer (see Figures 3.3 and 3.4 in Section 3.2). A bit clock and a frame clock are derived from the received data stream. These clocks are used to synchronize the RX data path timing to the incoming data stream. The frame clock can be passed for synchronization purposes to the TX data path and to the PCM timing control as well.


The transmit data clock has different sources in TE and NT mode:

- **NT mode:** The 192 kHz bit clock as well as the 8 kHz frame clock are derived from FSYNC in NT mode. This signal is either F0IO input or F1_7 (see register R_SL_SEL7 and Figure 6.5 on page 231).
- **TE mode:** A TE is always taken as synchronization source for ISDN applications because it delivers the clock from the central office switch. Thus both clocks are taken from the RX clock unit.

The state machine takes several signals from the RX data path and the RX clock unit. The TX data path is controlled by the state machine's output signals.

The multiframe transmission can be synchronized to the PCM interface. The MSS controller (multiframe/superframe synchronization controller) delivers the MSS_SYNC_O signal to force the 'start of multiframe' in NT mode. The MSS controller is described in Section 6.6 from page 237.

5.2.8 External circuitries

5.2.8.1 External receive circuitry

The standard external receive circuitry for TE and NT mode is shown in Figure 5.6.

Figure 5.6 connects pins R_A0/L_A0 through the transformer to a minus (–) pin of the RJ-45 jack, while pins R_B0/L_B0 are connected to a RJ-45 plus (+) pin. Due to the automatic polarity detection of the XHFC-2S4U/4SU receiver, it is allowed to swap the pairs R_A0/L_A0 and R_B0/L_B0.

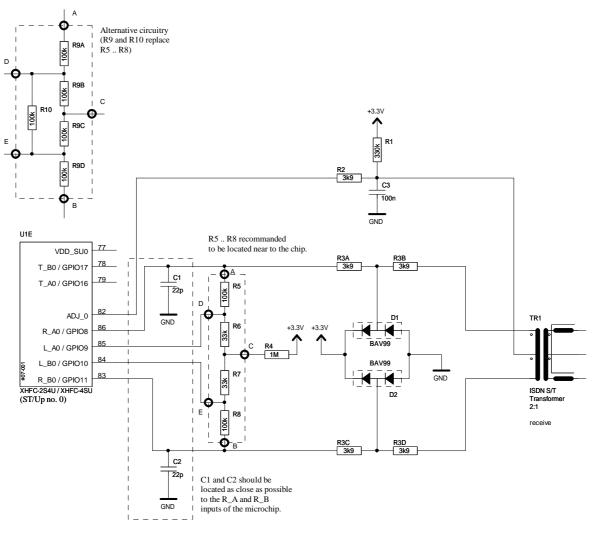


Figure 5.6: External S/T receive circuitry for TE and NT mode

XHFC-2S4U has two S/T interfaces while XHFC-4SU has four S/T interfaces. For all not used S/T interfaces, the level adjustment pins ADJ_0..ADJ_3 should be left open.

5.2.8.2 External transmit circuitry

The standard external transmit circuitry for TE and NT mode is shown in Figure 5.7.

Figure 5.7 connects pin T_A0 through the transformer to a minus (–) pin of the RJ-45 jack, while pin T_B0 is connected to a RJ-45 plus (+) pin. This is important for interoperability with other devices. Mainly for test purposes, the transmit lines can be swapped internally with V_SU_EXCHG = '1' in register A_SU_CTRL2.

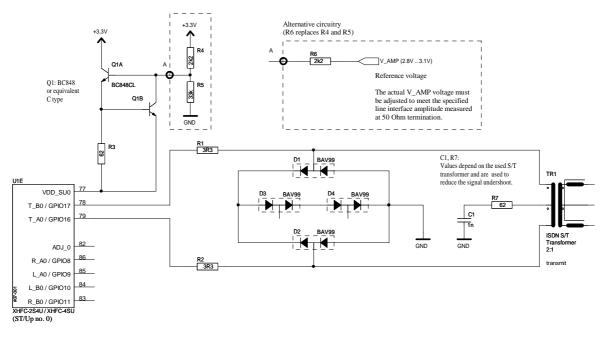
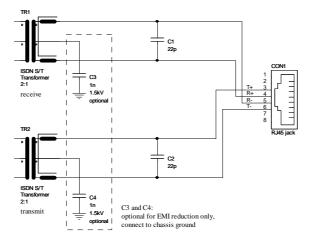
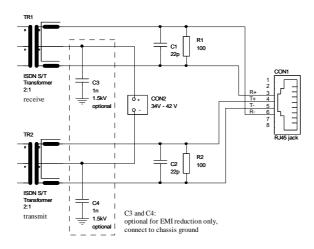
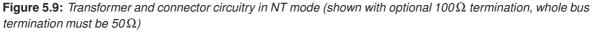


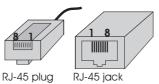
Figure 5.7: External S/T transmit circuitry for TE and NT mode

The signal level of the transmit circuitry has to be adjusted by VDD_SU0..VDD_SU3. The exact voltage of these pins depends on the used transformer and circuitry dimensioning.

5.2.8.3 Transformer and ISDN jack connection

Figure 5.8 and 5.9 show the connection circuitry of the transformer and the ISDN jack in TE mode⁴. The termination resistors R1 and R2 are optional.


Figure 5.8: Transformer and connector circuitry in TE mode

⁴The ISDN jack RJ-45 has 8 pins and carries two pairs of wires. Standard configuration is

pin 3: TE (+) transmit \rightarrow NT (+) receive, pin 4: NT (+) transmit \rightarrow TE (+) receive, pin 5: NT (-) transmit \rightarrow TE (-) receive, pin 6: TE (-) transmit \rightarrow NT (-) receive.

5.2.9 S/T transformers

Customers of Cologne Chip can choose from a variety of S/T transformers for ISDN Basic Rate Interface. All S/T transformers are compatible to the XHFC series of Cologne Chip that fulfill two criteria:

- Turns ratio of 1:2 (line side : chip side)
- Center tap on the chip side (required for Cologne Chip transmitter and receiver circuitries)

Several companies provide *transformers* and *transformer modules* that can be used with our ISDN Basic Rate Interface controllers. Most popular are SMD dual transformer modules with choke for EMI reasons. Part numbers and manufacturers are listed in Table 5.6. A more extensive and regularly updated list can be found on Cologne Chip's website http://www.colognechip.com.

The transformer list has not been compiled under aspects of RoHS compliance. For the current RoHS status of the listed parts, please contact the transformer manufacturers straight.

Type Device	Type Device
Dual Transformer Module without choke:	Dual Transformer Module with choke:
2798B (SMD)	APC 48301 (THT)
2798C (SMD)	
2798D (SMD)	

Pulse Engineering, Inc., United States, http://www.pulseeng.com

Type D	evice	Type Device
Single tran	nsformer:	Dual Transformer Module without ch
T.	5003 (SMD, PCMCIA)	T5006 (SMD)
T.	5020 (SMD)	T5007 (SMD)
T	5023 (SMD)	T5042 (SMD, 3 kV)
T	5024 (SMD, 3 kV)	PE-65495 (THT)
T	5033 (SMD)	PE-65499 (THT)
T	5035 (THT, 3 kV)	PE-65795 (SMD)
T	5036 (SMD, 3 kV)	PE-65799 (SMD)
PI	E-64995 (THT)	
PI	E-64999 (THT)	Dual Transformer Module with choke
PI	E-68992 (THT)	T5012 (THT)
ST	F-5069 (SMD)	T5034 (SMD)
		T5038 (SMD)

Table 5.6: S/T transformer part numbers and manufacturers

(continued from previous page)

Talema Elektronik GmbH, Germany, http://www.talema.net

Туре	Device	Туре	Device
Single	Transformer:	Dual T	Fransformer Module with choke:
	ISF-140B1 (THT)		HVM-140C1 (THT)
	ISV-140B1 (THT)		ISM-140C1 (THT)
	ISHF-240B1 (THT, 3 kV)		MUJ-103A-500(SMD, miniature)
	SHJ-240B (SMD, 3 kV)		MUJ-103A-101(SMD, miniature)
	SMJ-140B (SMD)		MUJ-103A-501(SMD, miniature)
	SWJ-140B (SMD)		MUJ-103A-502(SMD, miniature)
			MAJ-403A-470 (SMD)
Dual Transformer Module without choke:			MAJ-403A-101 (SMD)
	MUJ-103A-000 (SMD, miniature)		MAJ-403A-501 (SMD)
			MAJ-403A-502 (SMD)
			MSJ-403A-470 (SMD)
			MSJ-403A-101 (SMD)
			MSJ-403A-501 (SMD)
			MSJ-403A-502 (SMD)
			MHJ-240B1-470 (SMD, 3 kV)
			MHJ-240B1-101 (SMD, 3 kV)
			MHJ-240B1-501 (SMD, 3 kV)
			MHJ-240B1-502 (SMD, 3 kV)
			MHJ-240B1-123 (SMD, 3 kV)

 Table 5.6: S/T transformer part numbers and manufacturers

(continued from previous page)

UMEC GmbH, Germany, Taiwan, United States, http://www.umec.de

Type Device	Type Device
Single transformer:	Dual Transformer Module without choke:
UT 20995 (THT)	UT 20495 (THT)
UT 20999 (THT)	UT 20495-TS (SMD)
UT 21023 (THT)	UT 20765-00 (SMD, 3 kV)
UT 21595 (THT)	UT 20795-00TS (SMD)
UT 28166 (THT)	
UT 28166-TS (SMD)	Dual Transformer Module with choke:
UT 28428-TS (SMD)	UT 20495 CV-TS (SMD)
UT 28729 (THT, 4 kV)	UT 20765-05TS (SMD, 3 kV)
	UT 20765-10TS (SMD, 3 kV)
	UT 20765-50TS (SMD, 3 kV)
	UT 20795-05TS (SMD)
	UT 20795-10TS (SMD)
	UT 20795-50TS (SMD)
	UT 20795-5M-TS (SMD)
	UT 21644S (SMD, miniature)
	UT 28624 (THT)
	UT 28624A (THT)
	UT 28624A-T (SMD)

Vacuumschmelze GmbH & Co. KG, Germany, http://www.vacuumschmelze.com

Type Device	Type Device
Single transformer:	Dual Transformer Module without choke:
3-L4021-X066 (THT)	7-M4035-X001 (THT)
3-L4025-X095 (THT)	7-M5014-X001 (SMD, miniature)
3-L4031-X001 (THT)	7-M5026-X001 (SMD)
3-L4097-X029 (THT, 3 kV)	7-M5026-X002 (SMD, 3 kV)
3-L5024-X028 (SMD)	7-M5054-X001 (SMD)
3-L5032-X040 (SMD, 3 kV)	
	Dual Transformer Module with choke:
	7-L5026-X010 (SMD)
	7-L5026-X011 (SMD, 3 kV)
	7-L5026-X017 (SMD)
	7-L5051-X014 (THT)
	7-L5054-X005 (SMD, 3 kV)
	7-L5054-X006 (SMD, 3 kV)

Table 5.6: S/T transformer part numbers and manufacturers

(continued from previous page)

Sumida AG,	Germany,	http://www.sumida-eu.com	(formerly known as Vogt electronic AG)
------------	----------	--------------------------	--

Type Device	Type Device
Single transformer:	Dual Transformer Module without choke:
503 05 901 00 (SMD)	503 16 504 00 (SMD)
503 10 009 00 (SMD)	503 16 513 00 (SMD, 4 kV)
503 12 001 00 (SMD, PCMCIA)	503 20 981 00 (SMD)
503 20 010 00 (SMD)	503 74 003 00 (SMD, 4 kV)
503 20 019 00 (SMD, 4 kV)	503 74 006 00 (SMD)
543 80 008 00 (THT, 4 kV)	
	Dual Transformer Module with choke:
	503 16 017 00 (SMD, miniature)
	503 16 501 00 (SMD)
	503 16 502 00 (SMD)
	503 16 505 00 (SMD)
	503 16 506 00 (SMD)
	503 20 985 00 (SMD)
	543 76 006 00 (SMD)

Please note: Cologne Chip cannot take any liability concerning the product names, characteristics and availability. Products can change without notice. Please refer to the manufacturer in case of doubt.

5.3 U_p interface description

5.3.1 Overview

The Universal ISDN Port is able to provide a ping-pong type 2-wire interface according to U_{p0} and U_{pN} specifications [3] known from SIEMENS Corporation and German Electrical and Electronic Manufacturers' Association (ZVEI).

The line interface is a four-wire interface and has separated transmitter and receiver with configurable behaviour. The ISDN data frame structure is handled by hardware. Thus plain data is processed on the host side of the U_p interface.

A specification conform state machine for TE and LT mode is implemented (see Section 5.3.6). This is very similar to the S/T state machine (see Section 5.2.6 on page 165).

The U_p interface uses AMI coding for input and output signals. This pseudo-ternary coding converts logical zeros to 0 V level. Logical ones are coded by alternating positive and negative voltage with 2 V nominal amplitude on the line.

5.3.2 Frame Structure

The U_p frame structure has a length of 250 µs. Within this period, a transmit phase and a receive phase with 99 µs length each is placed as shown in Figure 5.10. The 38 bit frame has the same structure for LT-to-TE and TE-to-LT transmissions.

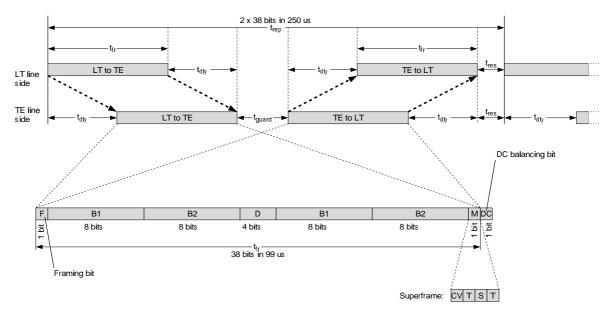


Figure 5.10: Up interface frame structure

5.3.3 Superframe structure

There is a higher frame structure called *superframe* (also called *M-channel*). A superframe has the length of 4 bits and consists of the bits CV, T and S as shown in Figure 5.10 and Table 5.8. As there is one superframe bit within every frame, a complete superframe is transmitted and received every 1 ms.

Symbol	min / µs	typ / µs	max / µs	Characteristic
t _{rep}		250		Burst repetition period
$t_{\rm fr}$		99		Frame time
<i>t</i> _{dly}	0		20.8	Line delay
tguard		5.2		Guard time (2 bits)
t _{res}	0		41.6	Residual time

 Table 5.7: Legend for Figure 5.10

The CV-bit is used for the superframe synchronization. It has always the value '1' and produces a code violation.

Superframe data is transferred through the T-bits while the S-bit can be used for service bits. Received bits are stored in register A_MS_RX. When two complete superframes are received, bit V_MS_RX_RDY is set to '1' in the same register. Then the four T-bits in V_MS_RX – received within two superframes – are valid. V_MS_RX_RDY is reset to '0' with every read access to register A_MS_RX. The first received T-bit is stored in V_MS_RX[3], the fourth is stored in V_MS_RX[0].

Superframe data to be transmitted must be stored in bitmap V_MS_TX of register A_MS_TX. Four T-bits must be stored together. They are transmitted with the next two superframes. The first T-bit is V_MS_TX[3] and the fourth is V_MS_TX[0]. When all T-bits are transferred to the output shift register, bit V_MS_TX_RDY in register A_MS_RX changes to '1' to signal 'next data required'. This bit is automatically reset to '0' with a read access to register A_MS_RX.

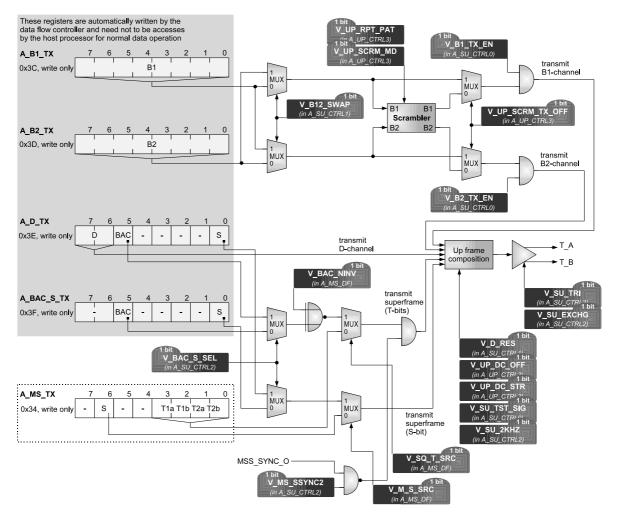
The received service bit S can be read from register V_UP_S_RX. In transmit data direction, the bit value V_UP_S_TX in register A_MS_TX will be send in the next superframes until another value is written into V_UP_S_TX.

Number in sequence	Bit name	Meaning	Bit rate	
1	CV	Code violation bit	1 kbit/s	
2,4	Т	Transparent channel bit	2 kbit/s	
3	S	Service channel bit	1 kbit/s	

 Table 5.8:
 Superframe construction

5.3.4 Data transmission

B-channel data on the line interface must be enabled for transmit and receive direction separately.


 $V_B1_TX_EN = '1'$ in register A_SU_CTRL0 enables data transmission for the B1-channel and $V_B2_TX_EN = '1'$ in the same register enables data transmission for the B2-channel.

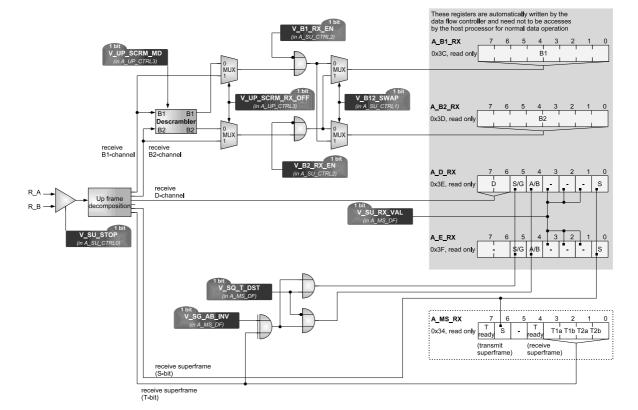
 $V_B1_RX_EN = '1'$ in register A_SU_CTRL2 enables data receive for the B1-channel and $V_B2_RX_EN = '1'$ in the same register enables data receive for the B2-channel.

Disabled B-channel data means that all bits are forced to '1' on the line. Due to the fact that the bit scramblers are functionally arranged in front of the B-channel enable/disable logic (V_B1_TX_EN

and V_B2_TX_EN), it is important always to enable the B-channels during U_p operation even if no data is send.

Figure 5.11: U_p frame composition for B1-, B2-, D-channel and superframe bits (U_p interface mode, transmit direction)

Figures 5.11 and 5.12 show the composition and decomposition of the U_p frames. B1-, B2- and Dchannel data is normally handled by the data flow controller. The HDLC controller as well as the PCM interface deliver data to the U_p interface and receive data from the U_p interface. For this reason, registers A_B1_TX, A_B2_TX, A_D_TX and A_BAC_S_TX as well as A_B1_RX, A_B2_RX, A_D_RX and A_E_RX⁵ are normally not written or read from the application software.


Superframe bits can be handled by the data flow controller (involving registers A_BAC_S_TX and A_E_RX) or manually from the application software with registers A_MS_TX and A_MS_RX. Please note that A_BAC_S_TX contains E-channel data only in S/T interface mode.

5.3.5 INFO signals

Signals which are transmitted on the interface line are called *INFO signals*. INFO 0 is defined for upstream (TE-to-LT) and downstream (LT-to-TE) direction. All other INFO signals are either for

⁵Please note, that A_E_RX does only contain E-channel bits in S/T interface mode.

Figure 5.12: U_p frame decomposition for B1-, B2-, D-channel and superframe bits (U_p interface mode, receive *direction*)

upstream (INFO 1W, INFO 1, INFO 3) or downstream (INFO 2, INFO 4) direction. The INFO signals are defined as follows [3]:

INFO 0: No signal on line.

INFO 1W: Asynchronous awake signal with a 2 kHz burst rate (every second frame used). The frame has the contents

'F 00010001 00010001 0001 01010100 01011111 1'

with code violation in the framing bit F. F is always '1'.

INFO 1: 4 kHz burst rate (every frame used). The frame has the contents

'F 00010001 00010001 0001 01010100 01011111 M DC'

with code violation in the framing bit F.

INFO 2: 4 kHz burst rate (every frame used). The frame has the contents

'F 00010001 00010001 0001 01010100 01011111 M'

with code violation in the framing bit F.

- **INFO 3:** 4 kHz burst rate (every frame used) with user data in B-, D- and M-channels. The B- channels are scrambled. The framing bit F has no code violation. The DC-bit is used.
- **INFO 4:** 4 kHz burst rate (every frame used) with user data in B-, D- and M-channels. The Bchannels are scrambled. The framing bit F has no code violation. The DC-bit is used.

The F-bit polarity (AMI-violation or no AMI-violation) is calculated in relation to the last bit of the preceding frame in the same direction. The DC-balancing bit is included in the F-bit polarity calculation algorithm when it is present.

5.3.6 State machine

A specification conform state machine for TE and LT mode is implemented. So the current Fx or Gx state of the state machine can be read out of register $A_SU_RD_STA$. However, it is possible to overwrite the state machine by setting bit $V_SU_LD_STA$ in register $A_SU_WR_STA$.

Activation and deactivation can be initiated by writing bitmap V_SU_ACT in the same register. This bitmap can be used for TE and LT mode and can start activation or deactivation from any state. Even in TE mode it can be used to initiate a deactivation from any state to F3. Such a deactivation should only be initiated if the state machine is not in F6 or F7, of course. Writing '11' (start activation) when the state machine is already activated (G2/G3 or F6/F7), will not change the current state.

Before starting the state machine in TE mode, register A_SU_CLK_DLY of its U_p interface must be set. The default value is 0xF for TE mode.

Please note that in contrast to the S/T interface mode, an U_p device cannot be linked to an already activated U_p line for monitoring e.g., because the device must pass the entire activation sequence.

Tables 5.9 and 5.10 show the U_p interface activation and deactivation layer 1 of the finite state matrix in TE and LT mode. They are adopted from the S/T state machine specification according to ITU-T I.430 [9].

State name:	Reset	Deactivated	Pending	Active	Pending
			activation		deactivation
State number:	G 0	G 1	G 2	G 3	G 4
INFO sent:	INFO 0	INFO 0	INFO 2	INFO 4	INFO 0
Event:					
State machine release *3	G 1				
Activate request	start T 1 *1	start T 1 *1			start T 1 ^{*1}
	G 2	G 2			G 2
Deactivate request			start T 2	start T 2	
			G 4	G 4	
Expiry T 1 ^{*1}	_	_	start T 2	/	_
			G 4		
Expiry T 2 *2		_			G 1
Receiving INFO 0	_	_	_	G 2	G 1
Receiving INFO 1					
or INFO 1W		start T 1 *1	_	/	_
		G 2			
Receiving INFO 3		/	stop T 1 ^{*1,4} G 3	—	—
Lost framing	_	/	/	G 2	
Legend: —	No state chang	ge			

Table 5.9: U _p interface activation/deactivation layer 1 matrix for LT mode	Table 5.9: U	, interface activation,	deactivation laver 1	I matrix for LT mode
---	---------------------	-------------------------	----------------------	----------------------

/ Impossible situation

Impossible by the definition of the layer 1 service

^{*1}: Timer T 1 is not implemented and must be implemented in software. T 1 is started with entering G2, runs during G2 state and is stopped when entering G3 or expiry. T 1 should expire after 100 ms .. 1000 ms [5].

^{*2}: Timer T 2 prevents unintentional reactivation. Its value is $256 \cdot 125 \,\mu s = 32 \,ms$. This implies that a TE has to recognize INFO 0 and to react on it within this time.

*3: After reset the state machine is fixed to G0.

^{*4}: Bit V_SU_SET_G2_G3 in register A_SU_WR_STA must be set to allow this transition or V_G2_G3_EN in register A_SU_CTRL1 must be set to allow automatic transition $G 2 \rightarrow G 3$.

State name: State number: INFO sent: Event:	to So NFO NFO0	دون Sursu S	Deactivated F 3 INFO 0	guiting F 4 INFO 1W	guitying F 2 INFO 0	Synchronized L OJNI	F 7 INFO 3	storium traning F 8 INFO 0
State machine release *1	F2	/	/	/	/	/	/	/
Activate request, receiving any signal receiving INFO 0			F 5 start T3 ^{*5} F 4			_		_
Expiry T 3 *5		/	_	F 3	F 3	_		F 3
Receiving INFO 0	—	F 3	—	_	_	F 3	F 3	F 3
Receiving any signal *2		—	—	F 5	_	/	/	—
Receiving INFO 2 *3	—	F 6	F 6	F 6	F 6	—	F6	F 6
Receiving INFO 4 *3	—	F7	stop T3 ^{*5} F 7	stop T3 ^{*5} F 7	stop T3 ^{*5} F 7	stop T3 ^{*5} F 7	—	stop T3 ^{*5} F 7
Lost framing *4		/	/	/	/	F 8	F 8	

Fable 5.10: $U_{ m p}$ interface activation/deactivation layer 1 matrix for TE mode	ږ
	·

Legend: — No state change

/ Impossible situation

Impossible by the definition of the layer 1 service

^{*1}: After reset the state machine is fixed to F0.

 *2 : This event reflects the case where a signal is received and the TE has not (yet) determined wether it is INFO 2 or INFO 4.

*³: Bit and frame synchronization achieved.

^{*4}: Loss of Bit or frame synchronization.

*5: Timer T 3 is not implemented and must be implemented in software.

Important !

The U_p state machine is stuck at F0 or G0 after a reset. The interface sends no signal on the U_p line and is not able to activate it by incoming INFO x in this state. Writing '0' into bit V_SU_LD_STA of register A_SU_WR_STA starts the state machine.

LT mode: The LT state machine does not change automatically from G2 to G3 if the TE side sends INFO 3 frames. This transition must be activated each time by V_G2_G3 in register A_SU_RD_STA or it can permanently be activated by setting bit V_G2_G3_EN in register A_SU_CTRL1.

5.3.7 Clock synchronization

A detailed view inside the line interface block diagram of Figure 5.1 is shown for the U_p interface mode in Figure 5.13. All clocks are derived from the 12.288 MHz clock f_{SU} . Frame synchronization is accomplished by evaluating the code violations in the U_p frame.

Received data from the pins R_A0...R_A3 and R_B0...R_B3 is passed through the RX data path to the switching buffer. A bit clock and a frame clock are derived from the received data steam. These clocks are used to synchronize the RX data path timing to the incoming data stream. The frame clock can be passed for synchronization purposes to the TX data path and the PCM timing control as well.

The transmit data clock has different sources in TE and LT mode:

- **LT mode:** The 384 kHz bit clock as well as the 8 kHz frame clock are derived from FSYNC in NT mode. This signal is either F0IO input or F1_7 (see register R_SL_SEL7 and Figure 6.5 on page 231).
- **TE mode:** A TE is always taken as synchronization source for ISDN applications because it delivers the clock from the central office switch. Thus both clocks are taken from the RX clock unit.

The state machine takes several signals from the RX data path and the RX clock unit. The TX data path is controlled by the state machine's output signal.

Bit scramblers are inserted into the receive and the transmit data pathes. The scramblers can be switched off with V_UP_SCRM_RX_OFF = '1' (for the receive data path) and V_UP_SCRM_TX_OFF = '1' (for the transmit data path) in register A_UP_CTRL3. Bit scramblers should only be disabled for test purposes. They shall mandatorily be enabled for normal U_p operation.

The scrambler mode is configurable according to ITU-T V.27 specification [8] or OCTAT-P compatibility [6] with V_UP_SCRM_MD in the same register.

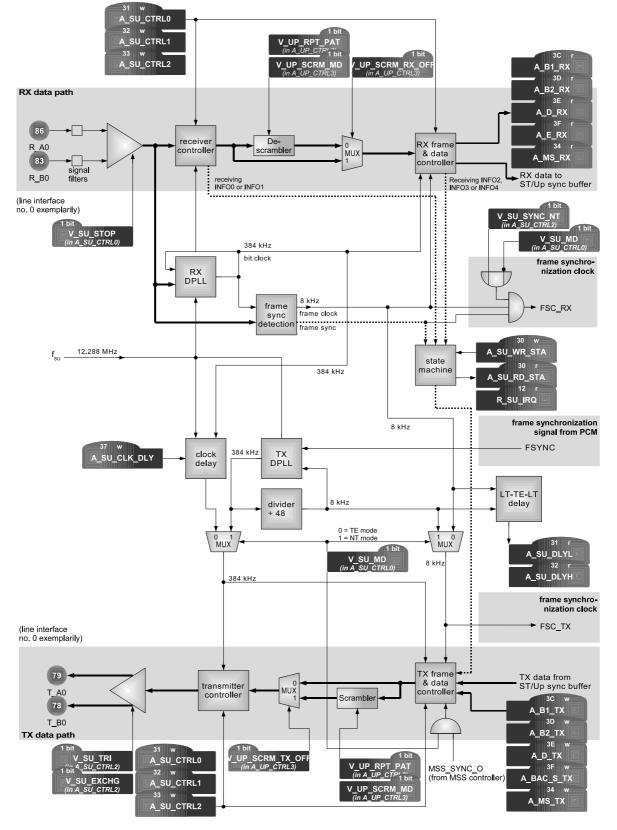


Figure 5.13: Up clock synchronization

XHFC-2S4U XHFC-4SU

5.3.8 External circuitry

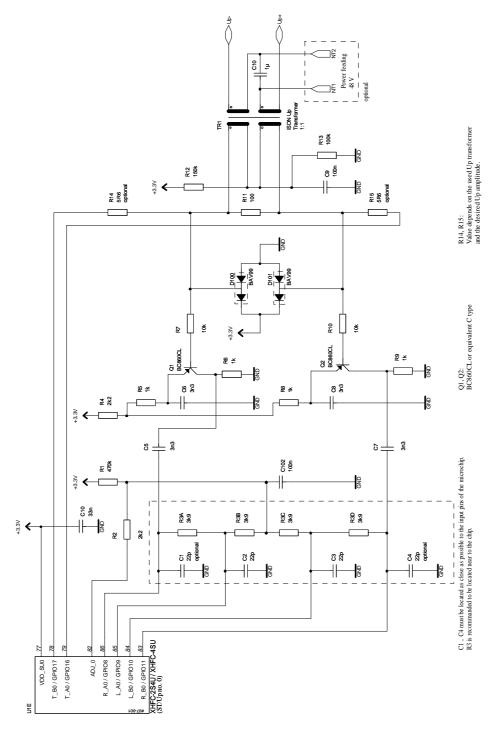


Figure 5.14: External U_{ρ} circuitry for TE and LT mode

5.3.9 U_p transformers

Customers of Cologne Chip can choose from a variety of U_p transformers for two-wire ISDN U_p interface (U_{p0}/U_{pN}) . All U_p transformers are compatible to the XHFC series of Cologne Chip that fulfill two criteria:

- Turns ratio of 1:1
- Dual winding on line side (required for power feeding)

Several companies provide transformers that can be used with our ISDN Basic Rate Interface controllers. Part numbers and manufacturers are listed in Table 5.11. Please ask our support team for more information.

The transformer list has not been compiled under aspects of RoHS compliance. For the current RoHS status of the listed parts, please contact the transformer manufacturers straight.

Table 5.11: Up transformer part numbers and manufacturers

UMEC GmbH, Germany, Taiwan, United States, http://www.umec.de

Type Device

Single transformer: UT 21434A-TS (SMD)

Vacuumschmelze GmbH & Co. KG, Germany, http://www.vacuumschmelze.com

Type Device

Single transformer: 3-M5024-X008 (SMD)

Sumida AG, Germany, http://www.sumida-eu.com (formerly known as Vogt electronic AG)

Type Device

Single transformer 503 10 903 00 (SMD)

Please note: Cologne Chip cannot take any liability concerning the product names, characteristics and availability. Products can change without notice. Please refer to the manufacturer in case of doubt.

5.4 Common features of the S/T and U_p interfaces

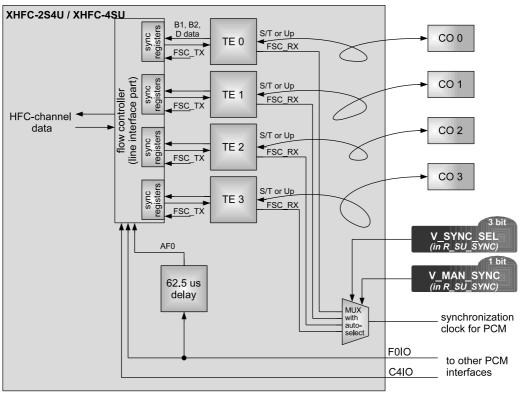
5.4.1 Direct data access for test purposes

Data accesses from the host processor are normally write operations to the FIFOs or read operations from the FIFOs. For test purposes it is also possible to access directly internal data registers. These registers

- A_B1_TX, A_B2_TX, A_D_TX and A_BAC_S_TX in transmit data direction and
- A_B1_RX, A_B2_RX, A_D_RX and A_E_RX in receive data direction

can only be read or written during non-processing phase of the data flow processor. This is indicated with $V_PROC = '0'$ in register R_STATUS . During processing phase ($V_PROC = '1'$), read values can be invalid and written values might be overwritten by the data flow processor.

Interrupt capability


Every line interface can cause an interrupt event when a state change occurs. State changes can be read from $V_SU0_IRQ...V_SU3_IRQ$ in register R_SU_IRQ for every line interface separately. All bits in R_SU_IRQ are cleared after reading the register.

Any '1' of these interrupt status bits cause an interrupt signal if the associated mask bit V_SU0_IRQMSK...V_SU3_IRQMSK in register R_SU_IRQMSK enables the interrupt. Register R_SU_IRQ can be read even if interrupts are disabled with V_SU0_IRQMSK...V_SU3_IRQMSK = '0000' and must be polled to watch the interrupt status in this case.

5.4.2 Clock synchronization with several TEs connected to different CO switches

Several TEs of the XHFC-2S4U/4SU line interfaces can be interconnected to different central offices (CO). These have different clock phases and, typically, slightly different clock frequencies. An example of this szenario is illustrated in Figure 5.15. XHFC-2S4U/4SU is able to synchronize all line interfaces as it is described in this section.

TE: Terminal Equipment (S/T or Up interface in TE mode) CO: Central office

Figure 5.15: Synchronization scenario with TEs connected to several central office switches

The sychronization registers of Figure 5.15 are shown in detail in Figure 5.16. Received and transmitted data is always buffered twice to achieve a synchronization on both sides, the HFC-channel and the line interface. The line interface data is always synchronous to its FSC pulse.

HFC-channel data is latched either by the FOIO signal or by the delayed AF0 signal. If there is a central clock supply from an external PLL, it can be used to provide the timing for XHFC-2S4U/4SU as shown in Figure 5.15. In the other case, the internal PLL can be used as master PLL of the ISDN system.

The window detection block changes it's output signal when the phase offset between FSC_TX and F0 is smaller than approximately $25 \,\mu s$ (guard window). So the phase offset between FSC_TX and F0 is always $25 \,\mu s \dots 100 \,\mu s$.

Timing without frequency drift

The timing characteristics of two TEs with a phase offset and the signals F0IO and AF0 are shown in Figure 5.17. In this example TE0 is synchronization source for the PLL. Thus the timing offset

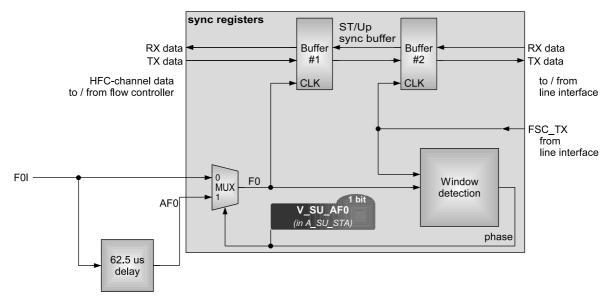


Figure 5.16: Synchronization registers (detail of Figure 5.15)

between FSC_TX_0 and F0IO is $62.5 \,\mu s$ (caused by the PLL). The figure shows one sample transmit data flow and one sample receive data flow on TE 0 and TE 1 each. In fact, both data transmissions happen every $125 \,\mu s$.

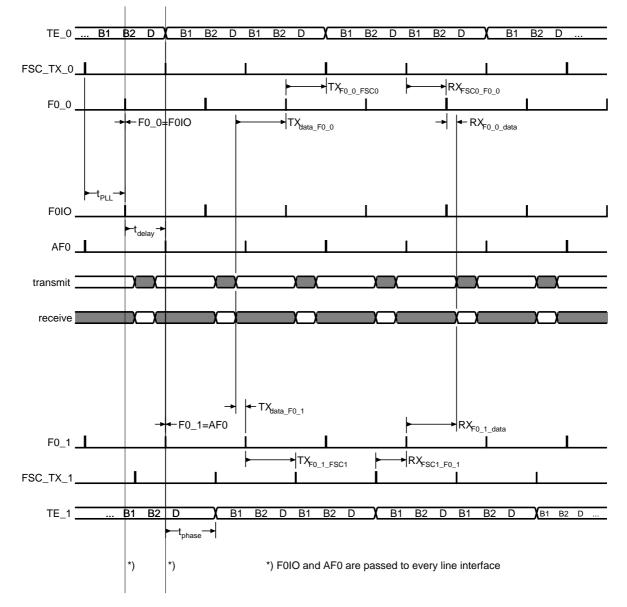

Symbol	Characteristic
t _{PLL}	PLL-generated frame pulse offset between FSC_TX_0 and F0IO (62.5 μ s)
t _{delay}	Frame pulse delay between F0IO and AF0 ($62.5 \mu s$)
t _{phase}	Frame offset between interface TE 0 and TE 1
TX _{data_F0_0}	Time from transmit data valid to next F0_0 pulse
TX _{F0_0_FSC0}	Time from F0_0 pulse to next FSC_TX_0 pulse
RX _{FSC0_F0_0}	Time from FSC_TX_0 pulse to next F0_0 pulse
RX _{F0_0_data}	Time from F0_0 pulse to receive data valid
TX _{data_F0_1}	Time from transmit data valid to next F0_1 pulse
TX _{F0_1_FSC1}	Time from F0_1 pulse to next FSC_TX_1 pulse
RX _{FSC1_F0_1}	Time from FSC_TX_1 pulse to next F0_1 pulse
RX _{F0_1_data}	Time from F0_1 pulse to receive data valid

Table 5.12:	Symbols of Figur	res 5.17
-------------	------------------	----------

Figure 5.17 is divided into three parts. The upper and lower part show the line interface oriented signals of TE 0 and TE 1 respectively. In the middle part, HFC-channel oriented signals are shown which are common for both line interfaces.

A PLL generates the F0IO signal from the FSC pulse of the synchronization source with $t_{PLL} = 62.5 \,\mu$ s. AF0 has a fixed 62.5 μ s delay to F0IO. The pseudo signals *transmit* and *receive* in Figure 5.17 represent the valid and invalid states of the HFC-channel data, strictly speaking input data of buffer

Figure 5.17: Transmit and receive data transmission examples of two TEs with phase offset (see explanation in the text)

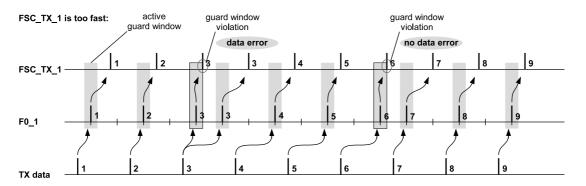
#1 in transmit direction and output data from buffer #1 in receive direction.

As TE 0 is the synchronization source in this example, FSC_TX_0 is the reference signal for the PLL to generate the F0IO signal. A data transmission from TE 0 has no choice of synchronization signals. Buffer #1 gets the data byte with a F0IO pulse and buffer #2 takes it with the next FSC_TX_0 pulse.

In receive direction, the incoming data byte is stored in buffer #2 first with the FSC_TX_0 pulse. After $RX_{FSC0_{F0_0}}$, buffer #1 takes the data byte where it becomes valid for the HFC-channel.

TE 1 gets the transmit data from the HFC-channel with the F0_1 pulse which comes $TX_{data_F0_1}$ after data became valid. The internal data transfer of each ST/U_p interface is controlled either by F0IO or by AF0. In this example F0_1 = AF0 is shown. $TX_{F0_1_FSC_1}$ after F0_1, the FSC_TX_1 pulse stores the data in buffer #2 so that the data byte is available at the line interface.

Received data is first stored in buffer #2 with the FSC_TX_1 pulse. After $RX_{FSC1_F0_1}$ buffer #1 takes the data byte and it receives the HFC-channel.


For the TE which acts as synchronization source, the clock pulses of buffer #1 and #2 have always a 62.5 μ s delay. Unsynchronized ST/U_p interfaces have clock pulses of buffer #1 and #2 that are delayed 25 μ s..100 μ s. The value depends on the phase offset t_{phase} between the synchronization source and the unsynchronized interface.

Timing with frequency drift

When there is a frequency drift between FSC_TX_0 and FSC_TX_1, the window detection block changes it's output level from time to time and the synchronization multiplexer output shown in Figure 5.16 switches to the other clock signal. When this happens, a data error might happen.

Figure 5.18 shows the synchronization process for $f_{FSC_TX_1} > f_{FSC_TX_0}$ in transmit data direction. FSC_TX_0 is assumed to be the synchronization signal which is the source for F0IO. F0_1 is either F0IO or AF0. In this case FSC_TX_1 is too fast which leads to a *byte doubling* in case of transmission error.

Every time, when the detection window reaches the FSC_TX_1 pulse, F0_1 jumps to the alternative signal. Every second jump a data error occurs as shown with byte 3 which is transmitted twice.

Figure 5.18: Data transmission with $f_{FSC_TX_1} > f_{FSC_TX_0}$ (i.e. too fast FSC_TX from unsynchronized TE)

Figure 5.19 shows the synchronization process for $f_{FSC_TX_1} < f_{FSC_TX_0}$ in transmit data direction. Again, FSC_TX_0 is assumed to be the synchronization signal. In this case FSC_TX_1 is too slow which leads to a *byte skip* in case of transmission error.

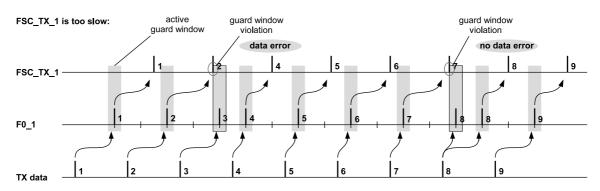
Every time, when the detection window reaches the FSC_TX_1 pulse, F0_1 jumps to the alternative

signal. Every second jump an error occurs as shown with the byte pair 3 and 4, where byte 3 is not transmitted.

The shown examples consider only the transmit data direction. A similar effect exists in receive data direction, of course. A too fast FSC_TX_1 leads to *byte skip* errors and a too slow FSC_TX_1 causes *byte doubling* errors from time to time.

The time between two errors is given by

$$T_{\rm error} = \frac{1}{f_{\rm FSC_TX_0}} \cdot \frac{1 + \Delta f_{\rm rel}}{\Delta f_{\rm rel}} \approx \frac{125\,\mu s}{\Delta f_{\rm rel}} \quad \text{for } \Delta f_{\rm rel} \ll 1$$


with the precise frame clock $f_{FSC_TX_0} = 8 \text{ kHz}$ and the relative frequency error

$$\Delta f_{\rm rel} = \frac{|f_{\rm FSC_TX_1} - f_{\rm FSC_TX_0}|}{f_{\rm FSC_TX_0}}$$

For example, with $\Delta f_{rel} = 0.01 \text{ ppm} = 10^{-8}$ the error-to-error time is $T_{error} = 208 \text{ minutes}$.

Frequency jitter

Even if both TEs have exactly the same frequency, there might be a F0-jump as well. Due to FSC jitter, the synchronization multiplexer can switch to the alternative signal. But this will happen only one time. Then, the guard window is centered between two consecutive FSC pulses and is far away from another jump condition. This single-jump condition might cause a byte error or not. It depends on the question, which one of the four jump situations shown in Figures 5.18 and 5.19 occurs and therefore it is a random event.

5.4.3 Combined S/T and Up circuitry

An external circuitry of the Universal ISDN Port can be set up which can be used for both S/T and U_p interface mode. This circuitry requires only one S/T transformer module which is used for U_p operating mode as well. The circuitry description is available on request.

5.5 Register description

Please note !

The name fragment SU of registers and bitmaps indicates those registers and bitmaps which are valid in both S/T and U_p interface mode. SU means 'ST/ U_p '.

The name fragments ST or UP are used when a register or bitmap is either valid in S/T or $\rm U_p$ interface mode.

5.5.1 Write only registers

R	_SU_SEL	-		(w)	(Reset group: H, 0, 3)	0x16
Tł	S/T or Up interface selection register This register is used to select an S/T or Up interface. Before a line interface array register can be accessed, this index register must specify the desired line interface number.					
	Bits	Reset value	Name	D	escription	
	10	0	V_SU_SEL	'0' '0' '0'	ngle line interface selection 00' = ST/Up interface 0 01' = ST/Up interface 1 10' = ST/Up interface 2 11' = ST/Up interface 3	
	2	0	(reserved)	М	ust be '0'.	
	3	0	V_MULT_SU	Al on '0'	ultiple line interface selection l line interfaces are selected together ly useful for write access. = interface selection by V_SU_SEL = select all line interfaces for write a	
	74	0	(reserved)	М	ust be '0000'.	

A	_SU_WR_	_STA [ST/	/Up]	(w)	(Reset group: H, 0, 3)	0x30
SI	ST/Up state machine register					
Tł	This register is used to set a new state. The current state can be read from register A_SU_RD_STA.					
B	Before writing this array register the line interface must be selected by register R_SU_SEL.					
		-	ay register the fine filter.		c selected by register H_00_0LL.	
	Bits	Reset value	Name	I	Description	
	30	0	V_SU_SET_STA	(Sinary value of the new state NT/LT: Gx, TE: Fx) '_SU_LD_STA must also be set to lo	ad the state.
	4	1	V_SU_LD_STA	,, a s c '((I	Load the new state ' = load the prepared state (V_SU_S nd stops the state machine. This bit r et for a minimum period of 5.21 µs and leared by software. ' = enable the automatic state machine V_SU_SET_STA is ignored). Note: After writing an invalid state, the machine goes to deactivated state (G1)	needs to be nd must be ne ne state
	65	0	V_SU_ACT	'('('. '	 tart activation / deactivation 00' = no operation 01' = no operation 0' = start deactivation 1' = start activation these bits are automatically cleared a me activated / deactivated state. 	fter reaching
	7	0	V_SU_SET_G2_G3	'(,. T	Allow G2 to G3 transition)' = no operation ' = allows transition from G2 to G3 is node this bit is automatically cleared after nd has no function in TE mode.	

A	_SU_CTR	LO [ST/U]	<u>p]</u>	(w) (Reset group: H, 0, 3) 0x31
C	ontrol reg	ister of th	e selected line interface	e, register 0
Be	efore writing	ng this arr	ay register the line interfa	face must be selected by register R_SU_SEL.
	Bits	Reset value	Name	Description
	0	0	V_B1_TX_EN	 B1-channel transmit '0' = B1 send data disabled (permanent '1's sent when the line interface is activated) '1' = B1 send data enabled Note: When the bit scrambler is activated in Up line interface mode (default operation mode), this bit must be set to '1' even if the B1-channel is not in use.
	1	0	V_B2_TX_EN	 B2-channel transmit '0' = B2 send data disabled (permanent '1's sent when the line interface is activated) '1' = B2 send data enabled Note: When the bit scrambler is activated in Up line interface mode (default operation mode), this bit must be set to '1' even if the B2-channel is not in use.
	2	0	V_SU_MD	Line interface mode '0' = TE mode '1' = NT/LT mode
	3	0	V_ST_D_LPRIO	D-channel priority '0' = high priority 8/9 '1' = low priority 10/11 Note: This bit is only used for line interfaces in S/T mode. It is ignored in Up interface mode.
	4	0	V_ST_SQ_EN	 S/Q bits transmission '0' = S/Q bits disabled '1' = S/Q bits (multiframe) enabled Note: This bit is only used for line interfaces in S/T mode. It is ignored in Up interface mode.
	5	0	V_SU_TST_SIG	 Send test signal '0' = normal operation '1' = send test signal The test signal depends on the selected line interface mode and V_SU_2KHZ in register A_SU_CTRL2: S/T interface mode: Test signal is 96 kHz (alternating '0's) or 2 kHz (one alternating '0' per frame) Up interface mode: Test signal is 192 kHz (alternating '1's) or 2 kHz (one alternating '1' per frame)

(continued on next page)

(continued from previous page)

Bits	Reset value	Name	Description
6	0	V_ST_PU_CTRL	End of pulse control The end of pulse edge of the transmit signal can be adjusted in S/T interface mode. The programming value of V_ST_PULSE in register A_ST_CTRL3 specifies the end of pulse edge. '0' = no end of pulse control '1' = end of pulse control enabled Note: This bit is only used for line interfaces in S/T mode. It is not used in Up interface mode and must be '0'.
7	0	V_SU_STOP	Power down '0' = external receiver activated '1' = power down, external receiver disabled

A_SU_	CTRL1 [ST/U]	p] (1	w) (Reset group: H, 0, 3)	0x32
Control	register of th	e selected line interface, re	egister 1	
Before v	writing this arr	ay register the line interface	must be selected by register R_SU_SEL.	
Bits	Reset value	Name	Description	
0	0	V_G2_G3_EN	Force automatic transition from G2 to '0' = V_SU_SET_G2_G3 in register A_SU_WR_STA must be set again for every transition from G2 to G3 '1' = transitions from G2 to G3 are alway and V_SU_SET_G2_G3 is ignored	very
1	0	(reserved)	Must be '0'.	
2	0	V_D_RES	D-channel reset '0' = normal operation '1' = D-channel is reset and its bits are fo in transmit direction	rced to '1'
3	0	V_ST_E_IGNO	Ignore E-channel data This bit is only used for line interfaces in mode. D-channel data is immediately ser interface mode.	
			 '0' = normal operation '1' = D-channel always sends data regard received E-channel bit Note: This bit is only used in TE mode a ignored in NT mode. 	
4	0	V_ST_E_LO	 Force E-channel to low (only in NT mode) '0' = normal operation, E-channel bits ech received D-channel data '1' = E-channel bits are forced to '0' Note: This bit is only used for line interf S/T mode. It is ignored in Up interface m 	aces in
5	0	(reserved)	Must be '0'.	
6	0	V_BAC_D	 BAC-bit disables D-channel transmit '0' = D-channel transmission is enabled '1' = Bac-bit is used to enable or disable b transmission Note: This bit is only used for line interf S/T mode. It is ignored in Up interface m 	aces in
7	0	V_B12_SWAP	Swap B-channels '0' = normal operation '1' = swap B1- and B2-channel registers of interface	of the line

۹_	SU_CTR	L2 [ST/Up]	(w) (Reset group: H, 0, 3) 0x3
Co	ntrol regi	ster of the	e selected line interface	e, register 2
Be	fore writin	ng this arra	y register the line interfa	face must be selected by register R_SU_SEL.
	Bits	Reset value	Name	Description
	0	0	V_B1_RX_EN	Enable B1-channel receive '0' = B1 receive bits are forced to '1' '1' = normal operation
	1	0	V_B2_RX_EN	Enable B2-channel receive '0' = B2 receive bits are forced to '1' '1' = normal operation
	2	0	V_MS_SSYNC2	Multiframe/superframe single synchronization pulse The multiframe/superframe synchronization pulse can be configured to occur only once when this bit is set to '1'.
				S/T interface mode: '0' = normal multiframing bit M is transmitted (once every 20 S/T frames) '1' = single multiframing bit can be transmitted
				Up interface mode: '0' = normal T-bit is transmitted in Up superframe '1' = single T-bit = '0' can be transmitted at T-bit position in the Up superframe (normal T-bit sources must be '1')
				Note: When this bit is set to '1', usually also V_MS_SSYNC1 has to be set in register R_MSS1
	3	0	V_BAC_S_SEL	 Multiframe / superframe bit source selection This bit has different meaning for line interfaces in S/T or Up mode: S/T interface mode: Source selection of multiframe S/Q-bits and multiframing bit M Up interface mode: Source selection of superframe S- and T-bits
				'0' = bits come from register A_BAC_S_TX '1' = bits come from D-channel register A_D_TX
				Note: Further source selection is available with register A_MS_DF.
	4	0	V_SU_SYNC_NT	8 kHz synchronization pulses of the line interface path are generated even in NT mode. '0' = pulses are only generated in TE mode '1' = pulses are generated in TE and NT mode

(continued on next page)

(continued from previous page)

Bits	Reset value	Name	Description
5	0	V_SU_2KHZ	Select test signal frequency '0' = transmit 96 kHz (S/T interface mode) or 192 kHz (Up interface mode) test signal '1' = transmit 2 kHz test signal The test signal must be switched on with V_SU_TST_SIG = '1' in register A_SU_CTRL0.
6	0	V_SU_TRI	Line interface ouput buffer tristated '0' = normal operation '1' = set output buffer into tristate mode (i.e. transmitter is switched off)
7	0	V_SU_EXCHG	Exchange transmit output buffers Change of the polarity of the line interface output pins. This is equal to an external crossing of the two transmit pins.

A	_MS_TX [[ST/Up]	(w)	(Reset group: H, 0, 3) 0x34
Μ	ultiframe	/ superfra	ame transmit register	
Ве	efore writi	ng this arr	ay register the line interface m	ust be selected by register R_SU_SEL.
	Bits	Reset value	Name	Description
	30	0	V_MS_TX	 Multiframe / superframe bits The meaning of this bitmap depends on the selected line interface mode: S/T interface mode: S/Q bits to be transmitted in the multiframe. Bits [30] are Q bits [Q1,Q2,Q3,Q4] in TE mode and S bits [S1,S2,S3,S4] in NT mode. Up interface mode: T bits to be transmitted in the superframe (M-channel). Bits [30] are T bits [T1a,T1b,T2a,T2b].
	54	0	(reserved)	Must be '00'.
	6	0	V_UP_S_TX	 S-bit of the Up superframe S-bit to be transmitted in the superframe (M-channel). The S-bit can be read from registers A_D_TX or A_BAC_S_TX alternatively. Note: This bit is only used for line interfaces in Up interface mode. It must be '0' in S/T interface mode.
	7	0	(reserved)	Must be '0'.

A	_ST_CTR	L3 [ST/Up] (1	w)	(Reset group: H, 0, 3)	0x35
C	ontrol reg	ister of th	e selected line interface, re	egister 3		
В	efore writi	ng this arra	y register <i>and</i> a multi-regist y register the line interface is required with bit V_ST_	must be s	selected by register R_SU_SEL . After ''''''''''''''''''''''''''''''''''''	wards the
		-	only used in S/T interface is in Up mode.	mode an	d should be 0xF8. See register A_UF	2_CTRL3
	Bits	Reset value	Name	Des	scription	
	0	0	V_ST_SEL	Thi line '0' = mu '1' = A	e interface mode selection s bit selects either the S/T or Up mode interface. = line interface is in S/T mode and lti-register A_ST_CTRL3 is selected = line interface is in Up mode and mult UP_CTRL3 is selected te: This bit should only be changed aft	ti-register
	71	0	V_ST_PULSE	The	d of pulse control e shape of the pulse end can be adjusted bitmap. V_ST_PULSE = 0x7C should d.	

Α_	_UP_CTR	RL3 [ST/Up	p] (w)	(Reset group: H, 0, 3) 0x35
Co	ontrol reg	ister of th	e selected line interface, regis	ter 3
Be	efore writin	ng this arra	y register <i>and</i> a multi-register. ay register the line interface mus n is required with bit V_UP_SE	st be selected by register R_SU_SEL. Afterwards the EL = '1' in this register.
	ote: This r in S/T mo		only used in Up interface mode	e. See register A_ST_CTRL3 when the line interface
	Bits	Reset value	Name	Description
	0	0	V_UP_SEL	Line interface mode selection This bit selects either the S/T or Up mode of the line interface. '0' = line interface is in S/T mode and multi-register A_ST_CTRL3 is selected '1' = line interface is in Up mode and multi-register A_UP_CTRL3 is selected Note: This bit should only be changed after reset.
	1	0	V_UP_VIO	Up activation after superframe violation '0' = activation is done even without a superframe violation '1' = activation is only done when a superframe violation is found
	2	0	V_UP_DC_STR	DC-balancing mode '0' = The DC-balancing bit is only generated when a code violation (CV) has been sent in the M bit position (normal operation) '1' = The DC-balancing bit is always generated as parity bit to achieve a DC-free signal Note: DC-balancing must be enabled with V_UP_DC_OFF = '0' to generate DC-balancing bits
	3	0	V_UP_DC_OFF	DC-balancing bit disabled '0' = normal operation '1' = The DC-balancing bit is always '0'
	4	0	V_UP_RPT_PAT	Allow repeated patterns of scrambled data '0' = prevent repeated patterns as specified in bit V_UP_SCRM_MD (normal operation) '1' = repeated patterns are not prevented
	5	0	V_UP_SCRM_MD	Scrambler / descrambler mode selection '0' = OCTAT-P mode (compatible to Siemens / Infineon Up microchips) '1' = V.27 mode (compatible to ITU-T V.27 specification) Note: V_UP_RPT_PAT must be '0' to prevent repeated patterns.

(continued on next page)

(continued from previous page)

value	Name	Description
0	V_UP_SCRM_TX_OFF	Transmit scrambler disabled The transmit data is not scrambled when this bit is set to '1'. The scrambler is bypassed in this case.
0	V_UP_SCRM_RX_OFF	Receive descrambler disabled The receive data is not descrambled when this bit is set to '1'. The descrambler is bypassed in this case.
	0	0 V_UP_SCRM_TX_OFF

A _	_MS_DF [ST/Up]		(w) (Reset group: H, 0, 3) 0x36
M	ultiframe	/ superfra	me data flow configurat	ion register
Be	fore writir	ng this arra	ay register the line interfac	ce must be selected by register R_SU_SEL.
	Bits	Reset value	Name	Description
	0	0	V_BAC_NINV	No BAC-bit inversion '0' = invert BAC-bit '1' = no inversion of BAC-bit
	1	0	V_SG_AB_INV	Invert S/G or A/B bit '0' = normal operation '1' = invert S/G or A/B bit (depending on V_SQ_T_DST)
	2	0	V_SQ_T_SRC	Source of S/Q-bits (S/T multiframe) or T-bits (Up superframe) '0' = S/Q- or T-bits come from bitmap V_MS_TX in register A_MS_TX '1' = S/Q- or T-bits come from BAC-bit of D- or E-channel (depending on V_BAC_S_SEL)
	3	0	V_M_S_SRC	 Source of M-bit (S/T multiframing bit) or S-bit (Up superframe) S/T interface mode: The meaning of this bit depends on the selected line interface mode: '0' = multiframing bit M comes from multiframe / superframe controller '1' = multiframing bit M comes from D- or E-channel (depending on V_BAC_S_SEL) Up interface mode: '0' = superframe bit S comes from bit V_UP_S_TX in register A_MS_TX '1' = superframe bit S comes from D- or E-channel (depending on V_BAC_S_SEL)
	4	0	V_SQ_T_DST	Destination of S/Q-bits (S/T multiframe) or T-bits (Up superframe) '0' = received bits are stored as S/G-bit in D- and E-channel registers '1' = received bits are stored as A/B-bit in D- and E-channel registers The unused destination bit is always '1'.
	5	0	V_SU_RX_VAL	Value of unused bits in received D- and E-channel The unused bits [31] in registers A_D_RX and A_E_RX are set to V_SU_RX_VAL.
	76	0	(reserved)	Must be '00'.

A	_SU_CLK	K_DLY [ST	T/Up]	(w)	(Reset group: H, 0, 3)	0x37
			r of the line interface i		zed before activating the ST/Up sta	te machine.
	-				selected by register R_SU_SEL.	
	Bits	Reset value	Name	De	scription	
	30	0	V_SU_CLK_DLY	TI the Th ca sm din mo ex NT sau inp is LI bit in Th	ne interface clock delay C mode (S/T or Up): 4 bit delay val 2 bit delay between receive and tra e delay of the external line interface n be compensated. The lower the val- aller the delay between receive and ection. The suitable value is 0xE (S/ ode) or 0xF (Up interface mode) for ternal circuitries. C mode (for S/T interface mode on nple point. The lower the value the bout data is sampled. The normal ope 0xC. C mode (for Up interface mode onl map is not used when the line interf Up mode. e steps are 163 ns for line interfaces in U	nsmit frame. circuitry lue the transmit /T interface normal ly): Data earlier the ration value y): This ace operates in S/T
	64	0	V_ST_SMPL	(N Lc co va Th co No	rly edge input data shaping T mode only) w pass characteristic of extended bunfigurations can be compensated. Thue the earlier input data pulses are see default value is 6 ('110') which mempensation is carried out. Step size ste: This bit is only used for line interfact	ne lower the sampled. eans that no is 163 ns. erfaces in
	7	0	(reserved)	M	ıst be '0'.	

Α_	_B1_TX	[ST/Up]		(w)	(Reset group: –)	0x3C
Tr	ansmit r	egister for	r the B1-channel d	ata		
sh	ould be u	sed to writ	te data instead.		nd need not be accessed by th ected by register R_SU_SEL.	e user. FIFOs
	Bits	Reset value	Name	Descr	ption	
	70		V_B1_TX	Data c	annel data byte an be written during the non-p (see V_PROC in register R_S	U

Α.	_B2_TX	[ST/Up]		(w)	(Reset group: –)	0x3D
Tı	ansmit r	egister for	r the B2-channel d	ata		
sh	ould be u	sed to writ	te data instead.		nd need not be accessed by th	
Be	efore writ	ing this ar	ray register the line	interface must be sel	ected by register R_SU_SEL.	
	Bits	Reset value	Name	Descri	ption	
	70		V_B2_TX	Data c	annel data byte an be written during the non-p (see V_PROC in register R_S	U

A_D_T	X [ST/Up]		(w)	(Reset group: -)	0x3E
Transm	it register for	the D-channel data			
-		n automatically by the flow e data instead.	controller	and need not be accessed by the	user. FIFOs
	U	ray register the line interfac -processing phase (see V_F		selected by register R_SU_SEL. gister R_STATUS).	Data can be
Bits	Reset value	Name	Desc	ription	
0		V_D_TX_S	The t eithe V_M Whe	t of the Up superframe transmitted S-bit of the Up superfr r taken from V_D_TX_S, V_S_T S_TX. n the line interface is in S/T mode, sed as multiframing bit M.	X or
4	1	(reserved)	Must	t be '0000' when written.	
5		V_D_TX_BAC	mult Alter A_M	bit BAC-bit can be used as S/Q-bit (S/ iframe) or T-bit (Up superframe). matively, bitmap V_MS_TX in reg S_TX can be used for the iframe / superframe transmission.	
7	5	V_D_TX	D-ch	annel data bits	

A_BAC_S	_ TX [ST/U	p]	(w)	(Reset group: –)	0x3F
BAC-bit ar	nd S-bit for	r multiframe/super	frame transmissio	on	
U		n automatically by th e data instead.	e flow controller a	and need not be accessed by the	e user. FIFOs
		ay register the line in processing phase (se		elected by register R_SU_SEL ister R_STATUS).	. Data can be
Bits	Reset value	Name	Descr	iption	
0		V_S_TX	The tr either V_D_ When	of the Up superframe ansmitted S-bit of the Up super be taken from V_D_TX_S, V_ TX_S. the line interface is in S/T mod d as multiframing M-bit.	S_TX or
41		(reserved)	Must	be '0000' when written.	
5		V_BAC_TX	multif Alterr A_MS	bit AC-bit can be used as S/Q-bit (rame) or T-bit (Up superframe) latively, bitmap V_MS_TX in re S_TX can be used for the rame / superframe transmission.	egister
76		(reserved)	Must	be '00' when written.	

5.5.2 Read only registers

R_AF0_OVIEW (r)(Reset group: H, 0, 3) $0x13$

Alternate frame synchronization signal overview register

This register reports the status of FSC selection of all line interfaces. FSC can either be the F0IO signal or the AF0 signal. The register value can be stored by the application software to detect any frequency slips. An interrupt can be enabled which indicates a change of this register (see V_SLIP_IRQMSK in register R_MISC_IRQMSK).

Bits	Reset value	Name	Description
0	0	V_SU0_AF0	FSC selection for line interface 0 This bit is equal to A_SU_STA with line interface 0 being selected.
1	0	V_SU1_AF0	FSC selection for line interface 1 This bit is equal to A_SU_STA with line interface 1 being selected.
2	0	V_SU2_AF0	FSC selection for line interface 2 This bit is equal to A_SU_STA with line interface 2 being selected.
3	0	V_SU3_AF0	FSC selection for line interface 3 This bit is equal to A_SU_STA with line interface 3 being selected.
74		(reserved)	

A_SU_	_RD_STA [ST/	[Up]	(r)	(Reset group: H, 0, 3)	0x30
ST/Up state machine register This register is used to read the current state. A new state can be set with register A_SU_WR_STA. Before reading this array register the line interface must be selected by register R_SU_SEL.					
Bit	s Reset value	Name	De	scription	
3	0 0	V_SU_STA		/Up state hary value of current state (NT/LT: 0	Gx, TE: Fx)
4	0	V_SU_FR_SYNC	'0'	ame synchronization = not synchronized = synchronized	
5	0	V_SU_T2_EXP		ner T2 expired = timer T2 expired (NT/LT mode or	ıly)
6	0	V_SU_INFO0		FO 0 = receiving INFO 0	
7	0	V_G2_G3	'0' '1' Th	to G3 transition allowed = no operation = allows transition from G2 to G3 in de is bit is automatically cleared after t I has no function in TE mode.	

A_SU_DLYL [ST/Up]	(r)	(Reset group: –)	0x31
	(-)	()	

NT-TE-NT/LT-TE-LT delay

This register shows the round trip delay and is only valid in NT/LT mode. It is updated once every 250 µs.

Line interface in S/T mode: This register reports the delay between the F-/L-bit transition of the transmit frame to the F-/L-bit transition of the receive frame of a device in NT mode. The resolution is $t_0 = 1/6.144 \text{ MHz} = 1/32 \text{ bit length} = 162.8 \text{ ns.}$ The minimum delay is 2 bit times because of the NT/TE frame offset.

Line interface in Up mode: This register reports the *end of transmit frame* to *begin of receive frame* delay of a device in LT mode. The resolution is $t_0 = 1/12.288$ MHz = 1/32 bit length = 81.4 ns. The minimum delay is 2 bit times because of the guard time.

In both line interface modes, the round trip delay is measured within a 10 bit range. The lower 5 bits can be read from this register, the upper 5 bits are stored in register A_SU_DLYH.

Before reading this array register the line interface must be selected by register R_SU_SEL.

Bits	Reset value	Name	Description
40		V_SU_DLYL	Lower part of the round trip delay The lower part of the delay time $t_{dly,l} = t_0 \cdot V_SU_DLYL$. Register A_SU_DLYH must also be read to obtain the whole delay $t_{dly} = t_{dly,l} + t_{dly,h}$. S/T interface mode: $0 = delay t_{dly,l} = 0 \text{ ns}$ $1 = delay t_{dly,l} = 162.8 \text{ ns}$ $2 = delay t_{dly,l} = 325.5 \text{ ns}$ $3 = delay t_{dly,l} = 488.3 \text{ ns}$ $31 = delay t_{dly,l} = 5045.6 \text{ ns}$ Up interface mode: $0 = delay t_{dly,l} = 81.4 \text{ ns}$ $2 = delay t_{dly,l} = 162.8 \text{ ns}$ $3 = delay t_{dly,l} = 244.1 \text{ ns}$ $31 = delay t_{dly,l} = 2522.8 \text{ ns}$
75		(reserved)	

A_SU_DLYH [ST/Up]	(r)	(Reset group: –)	0x32
-------------------	--------------	------------------	------

NT-TE-NT / LT-TE-LT delay

This register shows the round trip delay and is only valid in NT/LT mode. It is updated once every 250 µs.

Line interface in S/T mode: This register reports the delay between the F-/L-bit transition of the transmit frame to the F-/L-bit transition of the receive frame of a device in NT mode. The resolution is $t_0 = 1/6.144$ MHz = 1/32 bit length = 162.8 ns. The minimum delay is 2 bit times because of the NT/TE frame offset.

Line interface in Up mode: This register reports the *end of transmit frame* to *begin of receive frame* delay of a device in LT mode. The resolution is $t_0 = 1/12.288 \text{ MHz} = 1/32 \text{ bit length} = 81.4 \text{ ns}$. The minimum delay is 2 bit times because of the guard time.

In both line interface modes, the round trip delay is measured within a 10 bit range. The lower 5 bits are stored in register A_SU_DLYL, the upper 5 bits can be read from this register. if only this register is read, the resolution is $32 \cdot t_0 = 5.208 \,\mu\text{s}$ for a line interface in S/T mode and $32 \cdot t_0 = 2.604 \,\mu\text{s}$ for a line interface in Up mode, which is the length of one bit in both cases.

Before reading this array register the line interface must be selected by register R_SU_SEL.

Bits	Reset value	Name	Description
40		V_SU_DLYH	Upper part of the round trip delay The upper part of the delay time $t_{dly,h} = 32 \cdot t_0 \cdot V_SU_DLYH.$ Register A_SU_DLYL can be read to obtain the fractional part of a bit time delay. S/T interface mode: $0 = delay t_{dly,h} = 0 \mu s$ $1 = delay t_{dly,h} = 5.208 \mu s$ $2 = delay t_{dly,h} = 10.416 \mu s$ $3 = delay t_{dly,h} = 15.625 \mu s$ $31 = delay t_{dly,h} = 161.458 \mu s$ Up interface mode: $0 = delay t_{dly,h} = 0 \mu s$ $1 = delay t_{dly,h} = 2.604 \mu s$ $2 = delay t_{dly,h} = 5.208 \mu s$ $3 = delay t_{dly,h} = 7.812 \mu s$ $31 = delay t_{dly,h} = 80.729 \mu s$
75		(reserved)	

A.	_MS_RX	[ST/Up]	(r)	(Reset group: H, 0, 3) 0x34			
Μ	Multiframe/superframe receive register						
В	Before reading this array register the line interface must be selected by register R_SU_SEL.						
	Bits	Reset value	Name	Description			
	30		V_MS_RX	 Multiframe / superframe bits The meaning of this bitmap depends on the selected line interface mode: S/T interface mode: S/Q bits received in the multiframe. Bits [30] are S bits [S1,S2,S3,S4] in TE mode and are Q bits [Q1,Q2,Q3,Q4] in NT mode. Up interface mode: T bits received in two consecutive superframes (M-channel). Bits [30] are T bits [T1a,T1b,T2a,T2b]. 			
	4	0	V_MS_RX_RDY	 Received multiframe / superframe ready S/T interface mode: This bit gets '1' when a complete S or Q multiframe has been received and is ready to get read. Up interface mode: This bit gets '1' when two complete T superframes have been received and are ready to get read. Reading this register clears this bit. 			
	5		(reserved)				
	6		V_UP_S_RX	 S-bit of the Up superframe Last received S-bit of the superframe (M-channel). The S-bit is also stored in registers A_D_RX and A_E_RX. Note: This bit is only used for line interfaces in Up mode. It is undefined in S/T interface mode. 			
	7	0	V_MS_TX_RDY	Transmitted multiframe/superframe ready S/T interface mode: This bit gets '1' when new S- or Q-bits can be written into register A_MS_TX Up interface mode: This bit gets '1' when a set of new T-bits can be written into register A_MS_TX Writing to register A_MS_TX clears this bit.			

Status register of the line interface Before reading this array register the line interface must be selected by register R_SU_SEL. Note: Only bit V_SU_AF0 is used for line interfaces in either S/T or Up mode. All other bits or are only used in S/T interface mode. Bits Reset value Name 0 0 V_ST_D_HPRIO9 Current D-channel priority state if I priority is selected When high D-channel priority is selected When high D-channel priority is selected	-
Note: Only bit V_SU_AF0 is used for line interfaces in either S/T or Up mode. All other bits of are only used in S/T interface mode. Bits Reset value Name Description 0 0 V_ST_D_HPRIO9 Current D-channel priority state if I priority is selected When high D-channel priority is select V_ST_D_LPRIO = '0' in register A_S	-
Bits Reset value Name Description 0 0 V_ST_D_HPRIO9 Current D-channel priority state if I priority is selected When high D-channel priority is select V_ST_D_LPRIO = '0' in register A_S	-
Bits Name Description 0 0 V_ST_D_HPRIO9 Current D-channel priority state if I priority is selected When high D-channel priority is select V_ST_D_LPRIO = '0' in register A_S	high
priority is selected When high D-channel priority is selec V_ST_D_LPRIO = '0' in register A_S	high
this bit reports the current access prior number of '1's before a D-channel acc allowed. '0' = 8 bits '1' '1' = 9 bits '1' Note: This bit is only valid in S/T inte	eted with SU_CTRL0, rity, i.e. the cess is
1 0 V_ST_D_LPRIO11 Current D-channel priority state if I is selected When low D-channel priority is select V_ST_D_LPRIO = '1' in register A_S this bit reports the current access prior number of '1's before a D-channel acc allowed. '0' = 10 bits '1' '1' = 11 bits '1' Note: This bit is only valid in S/T interval	ted with SU_CTRL0, rity, i.e. the cess is
2 0 V_ST_D_CONT D-channel contention This bit reports a difference between I E-channel. '0' = no contention occured '1' = contention occured in the last fram Note: This bit is only valid in S/T inter-	me
3 0 V_ST_D_ACT D-channel active This bit has the value '1' when the D-c just transmitting data. Note: This bit is only valid in S/T inter	
64 (reserved)	

(continued on next page)

(continued from previous page)

Bits	Reset value	Name	Description
7	0	V_SU_AF0	FSC selection The frame synchronisation clock can either be the F0IO input signal or the AFO signal which is F0IO delayed for 62.5μ s. This bit reports the current selection and can be stored by the application software to detect changes. An interrupt can be enabled which indicates a change of this bit (see V_SLIP_IRQMSK in register R_MISC_IRQMSK) '0' = F0IO used '1' = AF0 used This bit is also available in the overview register R_AF0_OVIEW.

Α_	_B1_RX [[ST/Up]		(r)	(Reset group: -)	0x3C
Re	eceive reg	ister for t	he B1-channel dat	a		
be	used to re	ead data in	stead.		need not be accessed by the user. selected by register R_SU_SEL.	FIFOs should
DC		ing uns an	ay register the fille	Interface must be	selected by legister H_50_5LL.	
	Bits	Reset value	Name	Des	cription	
	70		V_B1_RX	In a puls pha	channel data byte ctivated state data is valid after a l se and can be read during the non- se (see V_PROC in register R_ST ister value is 0xFF in deactivated	processing TATUS).

A	_B2_RX	[ST/Up]		(r)	(Reset group: -)	0x3D
Re	eceive re	gister of th	ne B2-channel dat	a		
be	used to 1	ead data ir	nstead.		eed not be accessed by the user.	FIFOs should
	Bits	Reset value	Name	Descr	iption	
	70		V_B2_RX	In acti pulse phase	annel data byte vated state data is valid after a and can be read during the non- (see V_PROC in register R_ST er value is 0xFF in deactivated	processing TATUS).

A_D_RX [ST	/Up]	(r)	(Reset group: –) 0x3E
Receive regis	ter for the D-channel	data	
	s read automatically by d data instead.	the flow controller	and need not be accessed by the user. FIFOs should
			t be selected by register R_SU_SEL. Data is valid the non-processing phase (see V_PROC in register
Rite	Reset value Name		Description
0	V_D_RX_S		S-bit of the Up superframe Last received S-bit of the superframe (M-channel). The S-bit is also stored in registers A_E_RX and A_MS_RX. Note: This bit is only used for line interfaces in Up mode. It is undefined in S/T interface mode.
31	(reserved)		A read access to these unused bits returns the value of V_SU_RX_VAL in register A_MS_DF.
4	V_D_RX_A		A/B-bit When V_SQ_T_DST = '1', V_D_RX_AB contains either the last received S/Q-bit of the S/T multiframe or the last received T-bit of the Up superframe. V_D_RX_AB is constant '1' when V_SQ_T_DST = '0'. The A/B-bit can also be read from register A_E_RX.
5	V_D_RX_S		S/G-bit When V_SQ_T_DST = '0', V_D_RX_SG contains either the last received S/Q-bit of the S/T multiframe or the last received T-bit of the Up superframe. V_D_RX_SG is constant '1' when V_SQ_T_DST = '1'. The S/G-bit can also be read from register A_E_RX.
76	V_D_RX		D-channel data bits Data is valid after a F0IO or AF0 pulse and can be read during the non-processing phase (see V_PROC in register R_STATUS).

A_E_RX [ST/Up]	(r)	(Reset group: –)	0x3F
----------------	--------------	------------------	------

Receive register for the E-channel data

This register is read automatically by the flow controller and need not be accessed by the user. FIFOs should be used to read data instead.

Before reading this array register the line interface must be selected by register R_SU_SEL . Data is valid after a F0IO or AF0 pulse and can be read during the non-processing phase (see V_PROC in register R_STATUS).

Bits	Reset value	Name	Description
0		V_E_RX_S	S-bit of the Up superframe Last received S-bit of the superframe (M-channel). The S-bit is also stored in registers A_D_RX and A_MS_RX. Note: This bit is only used for line interfaces in Up mode. It is undefined in S/T interface mode.
31		(reserved)	A read access to these unused bits returns the value of V_SU_RX_VAL in register A_MS_DF.
4		V_E_RX_AB	A/B-bit When V_SQ_T_DST = '1', V_E_RX_AB contains either the last received S/Q-bit of the S/T multiframe or the last received T-bit of the Up superframe. V_E_RX_AB is constant '1' when V_SQ_T_DST = '0'. The A/B-bit can also be read from register A_D_RX.
5		V_E_RX_SG	S/G-bit When V_SQ_T_DST = '0', V_E_RX_SG contains either the last received S/Q-bit of the S/T multiframe or the last received T-bit of the Up superframe. V_E_RX_SG is constant '1' when V_SQ_T_DST = '1'. The S/G-bit can also be read from register A_D_RX.
76		V_E_RX	E-channel data bits Data is valid after a F0IO or AF0 pulse and can be read during the non-processing phase (see V_PROC in register R_STATUS).

Chapter 6

PCM interface

Write only	v registers:		Read only	registers:	
Address	Name	Page	Address	Name	Page
0x10	R_SLOT	255	0x18	R_F0_CNTL	273
0x14	R_PCM_MD0	256	0x19	R_F0_CNTH	273
0x15	R_SL_SEL0	257	0x1D	R_SL_MAX	273
0x15	R_SL_SEL1	258	0x28	R_CI_RX	274
0x15	R_SL_SEL7	258	0x29	R_GCI_STA	275
0x15	R_MSS0	259	0x2A	R_MON_RX	275
0x15	R_PCM_MD1	261			
0x15	R_PCM_MD2	263	Read / wri	te registers:	
0x15	R_MSS1	265	Address	Name	Page
0x15	R_SH0L	266		ivanie	1 age
0x15	R_SH0H	266	0xD0	A_SL_CFG	276
0x15	R_SH1L	266			
0x15	R_SH1H	267			
0x17	R_SU_SYNC	268			
0x28	R_CI_TX	269			
0x29	R_GCI_CFG0	270			
0x2A	R_GCI_CFG1	272			
0x2B	R_MON_TX	272			

Table 6.1: Overview of the XHFC-2S4U/4SU PCM interface registers

6.1 PCM interface function

XHFC-2S4U/4SU can operate in PCM master mode or PCM slave mode. This is selected with V_PCM_MD in register R_PCM_MD0.

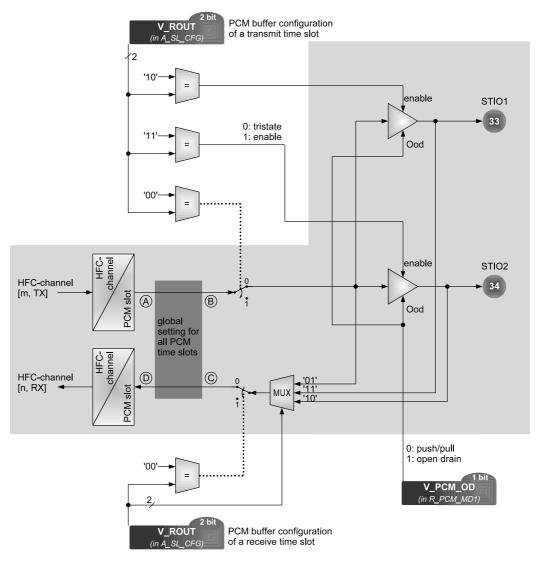
The PCM data rate is programmable for PCM master mode as shown in Table 6.2. FOIO has always a frequency of 8 kHz. Each time slot has a width of eight bits.

V_PCM_DR in register R_PCM_MD1	C4IO clock output	Number of time slots	Data rate	Name
'00'	4.096 MHz	32	2 MBit/s	PCM30
'01'	8.192 MHz	64	4 MBit/s	PCM64
'10'	16.384 MHz	128	8 MBit/s	PCM128
'11'	1.536 MHz	12	0.75 MBit/s	

 Table 6.2: PCM master mode

When PCM slave mode is selected, the number of PCM time slots is derived from the C4IO input frequency and V_PCM_DR is ignored. Any frequency

 $f(C4IO) = n \cdot 128 \text{ kHz}$ with n = 1..128


is allowed and leads to *n* PCM time slots. F0IO must always have a frequency of 8 kHz.

XHFC-2S4U/4SU has two PCM data pins STIO1 and STIO2 which can both be input or output. Data direction can be selected for every time slot independently.

6.2 PCM data flow

The PCM data flow is shown in Figure 6.1. The input and output behavior has to be programmed with bitmap V_ROUT in array register A_SL_CFG[SLOT]. Every time slots has its own configuration.

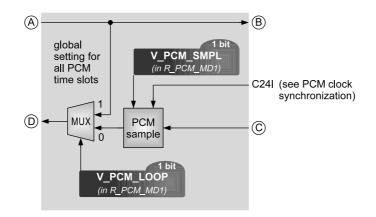


Figure 6.1: PCM data flow for transmit and receive time slots (see Figure 6.2 for additional setting of all PCM time slots between (A...D)

The PCM output behavior is always setup from transmit slots. $V_ROUT = '00'$ disables the PCM output, i.e. both output buffers are tristated and no data is transferred from the HFC-channel to the PCM module within this time slot. Any other value of V_ROUT enables the data transmission from the HFC-channel:

- $V_ROUT = '10'$ enables the STIO1 output buffer.
- $V_ROUT = '11'$ enables the STIO2 output buffer.
- Finally, V_ROUT = '01' disables both output buffers but enables the data transmission from the HFC-channel. This setting in connection with the corresponding setting of the PCM input data path is used to loop data internally without influencing the PCM bus.

Figure 6.2: Global setting for all PCM time slots to set up an internal PCM loop (detail of Figure 6.1), normally used for test loop setup

PCM input data selects one of three data sources:

- $V_ROUT = '10'$ receives data from STIO2.
- $V_ROUT = '11'$ receives data from STIO1.
- $V_ROUT = '01'$ is used for an internal data loop.

The data transfer to the receive HFC-channel can be disabled with $V_ROUT = '00'$.

A corresponding transmit/receive pair of PCM time slots is typically programmed with the same value for V_ROUT in both directions. Table 6.3 summarizes these settings.

Table 6.3: *PCM* data flow programming with the same value of V_ROUT in corresponding transmit and receive time slots

V_ROUT	Data transmission from / to the HFC-channel *1	STIO1 I/O path *2	STIO2 I/O path *2	Description
'00'	disabled	tristated	tristated	PCM time slot not used
'01'	enabled	tristated	tristated	internal data loop
'10'	enabled	output	input	bidirectional data transfer
'11'	enabled	input	output	bidirectional data transfer

*1: PCM data flow configuration of a receive time slot

*2: PCM data flow configuration of a transmit time slot

Figure 6.1 shows the PCM data flow which can be programmed for each PCM time slot individually. Global settings to the PCM data flow are available between $(A \dots (D))$ as shown in Figure 6.2. When V_PCM_LOOP = '1' in register R_PCM_MD1, the PCM data is looped internally.

Please note, that it is not allowed to set $V_PCM_OD = '1'$ in register R_PCM_MD1 when an internal PCM loop is activated with either $V_ROUT = '01'$ in register A_SL_CFG or $V_PCM_LOOP = '1'$ in register R_PCM_MD1 .

6.3 PCM initialization

After hardware, global software or PCM reset the PCM interface starts an initialization sequence to set all A_SL_CFG registers of the PCM time slots to the reset value 0. This is even done if no valid C4IO and F0IO signals exist, which might occur in PCM slave mode. C4IO and F0IO input signals are ignored during PCM initialization.

The initialization process is indicated with $V_PCM_INIT = '1'$ in register R_STATUS . This bit changes to '0' when the initialization sequence is finished.

6.4 PCM timing

6.4.1 Mode selection

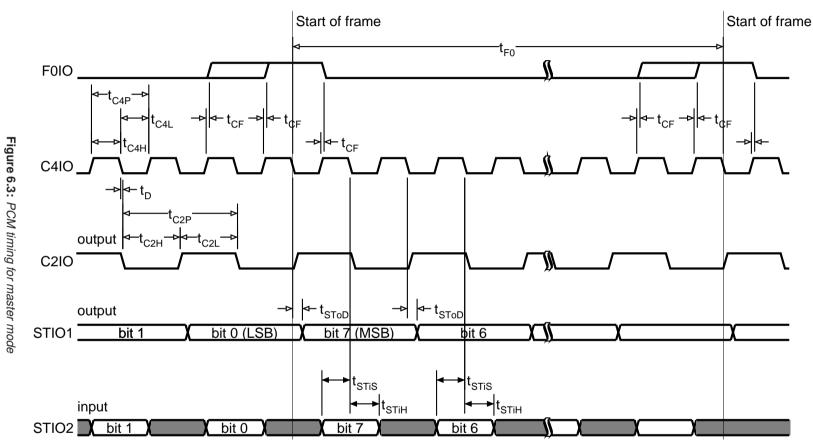
The PCM interface of XHFC-2S4U/4SU can operate either in slave mode or master mode. Slave mode is the default selection after XHFC-2S4U/4SU reset.

To configure XHFC-2S4U/4SU as PCM bus master, bit V_PCM_MD in register R_PCM_MD0 must be set to '1'. C4IO and F0IO signals are generated from XHFC-2S4U/4SU in this case and both pins have output characteristic.

Slave mode is selected with V_PCM_MD = '0'. C4IO and F0IO are input pins in slave mode. External clocks must be connected to F0IO and also to either C4IO (when V_C2I_EN = '0' in register R_PCM_MD2) or C2IO (when V_C2I_EN = '1') in PCM slave mode because these signals are used from the ST/U_p interface and the flow controller as well (see Figure 6.5 on page 231, signal C4I is required).

6.4.2 Master mode

Figure 6.3 shows the timing diagram for PCM master mode. The timing characteristics are specified in Table 6.4. STIO1 is shown as data output and STIO2 as data input of XHFC-2S4U/4SU. However, both pins can change their I/O characteristic with every PCM time slot.

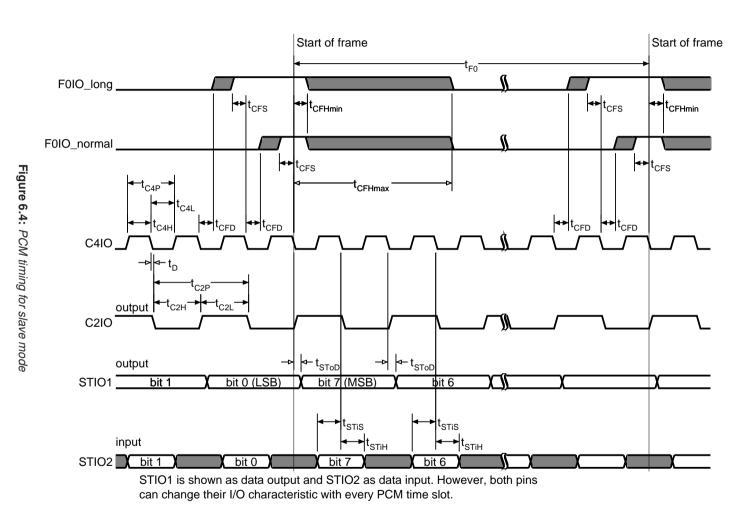

The F0IO pulse is one C4IO pulse long with the default value $V_F0_LEN = '0'$ in register R_PCM_MD0. F0IO starts one C4IO clock earlier if bit $V_F0_LEN = '1'$. These two pulse length are shown in Figure 6.3. The F0IO pulse can also be lengthened to indicate the start of a multiframe or superframe (see Section 6.6.4 on page 240).

6.4.3 Slave mode

Figure 6.4 shows the timing diagram for PCM slave mode. The timing characteristics are specified in Table 6.5. STIO1 is shown as data output and STIO2 as data input of XHFC-2S4U/4SU. However, both pins can change their I/O characteristic with every PCM time slot.

The F0IO pulse is expected to be one C4IO pulse long with the default value $V_F0_LEN = '0'$ in register R_PCM_MD0. F0IO is expected to start one C4IO clock earlier if bit $V_F0_LEN = '1'$.

If the ST/U_p interfaces are synchronized from C4IO in NT/LT mode, the frequency stability must be at least $\pm 10^{-4}$.


STIO1 is shown as data output and STIO2 as data input. However, both pins can change their I/O characteristic with every PCM time slot.

Cologne Chip

Table 6.4: Symbols of PCM timing for master mode in Figure 6.3 (All values with 50 pF load. Larger load capacitance will increase output delays.)

Symbol	min / ns	typ / ns	max / ns	Characteristic
t _C				Basic C4IO pulse width (not shown in the timing diagram)
		122.070		4.096 MHz C4IO clock for 2 MB/s
		61.035		8.192 MHz C4IO clock for 4 MB/s
		30.518		16.384 MHz C4IO clock for 8 MB/s
t _{adj}		20.345		Adjust time is half a period of 24.576 MHz clock (not shown in the timing diagram)
t _{C4H}	$t_{\rm C}-6-t_{\rm adj}$		$t_{\rm C}+6$	C4IO high width for 2 MBit/s and 4 MBit/s
	$4/3 \cdot t_{\rm C} - 6 - t_{\rm adj}$		$4/3 \cdot t_{\rm C} + 6$	C4IO high width for 8 MBit/s
$t_{\rm C4L}$	$t_{\rm C} - 6$		$t_{\rm C} + 6 + t_{\rm adj}$	C4IO low width for 2 MBit/s and 4 MBit/s
	$2/3 \cdot t_{\rm C} - 6$		$2/3 \cdot t_{\rm C} + 6 + t_{\rm adj}$	C4IO low width for 8 MBit/s
$t_{\rm C4P}$	$2 \cdot t_{\rm C} - 6 - t_{\rm adj}$		$2 \cdot t_{\rm C} + 6 + t_{\rm adj}$	C4IO clock period
t _{C2H}	$2 \cdot t_{\rm C} - 6 - t_{\rm adj}$		$2 \cdot t_{\rm C} + 6 + t_{\rm adj}$	C2IO output high width
$t_{\rm C2L}$	$2 \cdot t_{\rm C} - 6 - t_{\rm adj}$		$2 \cdot t_{\rm C} + 6 + t_{\rm adj}$	C2IO output low width
t _{C2P}	$4 \cdot t_{\rm C} - 6 - t_{\rm adj}$		$4 \cdot t_{\rm C} + 6 + t_{\rm adj}$	C2IO output clock period
$t_{\rm F0}$	124994	125000	125006	F0IO cycle time without adjustment
	$124994 - t_{adj}$		$125006 + t_{adj}$	1 half clock adjustment
	$124994 - 2 \cdot t_{\rm adj}$		$125006 + 2 \cdot t_{\rm adj}$	2 half clocks adjustment
	$124994 - 3 \cdot t_{\rm adj}$		$125006 + 3 \cdot t_{\rm adj}$	3 half clocks adjustment
	$124994 - 4 \cdot t_{\rm adj}$		$125006 + 4 \cdot t_{\rm adj}$	4 half clocks adjustment
t _D	3	5	8	− C4IO ∟ to C2IO 」 delay
<i>t</i> _{CF}	0.5		8	C4IO
t _{STiS}	10			Data valid to C4IO $\ \$ setup time
$t_{\rm STiH}$	10			Data valid to C4IO $\ \$ hold time
$t_{\rm SToD}$	2		10	STIO output delay from C4IO \supset

Data Sheet

June 2012

Symbol	min / ns	typ / ns	max / ns	Characteristic
t _C				Basic C4IO pulse width (not shown in the timing diagram)
		122.070		4.096 MHz C4IO clock for 2 MB/s
		61.035		8.192 MHz C4IO clock for 4 MB/s
		30.518		16.384 MHz C4IO clock for 8 MB/s
$t_{\rm C4H}$	20	t_C		C4IO high width
$t_{\rm C4L}$	20	t_C		C4IO low width
$t_{\rm C4P}$		$2 \cdot t_{\rm C}$		C4IO clock period
t _{C2H}		$2 \cdot t_C$		C2IO output high width
$t_{\rm C2L}$		$2 \cdot t_C$		C2IO output low width
$t_{\rm C2P}$		$4 \cdot t_C$		C2IO output clock period
$t_{\rm F0}$		125000		F0IO cycle time
t _D	3	5	8	C4IO [¬] to C2IO [¬] delay
<i>t</i> _{CFS}	15	t_C		F0IO J to C4IO L setup time
<i>t</i> _{CFHmin}	15	t_C		F0IO T to C4IO T hold time
<i>t</i> _{CFHmax}	15	t_C	100000	F0IO high time after start of frame
t _{CFD}	15	t_C		C4IO
t _{STiS}	10			Data valid to C4IO ∟ setup time
t _{STiH}	10			Data valid to C4IO $\ \$ hold time
t _{SToD}	2		10	STIO output delay from C4IO L

Table 6.5: Symbols of PCM timing for slave mode in Figure 6.4 (All values with 50 pF load. Larger load capacitance will increase output delays.)

6.5 PCM clock synchronization

6.5.1 Overview

The PCM clock synchronization is shown in Figure 6.5. It is associated with the line interface clock synchronization which is shown in Figures 5.5 (page 169) and 5.13 (page 185) and with the MSS controller (shown in Figure 6.10 on page 238).

6.5.2 Manual or automatic synchronization source selection

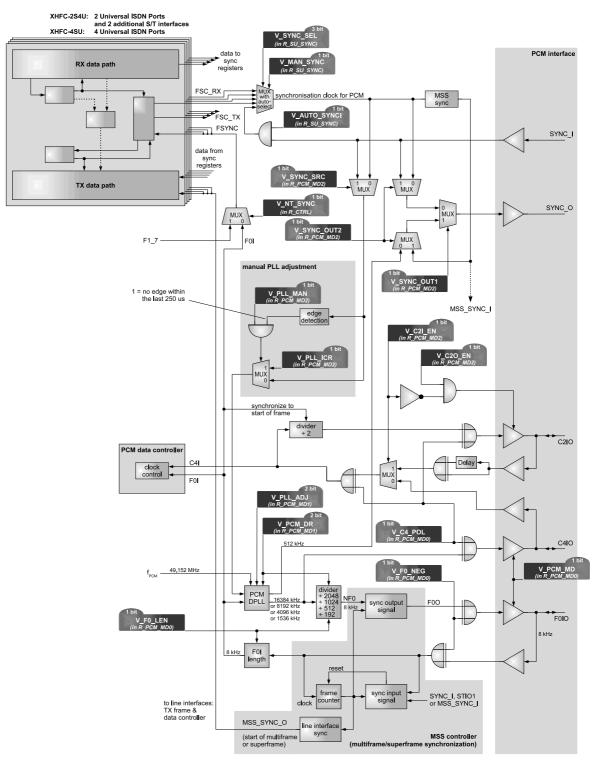
Any line interface in TE mode can be chosen as synchronization source with an appropriate value in bitmap V_SYNC_SEL of register R_SU_SYNC. Alternatively, an automatic selection can be enabled with V_MAN_SYNC = '0' in the same register (reset default). The actual synchronization source can be read from V_RD_SYNC_SRC in register R_BERT_STA. If synchronization is lost on this TE, the next interface in TE mode with active synchronization is automatically selected.

When the automatic selection doesn't find a synchronization source, the SYNC_I pulse can alternatively be taken as synchronization source. This must be enabled with V_AUTO_SYNCI = '1' in register R_SU_SYNC.

6.5.3 PLL programming for FOIO generation

C4IO is adjusted from the PCM DPLL (see Figure 6.5) during the last PCM time slot to synchronize the PCM interface with the ST/U_p interface.¹ The maximum number of edge adjustments during one 125 µs cycle can be configured in the range 1..4 by the bitmap value V_PLL_ADJ in register R_PCM_MD1. This automatic adjustment is enabled with V_PLL_MAN = '0' in register R_PCM_MD2.

 $V_PLL_MAN = '1'$ switches into manual adjustment mode. In this case, the adjustment direction is specified in V_PLL_ICR of register R_PCM_MD2 . The number of edge adjustments which is specified in V_PLL_ADJ is carried out within the last PCM time slot every 125 µs. This manual adjustment does not stop before V_PLL_MAN is reset to automatic mode. By default, the C4IO clock is adjusted four times for one half clock cycle. This can be reduced to one adjustment of a half clock cycle (see R_PCM_MD1 register). This is useful if a non XHFC series ISDN controller is connected as slave in NT mode to the PCM bus. The synchronization source can be selected by the R_PCM_MD2 register settings.


6.5.4 Manual PLL adjustment

In normal operation mode, the synchronization input signal is passed from the V_SYNC_SRC controlled multiplexer to the PCM DPLL as shown in Figure 6.5. For this V_PLL_MAN has to be '0' in register R_PCM_MD2 .

The PLL output frequency can manually be adjusted if no synchronization source is available. This software controlled PLL adjustment is enabled with $V_PLL_MAN = '1'$. The V_SYNC_SRC controlled multiplexer must feed a 8 kHz signal in any case.

¹C4IO adjustment is only in operation when the PCM DPLL receives both 8 kHz reference clocks.

Figure 6.5: PCM clock synchronization (For details on the Universal ISDN Port see Figures 5.1, 5.5 and 5.13, for details on the MSS controller see Figure 6.10)

The time of the signal edges can be increased or reduced in the last time slot of the PCM frame. $V_PLL_ICR = '0'$ results in a frequency reduction while $V_PLL_ICR = '1'$ leads to a frequency increase. The number of adjusted edges is specified in the range 1..4 with bitmap V_PLL_ADJ in register R_PCM_MD1 .

V_PLL_MAN must be set back to '0' to stop the frequency regulation of the synchronization input signal.

6.5.5 C2IO signal

The C2IO signal (pin 30) can either be configured to input or output characteristic.

C2IO is used as an output signal when $V_C2O_EN = '1'$ and $V_C2I_EN = '0'$ in register R_PCM_MD2.

C2IO output signal is derived from C4IO by a frequency divider. In fact, there is an additional building block (not shown in Figure 6.5) which ensures a specific phase relation at the start of a frame. According to the timing diagrams in Figures 6.3 and 6.4, C2IO has its rising edge at the start of a frame. From this follows that C4IO has a falling edge with every edge of C2IO.

6.5.6 SYNC_O and FSC_RX synchronization signals

The 'frame synchronization detection' blocks shown in Figures 5.5 (page 169) and 5.13 (page 185) deliver a 8 kHz frame clock FSC_RX which can be routed to the SYNC_O synchronization output pin. FSC_RX signal is available when a frame synchonization is detected (INFO 2 or INFO 4) and it does not depend on the state machine's condition.

The normal FSC_RX pulse is high for one bit length. This is $5.208 \,\mu s$ in S/T interface mode or $2.604 \,\mu s$ in U_p interface mode. For S/T multiframe ² synchronization or U_p superframe ³ synchronization, the start of every multiframe or superframe is indicated with a lengthened pulse with 7.5 bit width. This is 39 μs every 40th pulse in S/T interface mode or 19.5 μs every 8th pulse in U_p interface mode.

The rising edges of FSC_RX have a distance of 125 μ s and are adjusted once every 250 μ s with \pm 163 ns. The rising edge is stable as long as the chosen TE port receives valid INFO 2 or INFO 4 even if the S/T or U_p state machine is forced into a deactivated state F0, F2, F3, F4, F5, G0, G12, or G2. FSC_RX is low otherwise.

During XHFC-2S4U/4SU reset, SYNC_O pin drives an active low signal.

6.5.7 Synchronous 512 kHz output signal

SYNC_O frequency can either be 8kHz, which is mostly used, or 512kHz. The 512kHz clock is synchronous to the frame clock as it is generated from the DPLL as shown in Figure 6.5.

When XHFC-2S4U/4SU operates in PCM slave mode, which means that F0IO is used as clock input, SYNC_O should not issue 512 kHz. This would lead to a closed loop with the internal DPLL and an external PCM master PLL. A closed loop with two PLLs might be instable and can lose the nominal frequency.

 $^{^{2}}$ A complete S/T multiframe takes 20 S/T frames with 250 μ s each. Therefore, a multiframe has a length of 5 ms in total.

 $^{{}^{3}}A$ complete U_p superframe takes 4 U_p frames with 250 μ s each. Therefore, a superframe has a length of 1 ms in total.

6.5.8 Application examples for XHFC-2S4U/4SU synchronization schemes

Flexible synchronization schemes can be implemented with the clock pins SYNC_I and SYNC_O of XHFC-2S4U/4SU. Some important application examples are shown in this section.

Important !

As ISDN is based on a synchronous network, all devices must be synchronized to one synchronizing source. This is the central office (for S/T) or PBX (for U_p), typically.

When multiple XHFC-2S4U/4SU are used within a system, all ST/U_p and PCM clocks must be synchronized to a single synchronization source. When an ST interface operates in TE mode and is connected to the central office, the synchronization source is obtained from the central office. A U_p interface in TE mode is typically synchronized to a PBX clock.

6.5.8.1 An existing system with internal PCM bus has to be expanded by ISDN interfaces

When an existing system has to be expanded by ISDN interfaces, there are two solutions as shown in Figures 6.6 and 6.7.

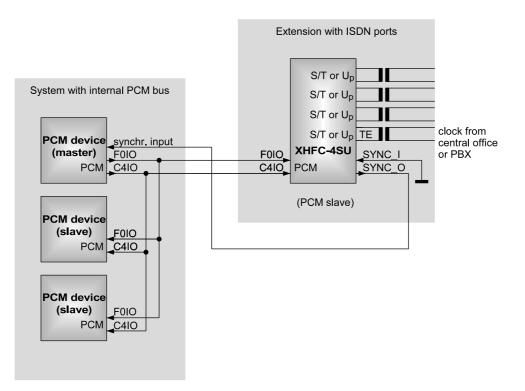


Figure 6.6: Expanding an existing system with ISDN ports (XHFC-2S4U/4SU as PCM slave)

The existing system can keep the PCM master when there is a synchronization input (Figure 6.6). This must be connected to pin SYNC_O of XHFC-2S4U/4SU to synchronize the whole system to the clock derived from the received ISDN signal.

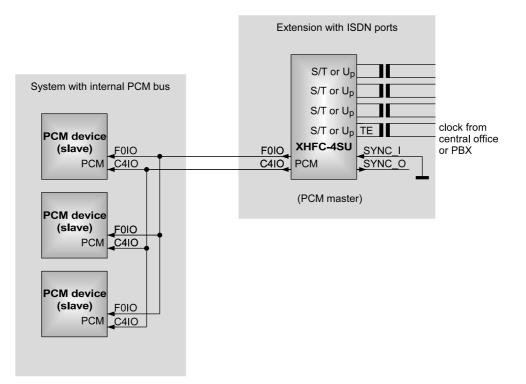


Figure 6.7: Expanding an existing system with ISDN ports (XHFC-2S4U/4SU as PCM master)

SYNC_O is either derived from the central office or the DPLL of XHFC-2S4U/4SU is free-running. In both cases, XHFC-2S4U/4SU is the synchronization source for the whole system.

When there is no synchronization input available at the existing system, XHFC-2S4U/4SU must operate as PCM master and all other PCM devices in the system must be PCM slaves (Figure 6.7). Again, XHFC-2S4U/4SU is the synchronization source for the whole system.

6.5.8.2 Application with multiple XHFC-2S4U/4SU

Multiple XHFC-2S4U/4SU can be interconnected to build up a multi ISDN port application. The SYNC_O / SYNC_I pins must be connected to a daisy chain. Two solutions are shown in Figures 6.8 and 6.9, depending on the PCM master requirements.

Figure 6.8 shows an example where any XHFC-2S4U/4SU can be in TE mode. The synchronization signals are daisy chained. The last XHFC-2S4U/4SU must be in PCM master mode. This assures that the F0IO/C4IO connections feed the synchronized clock to all devices.

Figure 6.9 shows an example where any XHFC-2S4U/4SU can be in TE mode again. Now, the SYNC_O/SYNC_I daisy chain is looped back so that the loop is closed. For this reason, the F0IO/C4IO connections are optional due to the application needs. An arbitrary XHFC-2S4U/4SU can be in PCM master mode.

Nevertheless, it is recommended to interconnect all devices with the F0IO/C4IO clocks for more flexible application capability.

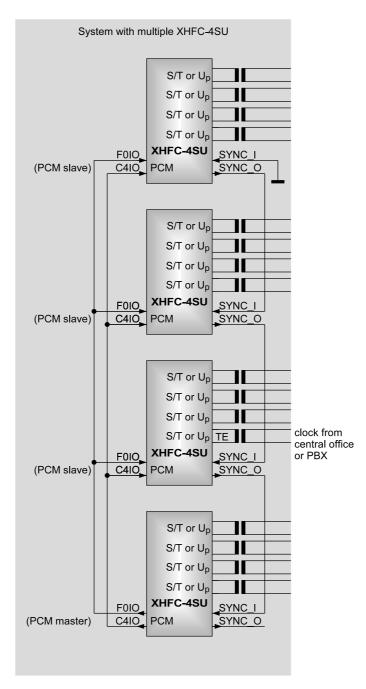


Figure 6.8: Multiple XHFC-2S4U/4SU synchronized with an open loop of SYNC_O/SYNC_I

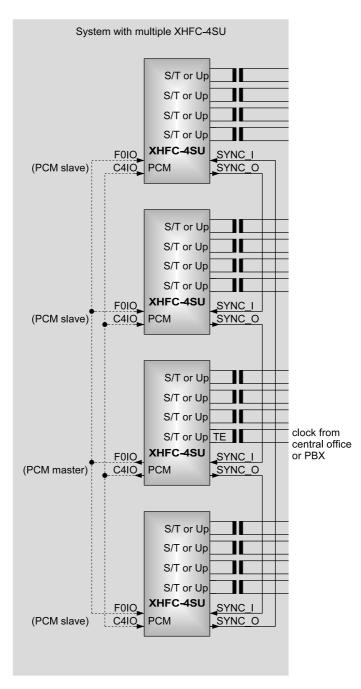


Figure 6.9: Multiple XHFC-2S4U/4SU synchronized with an closed loop of SYNC_O/SYNC_I

6.6 Multiframe/superframe synchronization to the PCM interface

6.6.1 Overview

The multiframes (S/T) or superframes (U_p) of the ST/U_p interfaces can be synchronized to the PCM interface. Furthermore, the transmit/receive ping pong is synchronized in U_p mode. Figure 6.10 shows the block diagram of the MSS controller (multiframe/superframe synchronization controller). The controller consists of four parts which are explained from Sections 6.6.2 to 6.6.5.

The basic concept of the MSS controller can be described as follows:

- An internal synchronization pulse is generated and delivered to the PCM interface for F0IO pulse width modification as well as to the line interface to force the 'start of multi-frame / superframe' in transmit direction.
- The internal synchronization pulse is generated from a frame counter which can be synchronized to an external synchronization pulse.

6.6.2 Frame counter

The frame counter is the central unit of the MSS controller. The counter is incremented with every F0IO input pulse and operates as a ring counter in the range 0...39.

A counter reset is initiated with a detected synchronization input signal. The frame counter is synchronized to the synchronization source with the first counter reset signal. From now on, the frame counter value is used

- to generate a modified F0IO pulse (if enabled) and
- to synchronize the multiframe/superframe transmission with the MSS_SYNC_O signal (if enabled and if the line interface operates in NT/LT mode, see Figure 5.5 on page 169 and Figure 5.13 on page 185)

to the external synchronization source.

The synchronization pulse detection can be configured with several parameters. This is explained in Section 6.6.3.

It is also possible to disable the synchronization pulse detection. There are no counter reset signals in this case. The frame counter is free-running without a synchronization input signal. However, synchronization pulses MSS_SYNC and the modified F0IO output are generated to synchronize the multiframe / superframe transmission with the PCM interface. The chip operates as a synchronization source for the 'start of multiframe / superframe' condition in this case.

6.6.3 Synchronization input signal

The MSS controller can synchronize the multiframe / superframe transmission to an external synchronization signal. This functionality must be enabled with $V_MSS_SRC_EN = '1'$ in register R_MSS0 . Any detected synchronization pulse leads to a frame counter reset.

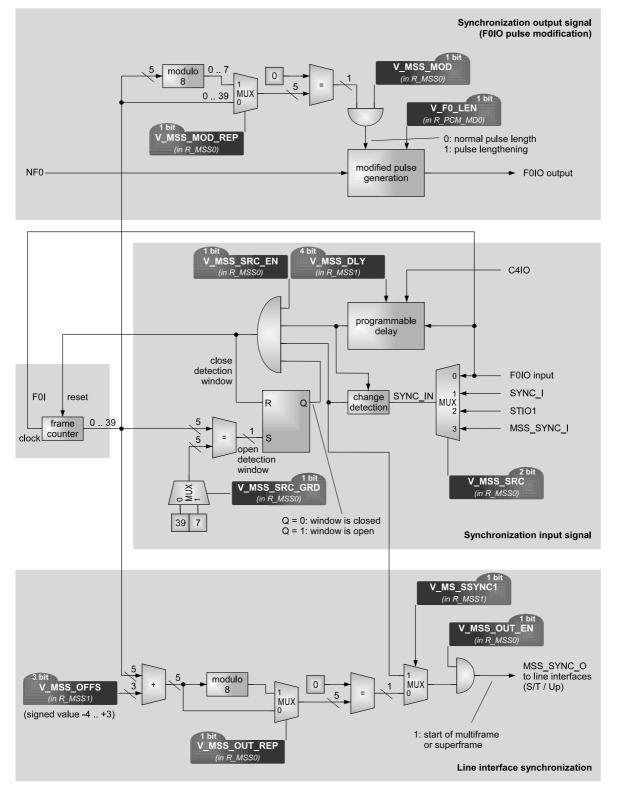


Figure 6.10: Multiframe/superframe synchronization to the PCM interface

The synchronization signal is obtained either from the F0IO, SYNC_I, STIO1 or MSS_SYNC_I signal. This can be selected with bitmap V_MSS_SRC in register R_MSS0. The source signal can be delayed by a multiple of C4IO clocks to adjust the incoming signal characteristics to the detection function. For this, V_MSS_DLY in register R_MSS1 can be set to a value in the range 0..15 C4IO clocks.

It is possible to use an active '1' or active '0' signal for synchronization. Only the change of the signal compared with the value in the previous PCM frame generates the synchronization signal.

After a synchronization pulse has reset the frame counter, the detection window is closed and the next synchronization pulse cannot be generated until the frame counter reaches the value 39 (V_MSS_SRC_GRD = '0' in register R_MSS0) or 7 (V_MSS_SRC_GRD = '1'). The detection window is opened as soon as the selected counter value has been reached. This procedure avoids an oversynchronization. V_MSS_SRC_GRD should be set to '0' when at least oneine interface operates in S/T mode. The value V_MSS_SRC_GRD = '1' is recommended when all line interfaces operate in U_p mode.

The frame counter is synchronized to the synchronization input signal when the following conditions are fulfilled at the same time:

- 1. The synchronization detection is enabled, i.e. $V_MSS_SRC_EN = '1'$.
- 2. The detection windows is open, i.e. Q = '1'.
- 3. The programmable delay is passed.
- 4. The selected input signal has changed from the previous frame.

The delay time t_{DLY} is specified in Figure 6.11 and Table 6.6. Its maximum value is $t_{\text{DLY,max}} = 16 \cdot t_{\text{C4P}}$.

If the synchronization pulse is received on the data input line STIO1, it can be any bit within the first PCM time slot. V_MSS_DLY must have an even value in this case to ensure that the *change detection* time matches with the bit cells. $V_MSS_DLY = 0$ selects the first bit of the time slot 0 while $V_MSS_DLY = 14$ selects the last bit.

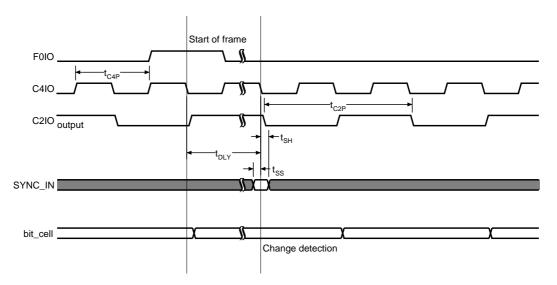


Figure 6.11: Timing specification of the SYNC_IN change detection

Symbol	min / ns	max / ns	Characteristic
$t_{\rm C4P}$			C4IO clock period (depends on the selected PCM data rate)
$t_{\rm C2P}$			C2IO clock period
<i>t</i> _{DLY}			Programmable synchronization pulse delay from start of frame
			$t_{\text{DLY}} = (V_\text{MSS_DLY} + 1) \cdot t_{\text{C4P}}$
$t_{\rm SS}$	10		Synchronization pulse valid to F_SYNC \square setup time
$t_{\rm SH}$	10		Synchronization pulse valid to $F_SYNC \square$ hold time

 Table 6.6:
 Symbols of the SYNC_IN change detection timing specification in Figure 6.11

6.6.4 Synchronization output signal (FOIO pulse modification)

The start of a multiframe or superframe is indicated by a FOIO pulse which has a different length than usual.

In principle, the length of the F0IO pulse is arbitrary. The F0IO signal is used for PCM frame synchronization only on the first falling edge of C4IO. The F0IO high time has a typical length of one C4IO pulse (V_F0_LEN = '0') or two C4IO pulses (V_F0_LEN = '1') as described in Section 6.4.2.

The F0IO high time can be lengthen by another C4IO pulse width to indicate the multi-frame/superframe synchronization signal. This must be enabled with V_MSS_MOD = '1' in register R_MSS0. The repetition rate of the synchronization pulse is once every 40th PCM frame if V_MSS_MOD_REP = '0' in register R_MSS0. V_MSS_MOD_REP = '1' selects a repetition rate of once every 8th PCM frame.

Figure 6.12 shows all different FOIO pulses in PCM master mode. Table 6.7 summarizes the bit values which must be set to achieve these pulses.

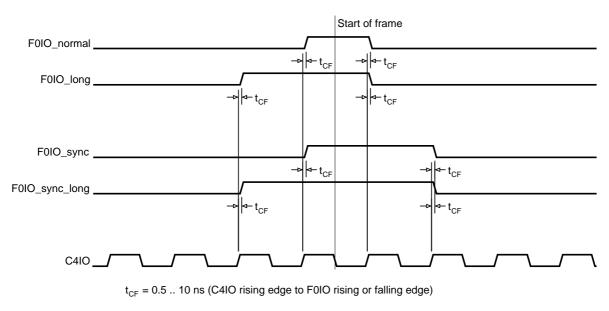


Figure 6.12: F0IO pulse modification

Pulse	V_F0_LEN in register R_PCM_MD0	V_MSS_MOD in register R_MSS0	Description
F0IO_normal	·0'	'0'	normal F0IO pulse
F0IO_long	'1'	,0,	F0IO starts one C4IO period earlier (early leading edge) $\$
F0IO_sync	,0,	'1'	F0IO pulse is lengthened by one C4IO pulse every 8th or 40th frame, F0IO_normal otherwise (delayed trailing edge)
F0IO_sync_long	'1'	'1'	F0IO starts one C4IO period earlier and is lengthened by one C4IO pulse every 8th or 40th frame, F0IO_long otherwise (combined early leading edge and delayed trailing edge)

 Table 6.7: Selection of the FOIO pulse characteristic (see also Figure 6.12)

6.6.5 Line interface synchronization

The signal MSS_SYNC_O for the multiframe/superframe synchronization is delivered to the ST/U_p interfaces. It must be enabled with V_MSS_OUT_EN = '1' in register R_MSS0. V_MSS_OUT_EN = '0' leads to an unsynchronized transmission of the multiframe/superframe structure.

The repetition rate can be specified to be either every 40th or 8th PCM frame with bit V_MSS_OUT_REP in register R_MSS0. Only line interfaces in U_p mode can be feed with a 8 PCM frame repetition rate. The repetition rate of once every 40 PCM frames must be chosen in S/T mode. This is a suitable selection for a line interface in U_p mode as well.

As there is a delay between FOIO and the line interface output, it is possible to adjust the line interface synchronization with a signed offset of -4..+3 FOIO pulses. This can also be used to fulfill requirements which might occur with a special application where the chip is connected to another ISDN device.

6.7 External CODECs

Up to two external CODECs can be connected to the PCM interface. XHFC-2S4U/4SU has two CODEC enable signals F1_0 and F1_1. An external CODEC has to be assigned to a PCM time slot via bitmaps V_SL_SEL1 and V_SL_SEL0 in registers R_SL_SEL1 and R_SL_SEL0.

The shape signals can be programmed. The last bit determines the inactive level by which non-inverted and inverted shape signals can be programmed. Every external CODEC can choose one of the two shape signals with bits V_SH_SEL1 and V_SH_SEL0 in registers R_SL_SEL1 and R_SL_SEL0.

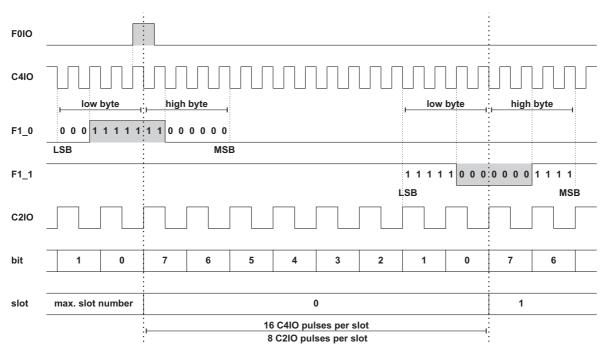


Figure 6.13: Example for two CODEC enable signal shapes

Figure 6.13 shows an example with two external CODECs. Time slot 0 starts with the F0IO pulse. In this example – assuming that PCM30 is configured – $F1_0$ enables the first CODEC on time slot 0 and shape bytes on R_SH0L and R_SH0H with the following register settings.

Register setup:	
$R_PCM_MD0: \ V_PCM_IDX = 0$	(R_SL_SEL0 register accessible)
$R_SL_SEL0 : V_SL_SEL0 = 0x1F$	(time slot #0)
$: V_SH_SEL0 = 0$	(shape bytes R_SH0L and R_SH0H)

The second CODEC on time slot 1 and shape bytes on R_SH1L and R_SH1H must be configured as shown below.

Register setup:	
$R_PCM_MD0 : V_PCM_IDX = 1$	(R_SL_SEL1 register accessible)
$R_SL_SEL1 : \ V_SL_SEL1 \ = \ 0$	(time slot #1)
: V_SH_SEL1 $=$ 1	(shape bytes R_SH1L and R_SH1H)

The shown shape signals have to be programmed in reverse bit order by the following register settings.

Register setup:	
$R_PCM_MD0 : V_PCM_IDX = 0xC$	(R_SH0L register accessible)
$R_SHOL : V_SHOL = 0xF8$	$(0xF8 = '1111\ 1000' \xrightarrow{reverse} '0001\ 1111')$
$R_PCM_MD0 : V_PCM_IDX = 0xD$	(R_SH0H register accessible)
$R_SH0H : V_SH0H = 0x03$	$(0x03 = '0000\ 0011' \xrightarrow{reverse} '1100\ 0000')$
$R_PCM_MD0 : V_PCM_IDX = 0xE$	(R_SH1L register accessible)
$R_SH1L : V_SH1L = 0x1F$	$(0x1F = '0001 \ 1111' \xrightarrow{reverse} '1111 \ 1000')$
$R_PCM_MD0 : V_PCM_IDX = 0xF$	(R_SH1H register accessible)
$R_SH1H : V_SH1H = 0xF0$	$(0xF0 = '1111\ 0000' \xrightarrow{reverse} '0000\ 1111')$

6.8 GCI/IOM-2 mode

6.8.1 Overview

XHFC-2S4U/4SU is equipped with a simple GCI controller ⁴ (also known as IOMTM-2) ⁵ to support interconnection to U-chips, external CODECs or DSPs.

The IOMTM-2 bus is an industrial standard for interconnecting telecommunication microchips considering the requirements of analog applications as well. It has been defined from an international manufacturers group⁶. The GCI⁷ functionality has been implemented in respect to the IOMTM-2 specification [7].

The interconnection between XHFC-2S4U/4SU and a GCI device uses four wires, typically:

- C4IO: Double bit rate clock
- F0IO: 8 kHz frame signal
- STIO1: Data from XHFC-2S4U/4SU to the GCI device (can be swapped with STIO2)
- STIO2: Data from the GCI device to XHFC-2S4U/4SU (can be swapped with STIO1)

6.8.2 GCI frame structure

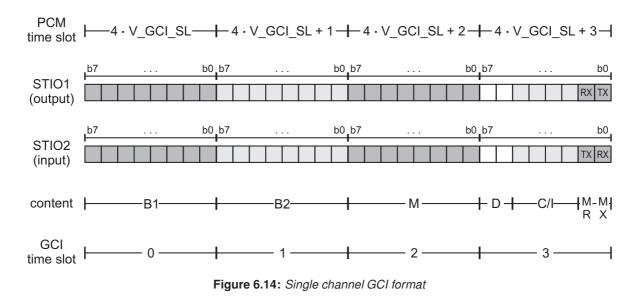
The GCI frame has a length of 4 bytes and is located at PCM time slots S...S + 3 with $S = 4 \cdot V_GCI_SL$. GCI uses these PCM time slots in a special way, all other PCM time slots are accessible as usual.

V_GCI_SL must be in the range 0..7 for PCM30, 0..15 for PCM64 or 0..31 for PCM128.

The binary organization of the GCI frame is shown in Figure 6.14. The first two time slots are used for B1- and B2-channel data. The third time slot is occupied by the monitor channel and the last time slot contains D-channel data, command/indication bits and the handshake bits MR and MX.

Figure 6.14 shows the GCI frame from the GCI master's point of view. To distinguish between the handshake bits of the GCI master (transmitter) and the GCI slave (receiver), the handshake bits are indexed like MX_{TX} or MX_{RX} in this document partially.

The PCM slot assigner must be used to allocate any HFC-channel to the first two bytes of the CGI frame. These are B-channels, typically. When the GCI device also carries D-channel data in the GCI time slot #3, the belonging D-channel must be assigned as well. Please note, that these assignments are not automatically done by the GCI controller. Only monitor channel, C/I-channel and handshake bits are automatically assigned and handled from the GCI controller.


⁴GCI = General Circuit Interface

 $^{^{5}}$ IOMTM-2= ISDN Oriented Modular revision 2, trademark of Infineon Technologies AG

⁶Alcatel (France), Siemens (Germany), Italtel (Italy) and Plessey (UK)

 $^{^7 \}text{The term}$ GCI is always used in this document and includes IOM $^{\text{TM}}\text{-}2$ functionality as well.

Name	Description
B1	B1-channel data
B2	B2-channel data
М	Monitor channel data
D	D-channel data
C/I	Command/indication bits for controlling activation/deactivation and for additional control functions
MR	Handshake bit for the monitor channel (MR_{RX} on STIO1 output and MR_{TX} on STIO2 input)
MX	Handshake bit for the monitor channel (MX_{TX} on STIO1 output and MX_{RX} on STIO2 input)

6.8.3 GCI register programming

6.8.3.1 Enable CGI functionality

The GCI functionality is disabled after XHFC-2S4U/4SU reset and all time slots of the PCM bus can be assigned to an arbitrary HFC-channel. GCI functionality must be enabled with $V_GCI_EN = '1'$ in register R_GCI_CFG0 .

When CGI functionality is not used, received data on time slots $4 \cdot V_GCI_SL+2$ and $4 \cdot V_GCI_SL+3$ are extracted to registers R_MON_RX and R_CI_RX nevertheless. For this reason, the interrupt mask bits V_CI_IRQMSK and V_MON_RX_IRQMSK in register R_MISC_IRQMSK should not be set to '1' to avoid senseless interrupts.

6.8.3.2 Monitor channel

Monitor data for the transmit direction must be written into register R_MON_TX. When the next monitor byte can be written, V_MON_TXR in register R_GCI_STA changes to '1'. Then the next monitor byte can be written into R_MON_TX. A write access to R_MON_TX resets V_MON_TXR to '0'. Before the last monitor byte of a command is written into R_MON_TX, the 'end of command' flag V_MON_END = '1' has to be set in register R_GCI_CFG0.

Furthermore, an interrupt occurs when V_MON_TXR changes to '1' and when the mask bit V_MON_TX_IRQMSK in register R_MISC_IRQMSK is set to '1'. The interrupt event V_MON_TX_IRQ = '1' in register R_MISC_IRQ is set even if the interrupt mask has the value '0'.

If there are no further monitor bytes to be send, the idle pattern 0xFF is transmitted.

A received monitor byte is indicated with $V_MON_RXR = '1'$ in register R_GCI_STA and can be read from register R_MON_RX .

XHFC-2S4U/4SU can accept either every received monitor byte at once, or after it has been received twice (so-called *double last look criterion*). This can be configured with bit V_MON_DLL in register R_GCI_CFG0. When *double last look criterion* is enabled, the GCI controller waits until a monitor byte has been received twice in two consecutive GCI frames.

The monitor bytes are located in GCI time slot 2 as shown in Figure 6.14. Transmitting and receiving monitor bytes is coordinated by the GCI controller of XHFC-2S4U/4SU. This procedure is described in detail in Section 6.8.4.

6.8.3.3 Command/indication bits (C/I-channel)

The C/I-channel is used to interchange status information between XHFC-2S4U/4SU and the connected GCI device. C/I-bits are transmitted continuously in every GCI frame until a new command/indication pattern is present.

Command/indication is used to transmit a command from the GCI master to the connected GCI slave and to receive status information (indication) in opposite direction.

XHFC-2S4U/4SU transmits the command that is written into bitmap V_GCI_C of register R_CI_TX. When this value is changed, the new command is transmitted in the next GCI time slot 3.

Received indication bits can be read from V_GCI_I. Any change of the indication bits can trigger an interrupt when the interrupt mask bit V_CI_IRQMSK is set to '1' in register R_MISC_IRQMSK. The interrupt event V_CI_IRQ = '1' in register R_MISC_IRQ is set even if the interrupt mask has the value '0'.

The GCI controller does not interpret the C/I-bits. Indication bits must be processed from the host processor.

GCI devices that do not operate on D-channel data, can expand the C/I-channel from 4 bit to 6 bit. XHFC-2S4U/4SU can be configured to transmit and receive 4 bit (V_MON_CI6 = '0' in register V_MON_CI6) as well as 6 bit (V_MON_CI6 = '1') C/I-channel length.

6.8.3.4 Examples for GCI frame embedding in the PCM data structure

Figure 6.15 shows a typical application where XHFC-2S4U/4SU is both PCM master and GCI master (most application cases, standard configuration). This means:

- XHFC-2S4U/4SU feeds PCM clocks C4IO and F0IO
- GCI frame output on STIO1
- GCI frame input on STIO2

The programming procedure for this application example is shown in Table 6.9. Please note that not mentioned bitmap values of the GCI relevant registers remain in their reset state.

GCI time slot 2 does not need to be programmed because the monitor byte is automatically assigned to this time slotwhen GCI is enabled. C/I-channel and handshake bits MX and MR are also automatically assigned to their time slot.

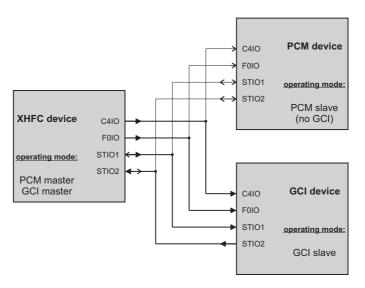


Figure 6.15: GCI application example 1 (XHFC-2S4U/4SU is PCM master and GCI master)

The second application example shown in Figure 6.16 has only one difference to the first example: XHFC-2S4U/4SU is configured to PCM slave mode. This means that the PCM clocks are generated from a PCM device in master mode. So the programming procedure is equal to Table 6.9 except that "set PCM to master" has to be changed to "set PCM to slave" ($V_PCM_MD = 0$).

The last application example 3 shows XHFC-2S4U/4SU operating in GCI slave mode. XHFC-2S4U/4SU is PCM slave and GCI slave which means:

- GCI master feeds PCM clocks C4IO and F0IO
- GCI frame input on STIO1
- GCI frame output on STIO2

The programming procedure is shown in Figure 6.17. GCI slave mode is configured with the shown settings for V_GCI_SWAP_TXHS, V_GCI_SWAP_RXHS and V_GCI_SWAP_STIO in register R_GCI_CFG0. Again, not mentioned bitmap values of the GCI relevant registers remain in their reset state.

Please note that register programming must be handled by the host processor connected to the XHFC-2S4U/4SU microprocessor interface even if XHFC-2S4U/4SU operates as GCI slave. This includes the monitor data handling as well as the C/I processing.

Register

Bit

Register	DIL	value	Function	
R_GCI_CFG1	V_GCI_SL	x	Select PCM time slot group for the GCI frame (PCM time slot $4x 4x + 3$)	
R_PCM_MD0	V_PCM_MD	'1'	set PCM to master	
R_SLOT	V_SL_NUM	4 <i>x</i>	select first GCI time slot $4x$	
R_SLOT	V_SL_DIR	'0'	select transmit data direction	
A_SL_CFG	V_ROUT	'10'	set STIO1 to output characteristic	
A_SL_CFG	V_CH_SDIR	'0'	assign transmit HFC-channel	
A_SL_CFG	V_CH_SNUM	<i>y</i> 1	assign HFC-channel y_1 to the selected time slot (normally B1-channel)	
R_SLOT	V_SL_DIR	'1'	select receive data direction	
A_SL_CFG	V_ROUT	'10'	set STIO2 to input characteristic	
A_SL_CFG	V_CH_SDIR	'1'	assign receive HFC-channel	
A_SL_CFG	V_CH_SNUM	z_1	assign HFC-channel z_1 to the selected time slot (normally $z_1 = y_1$)	
R_SLOT	V_SL_NUM	4x + 1	select second GCI time slot $4x + 1$	
R_SLOT	V_SL_DIR	'0'	select transmit data direction	
A_SL_CFG	V_ROUT	'10'	set STIO1 to output characteristic	
A_SL_CFG	V_CH_SDIR	'0'	assign transmit HFC-channel	
A_SL_CFG	V_CH_SNUM	<i>y</i> 2	assign HFC-channel y_2 to the selected time slot (normally B2-channel)	
R_SLOT	V_SL_DIR	'1'	select receive data direction	
A_SL_CFG	V_ROUT	'10'	set STIO2 to input characteristic	
A_SL_CFG	V_CH_SDIR	'1'	assign receive HFC-channel	
A_SL_CFG	V_CH_SNUM	<i>z</i> ₂	assign HFC-channel z_2 to the selected time slot (normally $z_2 = y_2$)	
R_SLOT	V_SL_NUM	4x + 3	select fourth GCI time slot $4x + 3$	
R_SLOT	V_SL_DIR	'0'	select transmit data direction	
A_SL_CFG	V_ROUT	'10'	set STIO1 to output characteristic	
A_SL_CFG	V_CH_SDIR	'0'	assign transmit HFC-channel	
A_SL_CFG	V_CH_SNUM	УD	assign HFC-channel y_D to the selected time slot (normally D-channel)	
R_SLOT	V_SL_DIR	'1'	select receive data direction	
A_SL_CFG	V_ROUT	'10'	set STIO2 to input characteristic	
A_SL_CFG	V_CH_SDIR	'1'	assign receive HFC-channel	
A_SL_CFG	V_CH_SNUM	ZD	assign HFC-channel z_D to the selected time slot (normally $z_D = y_D$)	

Table 6.9: *Programming procedure for application example 1 according to Figure 6.15 (XHFC-2S4U/4SU is PCM master and GCI master)*

Value Function

R_GCI_CFG0 V_GCI_EN

enable GCI function

'1'

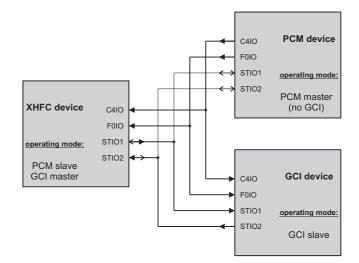


Figure 6.16: GCI application example 2 (XHFC-2S4U/4SU is PCM slave and GCI master)

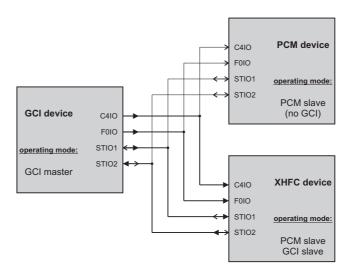
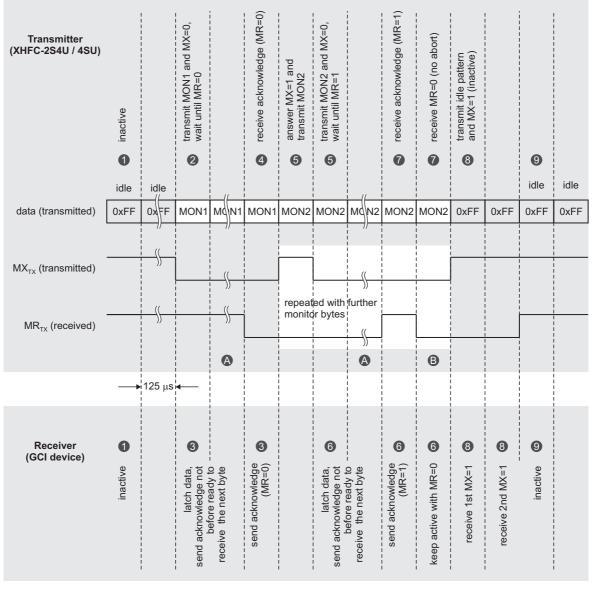
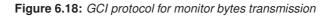


Figure 6.17: GCI application example 3 (XHFC-2S4U/4SU is PCM slave and GCI slave)

 Table 6.10: Programming procedure for application example 3 according to Figure 6.17 (XHFC-2S4U/4SU is PCM slave and GCI slave)


Register	Bit	Value	Function
R_GCI_CFG1	V_GCI_SL	x	Select PCM time slot group for GCI frame x
R_PCM_MD0	V_PCM_MD	'0'	set PCM to slave
R_SLOT	V_SL_NUM	4 <i>x</i>	select first GCI time slot $4x$
R_SLOT	V_SL_DIR	'0'	select transmit data direction
A_SL_CFG	V_ROUT	'11'	set STIO1 to input characteristic
A_SL_CFG	V_CH_SDIR	'0'	assign transmit HFC-channel
A_SL_CFG	V_CH_SNUM	У1	assign HFC-channel y_1 to the selected time slot (normally B1-channel)
R_SLOT	V_SL_DIR	'1'	select receive data direction
A_SL_CFG	V_ROUT	'11'	set STIO2 to output characteristic
A_SL_CFG	V_CH_SDIR	'1'	assign receive HFC-channel
A_SL_CFG	V_CH_SNUM	z_1	assign HFC-channel z_1 to the selected time slot (normally $z_1 = y_1$)
R_SLOT	V_SL_NUM	4x + 1	select second GCI time slot $4x + 1$
R_SLOT	V_SL_DIR	'0'	select transmit data direction
A_SL_CFG	V_ROUT	'11'	set STIO1 to input characteristic
A_SL_CFG	V_CH_SDIR	'0'	assign transmit HFC-channel
A_SL_CFG	V_CH_SNUM	<i>Y</i> 2	assign HFC-channel y_2 to the selected time slot (normally B2-channel)
R_SLOT	V_SL_DIR	'1'	select receive data direction
A_SL_CFG	V_ROUT	'11'	set STIO2 to output characteristic
A_SL_CFG	V_CH_SDIR	'1'	assign receive HFC-channel
A_SL_CFG	V_CH_SNUM	<i>z</i> ₂	assign HFC-channel z_2 to the selected time slot (normally $z_2 = y_2$)
R_SLOT	V_SL_NUM	4x + 3	select fourth GCI time slot $4x + 3$
R_SLOT	V_SL_DIR	'0'	select transmit data direction
A_SL_CFG	V_ROUT	'11'	set STIO1 to input characteristic
A_SL_CFG	V_CH_SDIR	'0'	assign transmit HFC-channel
A_SL_CFG	V_CH_SNUM	УD	assign HFC-channel y_D to the selected time slot (normally D-channel)
R_SLOT	V_SL_DIR	'1'	select receive data direction
A_SL_CFG	V_ROUT	'11'	set STIO2 to output characteristic
A_SL_CFG	V_CH_SDIR	'1'	assign receive HFC-channel
A_SL_CFG	V_CH_SNUM	$z_{\rm D}$	assign HFC-channel z_D to the selected time slot (normally $z_D = y_D$)
R_GCI_CFG0	V_GCI_SWAP_TXHS	'1'	swap handshake bits MR_{TX} and MX_{TX} for GCI transmit direction
R_GCI_CFG0	V_GCI_SWAP_RXHS	'1'	swap handshake bits MR_RX and MX_RX for GCI receive direction
R_GCI_CFG0	V_GCI_SWAP_STIO	'1'	swap STIO1 and STIO2 for monitor channel and C/I
R_GCI_CFG0	V_GCI_EN	'1'	enable GCI function

6.8.4 GCI protocol


6.8.4.1 XHFC-2S4U/4SU transmit procedure

Monitor bytes are transmitted and received under the control of the handshake bits MX_{TX} and MR_{TX} . The handshake bits are automatically handled by the GCI controller. Figure 6.18 shows the transmit procedure of two monitor bytes.

omitted, if the receiver sends acknowledge immediately

omitted, if V_MON_SLOW = 0 (high transmission speed)

- Beginning with idle state, no monitor byte is pending, MX_{TX} and MR_{TX} are both '1'. The monitor byte has the value 0xFF in this state.
- **2** A write access to register **R_MON_TX** starts the transmit sequence.

The first monitor byte is transmitted within the next GCI time slot 2 and MX_{TX} is set to '0'. This monitor byte will be transmitted repeatedly in every time slot 2 until the GCI device acknowledges the byte with $MR_{TX} = '0'$.

As the GCI controller has latched the monitor byte, V_MON_TXR is set to '1'. This means that the host processor can write the next monitor byte into register R_MON_TX.

3 The receiver latches the first monitor byte. This can take an arbitrary number of 125 μs cycles. An acknowledge is send when the receiver is ready for the next byte.

4 The transmitter gets acknowledge with $MR_{TX} = '0'$.

• XHFC-2S4U/4SU answers to the acknowledge signal with $MX_{TX} = '1'$ for one cycle when a new monitor byte has been written into register R_MON_TX. MX_{TX} is set to '0' afterwards to keep the monitor channel active. The second monitor byte is transmitted at the same time as $MX_{TX} = '1'$ and is stable until a receiver acknowledge is recognized.

() The receiver latches the second monitor byte. This can take an arbitrary number of $125 \,\mu s$ cycles. An acknowledge signal $MR_{TX} = '1'$ is send for one cycle when the receiver is ready for the next byte.

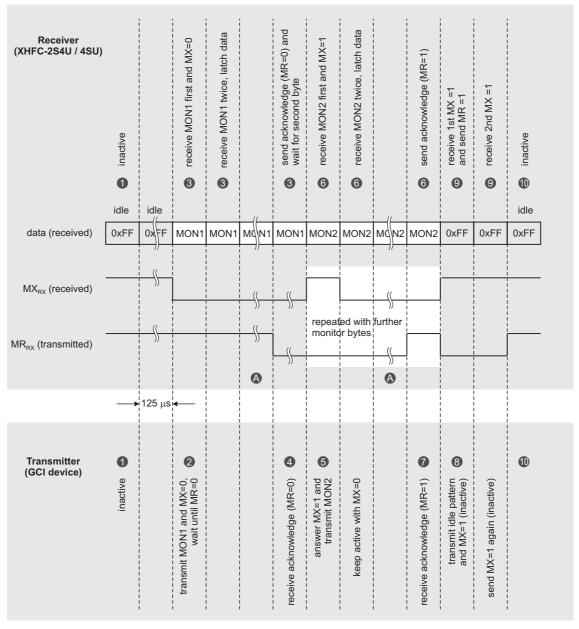
② The transmitter receives acknowledge with $MR_{TX} = '1'$ for one cycle.

③ The procedure shown with the second monitor byte (⑤.. ⑦) can be repeated until the whole message has been send. The last monitor byte has to be marked with V_MON_END = '1'. The marking must be written before the last monitor byte is stored in register R_MON_TX. Then the transmitter terminates the transmission with continuously MX_{TX} = '1'. Idle pattern 0xFF is send. The monitor channel of the transmitter is in inactive state.

9 When the receiver reads $MX_{TX} = '1'$ for two cycles, its monitor channel goes to inactive state with $MR_{TX} = '1'$. The monitor channel is in idle state now.

Table 6.11 summarizes the rules for the handshake signals MX_{TX} and MR_{TX} when XHFC-2S4U/4SU transmits a monitor byte sequence.

MX _{TX}	MR _{TX}	Monitor channel state	
'1'	'1'	Idle	
'0'	'0'	Transmitter and receiver are both active	
'0'	'1' (once)	Acknowledge of the 2 nd and following monitor bytes	
'0'	'1' (repeated)	Transmitter waits for acknowledge to the 1 st monitor byte	
'1' (once)	'0'	Transmitter answers to the acknowledge	
'1' (repeated)	'0'	Transmitter terminates the transmission	


Table 6.11: Rules for the handshake signals MX_{TX} and MR_{TX} when XHFC-2S4U/4SU transmits a monitor byte sequence

6.8.4.2 XHFC-2S4U/4SU receive procedure

The monitor channel is full duplex and operates similar in the opposite direction. XHFC-2S4U/4SU recognizes idle state with the specified handshake signals and accepts every idle pattern.

Figure 6.19 shows the receive procedure of two monitor bytes with *double last look criterion* enabled.

omitted, if the receiver sends acknowledge immediately

Figure 6.19: GCI protocol for monitor bytes receiving

- The monitor channel is idle when $MX_{RX} = '1'$ and $MR_{RX} = '1'$. Any received data pattern is ignored.
- **2** The GCI transmitter sends the first monitor byte with $MX_{RX} = '0'$.
- **③** The first monitor byte is received when $MX_{RX} = '0'$. When the same byte is received again (double last look enabled), it is latched and V_MON_RXR is set to '1'. After R_MON_RX has been read, acknowledge is send in the next 125 µs cycle with MR_{RX} = '0'.
- **4** The transmitter receives acknowledge with $MR_{RX} = '0'$.
- **6** Answer $MX_{BX} = '1'$ for one cycle and send the next monitor byte.
- The next monitor byte is received when MX_{RX} = '1' for one cycle. When the same byte is received again (double last look enabled), it is latched and V_MON_RXR is set to '1'. After R_MON_RX has been read, acknowledge is send in the next 125 µs cycle with MR_{RX} = '1'.
- **7** The transmitter receives acknowledge with with $MR_{RX} = '1'$ for one cycle.
- The procedure shown with the second monitor byte (1.1) can be repeated until the whole message has been send.

Assumed that the GCI master finished the message transmission, MX_{RX} is set to '1' and remains in this state.

() When XHFC-2S4U/4SU receives $MX_{RX} = '1'$ twice, the monitor channel returns to idle state with $MR_{RX} = '1'$. The received byte is no valid monitor byte because MX_{RX} did not return to '0' after one cycle.

The rules for the handshake signals MX_{RX} and MR_{RX} when XHFC-2S4U/4SU receives a monitor byte sequence are summarized in Table 6.12.

Table 6.12: Rules for the handshake signals MX_{RX} and MR_{RX} when XHFC-2S4U/4SU receives a monitor byte	
sequence	

MX _{RX}	MR _{RX}	Monitor channel state
'1'	'1'	Idle
'0'	'0'	Transmitter and receiver are both active
'0'	'1' (once)	Receive the 1 st monitor byte, not yet acknowledged
'0'	'1' (repeated)	Receiver terminates the transmission
'1' (once)	·0'	Receiver answers to the acknowledge
'1' (repeated)	'0'	Impossible

6.8.4.3 Receiver abort

The receiver can abort the transmission if data cannot be used or is missing. This is done by MR = '1' for at least 2 cycles. The monitor channel returns to idle state in this case.

When XHFC-2S4U/4SU operates as GCI master, it can receive an abort message from the GCI slave. This is reported with $V_GCI_ABO = '1'$ in register R_GCI_STA . This bit is reset to '0' with a write access to register R_MON_TX . It is recommended to check V_GCI_ABO every time before writing a new monitor byte.

XHFC-2S4U/4SU never aborts any message when it is receiver of the monitor channel.

6.9 Register description

6.9.1 Write only registers

R	_SLOT			(w)	(Reset group: H, 0, 2)	0x10
P	C M time	slot select	ion			
re	gister mu	st specify	the desired slot nu	mber and data dire	M slot array register can be access action. Depending on the V_PCM vailable for each data direction.	
	Bits	Reset value	Name	Des	scription	
	0	0	V_SL_DIR	·'0' =	M time slot data direction = transmit PCM data = receive PCM data	
	71	0x00	V_SL_NUM	РС	M time slot number	

(See Section 13 on page 351 for a fault description and workaround of an address decoding problem which concerns this register among others.)

PCM_N	MD0	(w) (Reset group: H, 0, 2) 0
CM mod	le, register	0	
Bits	Reset value	Name	Description
0	0	V_PCM_MD	PCM bus mode '0' = slave (pins C4IO and F0IO are inputs) '1' = master (pins C4IO and F0IO are outputs) If no external C4IO and F0IO signal is provided this bit must be set for operation.
1	0	V_C4_POL	Polarity of C4IO clock '0' = pin F0IO is sampled on negative clock transition of C4IO '1' = pin F0IO is sampled on positive clock transition of C4IO
2	0	V_F0_NEG	Polarity of F0IO signal '0' = positive pulse '1' = negative pulse
3	0	V_F0_LEN	Duration of F0IO signal '0' = active for one C4IO clock (244 ns at 4 MHz '1' = active for two C4IO clocks (488 ns at 4 MHz early leading edge) The specified signal duration is generated in PC master mode and it is expected in PCM slave mode.
74	0	V_PCM_IDX	Index value to select the register at address 1At address 15 a so-called multi-register isaccessible.0 = R_SL_SEL0 register accessible1 = R_SL_SEL1 register accessible2 = not used3 = not used4 = not used5 = not used6 = not used7 = R_SL_SEL7 register accessible8 = R_MSS0 register accessible9 = R_PCM_MD1 register accessible0xA = R_PCM_MD2 register accessible0xA = R_SH0L register accessible0xC = R_SH0L register accessible0xA = R_SH0H register accessible0xA = R_SH1L register accessible0xF = R_SH1H register accessible

R	_SL_SEI	LO		(w)	(Reset group: H, 0, 2)	0x15
		U	r for pin F1_0			
Tł	nis multi-	register is	selected with bitmap	V_PCM_IDX =	0 in register R_PCM_MD0.	
No	ote: By so	etting all 8	bits to '1' pin F1_0 is	s disabled.		
	Bits	Reset value	Name	De	scription	
	60	0x7F	V_SL_SEL0	Th F1	CM time slot selection e selected slot number is V_SL_SE _0. Slot number 0 is selected with the eximum slot number of the selected	the
	7	1	V_SH_SEL0	'0' R_ '1'	ape selection = use shape 0 set by registers R_SF _SH0H = use shape 1 set by registers R_SF _SH1H	

Important !

For selecting slot 0, the value that has to be written into bitmaps V_SL_SEL0 and V_SL_SEL1 of registers R_SL_SEL0 and R_SL_SEL1 depends on the PCM data rate:

PCM data rate	Value
PCM30	0x1F
PCM64	0x3F
PCM128	0x7F

Please note that time slot 0 for PCM128 can only be used with $V_SH_SEL0 = '0'$ and $V_SH_SEL1 = '0'$ (SHAPE 0) in registers R_SL_SEL0 and R_SL_SEL1 .

PCM interface

er R_PCM_MD0.
ot selection slot number is V_SL_SEL1 +1 for umber 0 is selected with the t number of the selected PCM speed.
on e 0 set by registers R_SH0L and e 1 set by registers R_SH1L and

R_	_SL_SEL	7		(w)	(Reset group: H, 0, 2)	0x15		
Sl	Slot selection register for signal F1_7							
Th	is multi-re	egister is s	elected with bitmap V_{-}	_PCM_IDX =	7 in register R_PCM_MD0.			
		gnal is onl in NT moc		lt can be used	l to shift the synchronization signal f	for Universal		
	Bits	Reset value	Name	De	escription			
	60	0x7F	V_SL_SEL7	Th	CM time slot selection the selected slot number is V_SL_SE the F1_7 signal. Slot number 0 is select aximum slot number of the selected 1	cted with the		
	7	0	(reserved)	М	ust be '0'.	-		

R_MSS	50	(w)	(Reset group: H, 0, 2) 0x15			
PCM multiframe/superframe synchronization mode, register 0						
This m	ılti-register is s	elected with bitmap V_PCM_I	$DX = 8$ in register R_PCM_MD0.			
Bit	s Reset value	Name	Description			
0	0	V_MSS_MOD	 F0IO pulse modification The F0IO pulse duration can be changed to generate the multiframe / superframe synchronization signal. '0' = normal operation '1' = F0IO pulse is lengthened by one C4IO clock to indicate the start of the multiframe / superframe (delayed trailing edge) 			
1	0	V_MSS_MOD_REP	 F0IO modification repetition rate The repetition rate of the modified F0IO signal can be selected. '0' = once every 40 PCM frames '1' = once every 8 PCM frames 			
2	0	V_MSS_SRC_EN	Enable external multiframe / superframe synchronization signal '0' = disabled '1' = enabled			
3	0	V_MSS_SRC_GRD	Synchronization guard count The multiframe / superframe synchronization signal is detected not before 7 or 39 PCM frames. '0' = not before 39 PCM frames '1' = not before 7 PCM frames			
4	0	V_MSS_OUT_EN	Enable line interface synchronization signal for the multiframe / superframe '0' = the synchronization signal is disabled '1' = the synchronization signal is passed to the line interfaces			
5	0	V_MSS_OUT_REP	Repetition rate of the line interface synchronization signal for the multiframe/superframe The line interface synchronization signal is generated either every 8th or 40th PCM frame. '0' = every 40th PCM frame '1' = every 8th PCM frame (can only be used in pure Up environments)			

(continued on next page)

(continued from previous page)

Bits	Reset value	Name	Description
76	0	V_MSS_SRC	Multiframe / superframe synchronization source One of the following signals can be chosen as synchronization source. '00' = pin F0IO '01' = SYNC_I '10' = STIO1 '11' = internal signal MSS_SYNC_I

R_PCM_N	/ID1	(w)	(Reset group: H, 0, 2)	0x15
	e, register			
his multi-	-register is s	selected with bitmap V_PCM_II	$DX = 9$ in register R_PCM_MD0.	
Bits	Reset value	Name	Description	
0	0	(reserved)	Must be '0'.	
1	0	V_PCM_OD	Characteristic of the PCM output lines '0' = STIO1 and STIO2 have push/pull characteristic '1' = STIO1 and STIO2 have open drain characteristic (pull up resistor required)	
32	0	V_PLL_ADJ	DPLL adjust speed '00' = C4IO clock is adjusted in the last time as the PCM frame 4 times by one clock cycle of PCM clock f_{PCM} (81.4 ns all 125 µs, 651 ppm '01' = C4IO clock is adjusted in the last time as the PCM frame 3 times by one clock cycle of PCM clock f_{PCM} (61.0 ns all 125 µs, 489 ppm '10' = C4IO clock is adjusted in the last time as the PCM frame twice by one clock cycle of th PCM clock f_{PCM} (40.7 ns all 125 µs, 326 ppm '11' = C4IO clock is adjusted in the last time as the PCM frame once by one clock cycle of th PCM clock f_{PCM} (20.3 ns all 125 µs, 163 ppm	the the slot of the h) slot of he h) slot of e
54	0	V_PCM_DR	PCM data rate '00' = 2 MBit/s (C4IO is 4.096 MHz, 32 time s '01' = 4 MBit/s (C4IO is 8.192 MHz, 64 time s '10' = 8 MBit/s (C4IO is 16.384 MHz, 128 time slots) '11' = 0.75 MBit/s (C4IO is 1.536 MHz, 12 time slots) Every time slot exists in transmit and receive direction.	slots) ne ne
6	0	V_PCM_LOOP	PCM test loop When this bit is set, the PCM output data is lo to the PCM input data internally for all PCM slots.	*
			Note: When this bit is set (internal PCM loop is not allowed to set bit V_PCM_OD in regist R_PCM_MD1 as well.	

(continued on next page)

(continued from previous page)

Bits	Reset value	Name	Description
7	0	V_PCM_SMPL	PCM receive sample point '0' = sample point at middle of PCM bit cell (normal operation) '1' = sample point at 3/4 of PCM bit cell

R_PCM_N	ID2	(w)	(Reset group: H, 0, 2) 0x15
PCM mod	e, register	2	
'his multi-	register is s	selected with bitmap V_PCM_I	$DX = 0xA$ in register R_PCM_MD0.
Bits	Reset value	Name	Description
0	0	(reserved)	Must be '0'.
1	0	V_SYNC_OUT1	 SYNC_O output signal selection V_SYNC_OUT2 is also used for synchronization selection. '0' = SYNC_O signal is either SYNC_I or the received synchronization pulse FSC_RX (see register R_SU_SYNC for synchronization source selection) '1' = SYNC_O signal is either 512 kHz from the PLL or the received multiframe/superframe synchronization pulse
2	0	V_SYNC_SRC	PCM PLL synchronization source selection '0' = line interface (see R_SU_SYNC for further synchronization configuration) '1' = SYNC_I input (8 kHz)
3	0	V_SYNC_OUT2	 SYNC_O output signal selection V_SYNC_OUT1 is also used for synchronization selection. '0' = SYNC_O signal is either the received synchronization pulse FSC_RX (see register R_SU_SYNC for synchronization source selection) or 512 kHz from the PLL '1' = SYNC_O signal is either SYNC_I or the received multiframe/superframe synchronization pulse
4	0	V_C2O_EN	Enable C2IO output signal '0' = C2IO output is disabled '1' = C2IO output is enabled when also V_C2I_EN = '0'
5	0	V_C2I_EN	Single Clock on C2IO is used as PCM clock (master and slave mode) '0' = PCM data controller gets C4IO input clock '1' = PCM data controller gets C2IO input clock
6	0	V_PLL_ICR	Increase PCM frame time This bit is only valid if V_PLL_MAN is set. '0' = PCM frame time is reduced as selected by bitmap V_PLL_ADJ in register R_PCM_MD1 '1' = PCM frame time is increased as selected by bitmap V_PLL_ADJ in register R_PCM_MD1

(continued on next page)

(continued from previous page)

Bits	Reset value	Name	Description
7	0	V_PLL_MAN	 Manual PLL adjustment '0' = PCM PLL is automatically adjusted to the SYNC_I signal or to the line interface synchronization pulse (depending on V_SYNC_OUT2 setting) '1' = PCM PLL is manually adjusted according to V_PLL_ICR. This can be used to make synchronization by software if no synchronization source is available. Note: Manual PLL adjustment is automatically disabled when a synchronization pulse is available.

R_I	MSS1		(w)	(Reset group: H, 0, 2) 0x15					
PCI	PCM multiframe/superframe synchronization mode, register 1								
This	This multi-register is selected with bitmap $V_PCM_IDX = 0xB$ in register R_PCM_MD0 .								
	Bits	Reset value	Description						
	20	0	V_MSS_OFFS	Synchronization source offset The offset between the synchronization frame counter and the generated synchronization signal is specified in number of PCM frames. The value can be chosen in the range -4+3. '000' = no offset '001' = 1 PCM frame '010' = 2 PCM frames '011' = 3 PCM frames '100' = -4 PCM frames '111' = -1 PCM frames					
	3	0	V_MS_SSYNC1	Multiframe / superframe single synchronization pulse '0' = a repetitive synchronization signal is generated every 8 or 40 PCM frames '1' = the multiframe / superframe synchronization input signal is directly used (this is normally used to generate a single MSS_SYNC_O pulse) Note: When this bit is set to '1', usually also V_MS_SSYNC2 has to be set.					
	74	0	V_MSS_DLY	Multiframe/superframe delay The position of multiframe/superframe data is always related to the regular F0IO signal. This bitmap specifies the delay in number of C4IO clock pulses. 0 = 1 C4IO pulse delay 1 = 2 C4IO pulses delay 15 = 16 C4IO pulses delay					

R	_SH0L			(w)	(Reset group: H, 0, 2)	0x15			
C	CODEC enable signal F1_0, low byte								
Tł	nis multi-i	register is	selected with bitm	ap V_PCM_IDX =	0xC in register R_PCM_MD0.				
	Bits	Reset value	Name	De	scription				
	70	0x00	V_SHOL		ape bits 70 ery bit is used for 1/2 C4IO clock cy	vcle.			

R	_SH0H			(w)	(Reset group: H, 0, 2)	0x15		
	CODEC enable signal F1_0, high byte This multi-register is selected with bitmap V_PCM_IDX = 0xD in register R_PCM_MD0.							
	Bits	Reset value	Name	De	scription			
	70	0x00	V_SH0H	Ev Bit	ape bits 158 ery bit is used for 1/2 C4IO clock cyc 7 of V_SH0H defines the value for th period.			

R_	_SH1L			(w)	(Reset group: H, 0, 2)	0x15
C	ODEC en	able signa	al F1_1, low byte			
Th	is multi-r	egister is	selected with bitma	ap V_PCM_IDX =	OxE in register R_PCM_MD0.	
	Bits	Reset value	Name	De	escription	
	70	0x00	V_SH1L		ape bits 70 ery bit is used for 1/2 C4IO clock of	rvele

R_	_SH1H			(w)	(Reset group: H, 0, 2)	0x15
		U	al F1_1, high byt selected with bitm		0xF in register R_PCM_MD0.	
	Bits	Reset value	Name	De	scription	
	70	0x00	V_SH1H	Ev Bit	ape bits 158 ery bit is used for 1/2 C4IO clock c 7 of V_SH1H defines the value for period.	•

PCM interface

R	_SU_SYN	IC	(w)	(Reset group: H, 0, 3) 0x17					
S	Г/Up sync	hronizatio	on source						
Tl	This register selects the synchronization source for the internal or external PCM clock PLL.								
	Bits	Reset value	Name	Description					
	20	0	V_SYNC_SEL	Synchronization source selection Any line interface or the SYNC_I input signal can be selected as synchronization source. A line interface can be used as synchronization source only if it is in TE mode. '000' = source is line interface 0 '001' = source is line interface 1 '010' = source is line interface 2 '011' = source is line interface 3 '100' = source is SYNC_I signal '101''111' = not allowed					
	3	0	V_MAN_SYNC	Automatically synchronization source selection '0' = automatic synchronization source selection. A TE which is synchronized to the incoming S/T signal (e.g. state F6 or F7) is chosen as synchronization source and V_SYNC_SEL is ignored. '1' = manual synchronization source selection. V_SYNC_SEL is used for synchronization source. The current synchronization source can be read from V_RD_SYNC_SRC in register R_BERT_STA.					
	4	0	V_AUTO_SYNCI	Enable SYNC_I as synchronization signal In addition to the line interface synchronization pulse FSC_RX, SYNC_I can be taken for synchronization. '0' = SYNC_I is not used for synchronization '1' = SYNC_I is automatically used for synchronization if no FSC_RX pulse is detected					
	5	0	V_D_MERGE_TX	All 4 D-channels are taken from one byte in TX direction.					
	6	0	V_E_MERGE_RX	All 4 E-channels are combined into one Byte in RX direction.					
	7	0	V_D_MERGE_RX	All 4 D-channels are combined into one Byte in RX direction.					

R_	_CI_TX			(w)	(Reset group: H, 0, 2)	0x28
C/	I-channe	el of the G	CI interface			
	Bits	Reset value	Name		Description	
	50	0	V_GCI_C		Command bits of the C/I-channel These bits are continously send in the C/I-channel length can either be 4 bit caccording to V_MON_CI6 setting. Bit ignored when the C/I-channel length is	or 6 bit s [5,4] are
	76	0	(reserved)		Must be '00'.	

_GCI_CF	=G0	()	w) (Reset group: H, 0, 2) 0x2
CI interf	ace config	uration, register 0	
Bits	Reset value	Name	Description
0	0	V_MON_END	End of command flag for the monitor channel The transmitted monitor command ends after the next monitor byte.
1	0	V_MON_SLOW	Transmission speed of the monitor channel '0' = the next monitor byte is sent immediately after the receive handshake bit gets high '1' = the next monitor byte is sent after a high-to-low transition of the receive handshake bit
2	0	V_MON_DLL	Enable <i>double last look criterion</i> '0' = a received monitor byte is accepted at once '1' = a monitor byte is accepted only if it is received twice
3	0	V_MON_CI6	Expand C/I-channel width to 6 bits '0' = 4 bit C/I-channel '1' = 6 bit C/I-channel (no D-channel transmission
4	0	V_GCI_SWAP_TXHS	 Swap handshake bits for transmitted monitor bytes '0' = normal operation (XHFC-2S4U/4SU is GCI master) '1' = handshake bits MR_{TX} and MX_{TX} are swapped (XHFC-2S4U/4SU is GCI slave) Note: This bit must be set when XHFC-2S4U/4SU operates in GCI slave mode. Bits V_GCI_SWAP_RXHS and V_GCI_SWAP_STIO in this register must also be set in this case.
5	0	V_GCI_SWAP_RXHS	 Swap handshake bits for received monitor byter '0' = normal operation (XHFC-2S4U/4SU is GCI master) '1' = handshake bits MR_{RX} and MX_{RX} are swapped (XHFC-2S4U/4SU is GCI slave) Note: This bit must be set when XHFC-2S4U/4SU operates in GCI slave mode. Bits V_GCI_SWAP_TXHS and V_GCI_SWAP_STIO in this register must also be set in this case.

(continued on next page)

(continued from previous page)

Bits	Reset value	Name	Description
6	0	V_GCI_SWAP_STIO	 Swap STIO pins for monitpor bytes and C/I-channel '0' = normal operation (XHFC-2S4U/4SU is GCI master) '1' = swap STIO1 and STIO2 for monitor bytes and C/I-channel (XHFC-2S4U/4SU is GCI slave) Note: This bit must be set when XHFC-2S4U/4SU operates in GCI slave mode. Bits V_GCI_SWAP_TXHS and V_GCI_SWAP_RXHS in this register must also be set in this case.
7	0	V_GCI_EN	 Enable GCI interface function When this bit is set to '1', monitor bytes are transmitted and received on GCI time slot 2, C/I-channel and handshake bits are mapped to GCI time slot 3 and I/O direction of the pins STIO1 and STIO2 is configured according to bit V_GCI_SWAP_STIO. GCI time slots are chosen according to the R_GCI_CFG1 selection.

R	_GCI_CF	G1		(w)	(Reset group: H, 0, 2)	0x2A
G	CI interfa	ace config	uration, register 1			
	Bits	Reset value	Name		Description	
	40	0	V_GCI_SL		Slot group of the GCI interface The GCI interface allocates four PCM $4 \cdot V_GCI_SL4 \cdot V_GCI_SL+3$. Mon C/I-channel and handshake bits are aut mapped to their dedicated position. B1 D-channels must be assigned according needs with normal PCM slot assigner programming (registers R_SLOT and A_SL_CFG). 0 = time slots 03 1 = time slots 2831 8 = time slots 3235 (normally not use PCM64 and PCM128) 16 = time slots 124127 (normally not for PCM128) 31 = time slots 124127 (normally not for PCM128) Note: Normally, GCI requires PCM30 which results in valid bitmap values 0. PCM64 or PCM128 is used with GCI functionality, 015 or 031 can be cl	itor bytes, omatically -, B2- and g to the GCI ed, only for sed, only for sed, only t used, only data rate . 7. When
	75	0	(reserved)		Must be '000'.	

R	_MON_T	x		(w)	(Reset group: H, 0, 2)	0x2B		
М	Monitor data byte							
		D (
	Bits	Reset value	Name		Description			
	70	0	V_MON_TX		Monitor data byte to be transmitted			

6.9.2 Read only registers

unter value

e counter ster

R_	_SL_MA>	((r)	(Reset group: -)	0x1D	
Nu	Number of PCM time slots						
	Bits	Reset value	Name	Descr	iption		
	70		V_SL_MAX	PCM t Maste V_PC 63, 12 Slave	er of last PCM time slot time slots are numbered 0V_i r mode: Four values are possibl M_DR setting in register R_PC 7 or 11) mode: Any value in the range 0 le due to PCM master configura	e due to M_MD1 (31, 127 is	

R	_CI_RX			(\mathbf{r}) (Reset group: -))x28				
C	CI-channel of the GCI interface								
	Bits	Reset value	Name	Description					
	50		V_GCI_I	Indication bits of the C/I-channel These bits are continously received in the C/I-channel. C/I-channel length can either be 4 bit or 6 bit according to V_MON_Cl6 setting. Bits [5,4] at always '00' when the C/I-channel length is 4 bit					
	76		(reserved)						

R_GCI_S [.]	ΤΑ		(r)	(Reset group: H, 0, 2)	0x29
Status reg	ister of the	GCI interface			
Bits	Reset value	Name		Description	
0	0	V_MON_RXR		Monitor receiver ready A monitor byte has been received and c from register R_MON_RX.	an be read
1	1	V_MON_TXR		Monitor transmitter ready A monitor byte has been send and the n can be written into register R_MON_TX	
2	1	V_GCI_MX		Status of MX handshake bit This bit shows the current status of the handshake bit (normally not used, for teonly).	
3		V_GCI_MR		Status of MR handshake bit This bit shows the current status of the l handshake bit (normally not used, for te only).	
4	0	V_GCI_RX		Receiving monitor byte '0' = monitor byte transmission from GO XHFC-2S4U/4SU is idle '1' = monitor byte transmission from GO XHFC-2S4U/4SU is currently active	
5	0	V_GCI_ABO		Receiver abort '0' = normal operation '1' = receiver aborted the monitor byte th	ransmission
76		(reserved)			

R	_MON_R	Х		(r)	(Reset group: –)	0x2A		
М	Monitor data byte							
	Bits	Reset value	Name	Des	cription			
	70		V_MON_RX	Rec	eived monitor data byte			

6.9.3 Read/write register

Α_	_SL_CFG	[SLOT]		(r*/w)	(Reset group: H, 0, 2)	0xD0			
H	FC-chann	nel assignr	nent for the selected]	PCM time slot	and PCM output buffer configu	uration			
	With this register a HFC-channel can be assigned to the selected PCM time slot. Additionally, the PCM buffers can be configured.								
Ве	Before writing this array register the PCM time slot must be selected by register R_SLOT.								
	Bits	Reset value	Name	Des	cription				
	0	0	V_CH_SDIR	'0' =	C-channel data direction HFC-channel for transmit data HFC-channel for receive data				
	41	0x00	V_CH_SNUM		C-channel number . 15)				
	5		(reserved)	Mu	st be '0' when written.				
	76	0	V_ROUT	For '00' disa '01' disa '10' '11' For '00' inpu '01' '10' '11' Not	M output buffer configuration transmit time slots: = data transmission from HFC-ch bled, output buffers disabled = loop PCM data internally, outpu bled = output buffer for STIO1 enabled = output buffer for STIO2 enabled receive time slots: = data transmission to HFC-chan it data is ignored = loop PCM data internally = receive data from STIO2 = receive data from STIO1 e: When this bitmap is set to '01' d loop), it is not allowed to set bit	ut buffers 1 1 nel disabled, (internal			
					PCM_OD in register R_PCM_MD				

(See Section 2.2.3.2 on page 47 for details on Read* access.)

Chapter 7

Pulse width modulation (PWM) outputs

Table 7.1: Overview of the XHFC-2S4U/4SU PWM registers

Address	Name	Page
0x1E	R_PWM_CFG	279
0x38	R_PWM0	279
0x39	R_PWM1	280
0x46	R_PWM_MD	280

7.1 Overview

XHFC-2S4U/4SU has two PWM output lines PWM0 and PWM1 with programmable output characteristic.

The output lines can be configured as open drain, open source and push/pull by setting V_PWM0_MD respectively V_PWM1_MD in register R_PWM_MD.

7.2 Standard PWM usage

The duty cycle of the output signals can be set in registers R_PWM0 and R_PWM1 . The register value defines the number of clock periods where the output signal is high during the cycle time

$$T = 256 \cdot \frac{2^{3 \cdot \text{V}} - \text{PWM} - \text{FRQ}}{f_{\text{SYS}}}$$

The variable duty cycle

$$\frac{t_{\text{high}}}{t_{\text{low}}} = \frac{i}{256 - i} , i = \text{value of } \text{R}_{\text{PWM0}} \text{ or } \text{R}_{\text{PWM1}}$$

of the PWM output pins can be set from 1:255 to 255:1. The register value 0 generates an output signal which is permanently low. The duty cycle 1:1 is achieved with i = 128.

There are always *i* pulses within the period *T*. Each pulse-width is a multiple $1/f_{SYS}$. Due to the setup values, different pulse-width might occur. Pulses with longer or shorter width than the mostly appearing width are distributed through the whole period.

The ouput signal of the PWM unit can be used for analog settings by using an external RC filter which generates a voltage that can be adapted by changing the PWM register value.

7.3 Alternative PWM usage

The PWM output lines can be programmed to generate a 16 kHz signal. This signal can be used as analog metering pulse for POTS interfaces. Each PWM output line can be switched to 16 kHz signal by setting V_PWM0_16KHZ or V_PWM1_16KHZ in register R_PWM_CFG. In this case the output characteristic is also determined by the R_PWM_MD register settings.

7.4 Register description

R_	_PWM_C	FG		(w)	(Reset group: H, 0) Ox	1E
	Bits	Reset value	Name	I	Description	
	30	0	(reserved)	Ν	Must be '0000'.	
	4	0	V_PWM0_16KHZ	'(r	16 kHz signal on PWM0 D' = normal PWM output due to the R_PWM0 egister setting 1' = 16 kHz output on PWM0	
	5	0	V_PWM1_16KHZ	'(r	.6 kHz signal on PWM1 D' = normal PWM output due to the R_PWM1 egister setting 1' = 16 kHz output on PWM1	
	76	0	V_PWM_FRQ	, ()	The PWM frequency is derived from the system clock f_{SYS} and can be reduced with this bitmap. $00' = PWM$ frequency is f_{SYS} $01' = PWM$ frequency is $f_{SYS} / 8$ $10' = PWM$ frequency is $f_{SYS} / 64$ $11' = PWM$ frequency is $f_{SYS} / 512$	

R_PWM0			(w)	(Reset group: H, 0)	0x38			
Modulator register for pin PWM0								
Bits	Reset value	Name	Des	cription				
70	0x00	V_PWM0	The whe 256 0x0 0x8	M duty cycle value specifies the number of cloc re the output signal of PWM0 is his clock periods cycle, e.g. D = no pulse, always low D = 1/1 duty cycle F = 1 clock period low after 255 cm	gh during a			

R_PWM1			(w)	(Reset group: H, 0)	0x39
Modulator	register f	or pin PWM1			
Bits	Reset value	Name	Des	cription	
70	0x00	V_PWM1	The whe 256 0x00 0x80	M duty cycle value specifies the number of cloc re the output signal of PWM1 is hi clock periods cycle, e.g. D = no pulse, always low D = 1/1 duty cycle F = 1 clock period low after 255 cl	gh during a

R	_PWM_N	ID		(w)	(Reset group: H, 0)	0x46	
Р	PWM output mode register						
	Bits	Reset value	Name	Des	cription		
	0	0	(reserved)	Mus	at be '0'.		
	1	0	V_WAK_EN	'0' =	ble WAKEUP pin disable WAKEUP pin enable WAKEUP pin		
	32	0	(reserved)	Mus	st be '00'.		
	54	0	V_PWM0_MD	'00' '01' '10'	<pre>put buffer configuration for pin = PWM output tristate (disable) = PWM push / pull output = PWM push to 0 only = PWM pull to 1 only</pre>	PWM0	
	76	0	V_PWM1_MD	'00' '01' '10'	<pre>put buffer configuration for pin = PWM output tristate (disable) = PWM push/pull output = PWM push to 0 only = PWM pull to 1 only</pre>	PWM1	

Chapter 8

Bit Error Rate Test (BERT)

Table 8.1: Overview of the XHFC-2S4U/4SU BERT registers

Write only	registers:	Read only registers:			
Address	Address Name Page		Address	Name	Page
0x1B	R_BERT_WD_MD	286	0x17	R_BERT_STA	287
			0x1A	R_BERT_ECL	287
			0x1B	R_BERT_ECH	288

8.1 BERT functionality

Bit Error Rate Test (BERT) is a very important test for communication lines. The bit error rate should be as low as possible. Increasing bit error rate is an early indication of a malfunction of components or the communication wire link itself.

XHFC-2S4U/4SU includes a high performance pseudo random bit generator (PRBG) and a pseudo random bit receiver with automatic synchronization capability. The error rate can be checked by the also implemented Bit Error counter (BERT counter).

Please note !

Transparent mode must be selected for Bit Error Rate Test.

8.2 BERT transmitter

The PRBG can be set to a variety of different pseudo random bit patterns. Continous '0', continous '1' or pseudo random bit patterns with one of 6 selectable sequence length's from $2^9 - 1$ bit to $2^{23} - 1$ bit can be configured with bitmap V_PAT_SEQ in register R_BERT_WD_MD. All bit sequences are defined in the ITU-T O.150 [11] and O.151 [10] specifications.

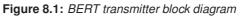
The BERT patterns are passed through the HFC-channel assigner if V_BERT_EN = '1' in register A_FIFO_CTRL[FIFO]. For this reason, either a FIFO-to-ST/U_p or a FIFO-to-PCM configuration must be selected. Furthermore, the allocated FIFO must be enabled to switch on the data path.

BERT patterns are generated if at least one FIFO has its bit V_BERT_EN set to '1'. When more than one transmit FIFO are using BERT patterns, all these patterns are generated from the same pseudo random generator. They are distributed to the FIFOs in the order of the FIFO processing sequence (see Section 3.2.3 on page 80).

Subchannel processing can be used together with the *Bit Error Rate Test*. Then the number of bits taken from the PRBG is V_BIT_CNT.

Please note !

To test a connection and the error detection capability of the BERT error counter, a BERT error can be generated on the receiver side of an ST/U_p link. Setting bit V_BERT_ERR in register R_BERT_WD_MD generates one wrong BERT bit in the outgoing data stream. V_BERT_ERR is automatically cleared afterwards.


8.3 BERT receiver

The BERT receiver has an automatic synchonization capability. When the incoming bit stream is synchronized with the PRBG, bit V_BERT_SYNC in register R_BERT_STA is set to '1'.

A 16 bit BERT error counter is available in registers R_BERT_ECL and R_BERT_ECH. The low

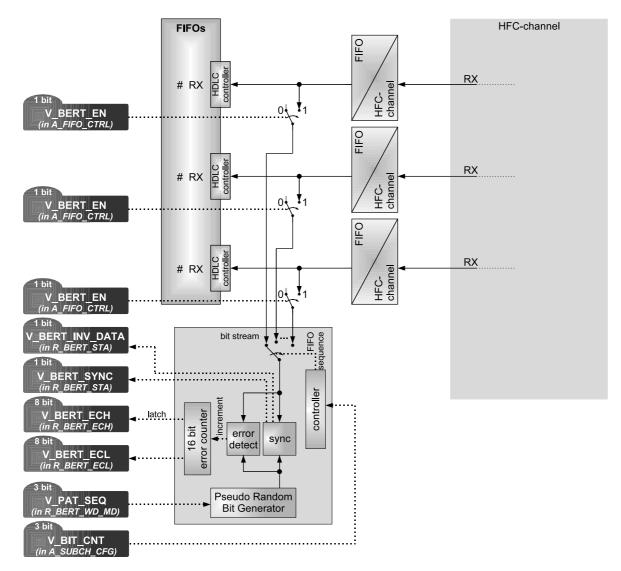


Figure 8.2: BERT receiver block diagram

byte R_BERT_ECL should be read first to latch the high byte. Then the high byte can be read from register R_BERT_ECH. A read access to the low byte R_BERT_ECL clears the 16 bit counter.

The BERT procedure should first wait for the synchronization state. After this, the BERT error counter should be cleared by reading register R_BERT_ECL .

Received BERT data is passed through the HFC-channel assigner if $V_BERT_EN = '1'$ in register A_FIFO_CTRL[FIFO]. For this reason, either a FIFO-to-ST/U_p or a FIFO-to-PCM configuration must be selected. Furthermore, the allocated FIFO must be enabled to switch on the data path. Received BERT data is stored in the FIFO but it needs not to be read out. Received BERT data is collected from all FIFOs which have $V_BERT_EN = '1'$ in the order of the FIFO processing sequence (see Section 3.2.3 on page 80).

Subchannel processing can be used together with the *Bit Error Rate Test*. Then V_BIT_CNT bits taken passed to the BERT receiver.

Inverted BERT data is automatically detected and can be checked with V_BERT_INV_DATA in register R_BERT_STA.

The automatic synchronization works only if the bit error rate is less than $4 \cdot 10^{-2}$. Synchronization state will not be achieved with a higher error rate. It is lost when many bit errors occur during a short time period. In this case, the re-synchronization starts automatically and a high bit error counter value indicates that a re-synchronization might has happened.

8.4 Register description

8.4.1 Write only registers

R_	R_BERT_WD_MD (w)(Reset group: H, 0) $0x1E$							
Bi	Bit error rate test (BERT) and watchdog mode							
	Bits	Reset value	Name	Description				
	20	0	V_PAT_SEQ	Continuous '0' / '1' or pseudo random pattern sequence for BERT '000' = continuous '0' pattern '001' = continuous '1' pattern '010' = sequence length $2^9 - 1$ bits '011' = sequence length $2^{10} - 1$ bits '100' = sequence length $2^{15} - 1$ bits '101' = sequence length $2^{20} - 1$ bits '101' = sequence length $2^{20} - 1$ bits '110' = sequence length $2^{20} - 1$ bits, but maximal 14 bits are zero '111' = pseudo random pattern seq. $2^{23} - 1$ Note: These sequences are defined in ITU-T O.150 and O.151 specifications.				
	3	0	V_BERT_ERR	BERT error Generates one error bit in the BERT data stream '0' = no error generation '1' = generates one error bit This bit is automatically cleared.				
	4	0	(reserved)	Must be '0'.				
	5	0	V_AUTO_WD_RES	Automatic watchdog timer reset '0' = watchdog is only reset by V_WD_RES '1' = watchdog is reset after every access to the chip				
	6	0	V_WD_EN	Watchdog timer enable '0' = watchdog timer is disabled '1' = watchdog timer is enabled				
	7	0	V_WD_RES	Watchdog timer reset '0' = no action '1' = manual watchdog timer reset This bit is automatically cleared.				

BERT

8.4.2 Read only registers

R	_BERT_S	TA		(r)	(Reset group: H, 0, 1)	0x17
Bi	t error ra	te test sta	tus			
	Bits	Reset value	Name		Description	
	20	0	V_RD_SYNC_SRC		Synchronization source selection Reports which line interface is used as synchronization source. Every line inter either in S/T or Up mode. The SYNC_I be used as synchronization source, alter '000' = line interface 0 '001' = line interface 1 '010' = line interface 2 '011' = line interface 3 '100' = SYNC_I signal '101''111' = not used	signal can
	3		(reserved)			
	4	0	V_BERT_SYNC		BERT synchronization status '0' = BERT not synchronized to input data '1' = BERT synchronized to input data	ita
	5	0	V_BERT_INV_DATA		BERT data inversion '0' = BERT receives normal data '1' = BERT receives inverted data	
	76		(reserved)			

R_	R_BERT_ECL			(r)	(Reset group: H, 0, 1)	0x1A
BF	E RT erro	r counter	, low byte			
	Bits	Reset value	Name	D	escription	
	70	0x00	V_BERT_ECL	T of N	its 70 of the BERT error counter his register should be read first to late register R_BERT_ECH. ote: The BERT counter is cleared aft is register.	the value

R_	R_BERT_ECH			(r)	(Reset group: H, 0, 1)	0x1B
BI	E RT err o	or counter	, high byte			
	Bits	Reset value	Name	Ľ	escription	
	70	0x00	V_BERT_ECH	N	its 158 of the BERT error count fote: Low byte should be read first (s _BERT_ECL).	

Chapter 9

Clock, PLL, reset, interrupt, timer and watchdog

 Table 9.1: Overview of clock, PLL, reset, timer and watchdog registers

Write only	Write only registers:			Read only registers:			Read/write registers:		
Address	s Name Page Address Name Page		Address	Name	Page				
0x00	R_CIRM	308	0x10	R_IRQ_OVIEW	316	0x51	R_PLL_P	325	
0x02	R_CLK_CFG	310	0x11	R_MISC_IRQ	318	0x52	R_PLL_N	325	
0x11	R_MISC_IRQMSK	311	0x12	R_SU_IRQ	319	0x53	R_PLL_S	325	
0x12	R_SU_IRQMSK	312	0x1C	R_STATUS	320				
0x13	R_IRQ_CTRL	313	0x20	R_FIFO_BL0_IRQ	321				
0x1A	R_TI_WD	314	0x21	R_FIFO_BL1_IRQ	322				
0x50	R_PLL_CTRL	315	0x22	R_FIFO_BL2_IRQ	323				
			0x23	R_FIFO_BL3_IRQ	324				
			0x50	R_PLL_STA	324				

Cologne Chip

9.1 Clock

9.1.1 Clock output

XHFC-2S4U/4SU supply a programmable clock output which can be used for source of clocking for any external device. Even a CPU or MCU supervising the whole system in which XHFC-2S4U/4SU is used can be clocked. The left part of Figure 9.1 shows the block diagram of CLK_OUT generation.

After reset, the clock output frequency

$$f(\mathsf{CLK_OUT}) = \frac{1}{8}f(\mathsf{OSC_OUT})$$

is available at pin CLK_OUT.

Two clock sources are available for f_{SRC} . V_CLK_F1 = '0' in register R_CLK_CFG selects the clock oscillator. Alternatively, pin F1_1 is used as clock source when V_CLK_F1 = '1'.

The clock output frequency depends on the programming bits as follows:

$$f(\mathsf{CLK_OUT}) = \begin{cases} f_{\mathsf{SRC}} & ; \quad \mathsf{V_CLKO_HI} = `1` \text{ and } \mathsf{V_CLKO_PLL} = `0` \\ \frac{1}{8}f_{\mathsf{SRC}} & ; \quad \mathsf{V_CLKO_HI} = `0` \text{ and } \mathsf{V_CLKO_PLL} = `0` \\ f_{\mathrm{out}} & ; \quad \mathsf{V_CLKO_PLL} = `1` \end{cases}$$

V_CLKO_OFF must be '0' to enable the tristate type driver of pin CLK_OUT.

Please note !

All setup bits shown in Figure 9.1 are implemented in a way that there are no glitches on the clocks when register bits change.

9.1.2 Clock distribution

XHFC-2S4U/4SU use several internal clock frequencies. They are generated as shown in the right part of Figure 9.1.

The system clock f_{SYS} is derived either from the OSC_OUT clock or from the internal PLL output clock. When the oscillator frequency is either 24.576 MHz or 49.152 MHz, V_CLK_PLL should be left in its reset state '0'. With any other oscillator frequency the internal PLL must be used to generate the required XHFC-2S4U/4SU clock f_{SYS} and V_CLK_PLL must be set to '1' in register R_CLK_CFG.

Both the line interface clock f_{SU} and the PCM clock f_{PCM} must be set up to achieve 12.288 MHz and 49.152 MHz respectively. This is done with bit V_SU_CLK in register R_CTRL and bitmap V_PCM_CLK in register R_CLK_CFG.

The internal clocks f_{SYS} , f_{SU} and f_{PCM} can be switched off with V_CLK_OFF = '1' in register R_CIRM. Any write access to the host processor interface or a high level at pin WAKEUP restarts the clock distribution.



Figure 9.1: CLK_OUT generation and clock distribution

Please note !

The timing specification of the processor interface is based on $t_{SYS} = 1/f_{SYS}$. This must be taken into account if a lower oscillator frequency is used.

Before the PLL is programmed and has reached its locked state, the host processor might wait beween XHFC-2S4U/4SU accesses.

9.1.3 Clock oscillator circuitry

There are different ways to provide the internal clocks of XHFC-2S4U/4SU. This section describes the Pierce oscillator circuitry, gives a hint to 3rd overtone oscillator and the usage of crystal oscillator circuitries.

9.1.3.1 Frequency accuracy

ISDN applications need an exact clock frequency. By the ISDN specification a precision of ± 100 ppm is minimum requirement for passing the ISDN type approval. In respect to temperature dependence and ageing behavior a crystal with ± 50 ppm is recommended.

9.1.3.2 Pierce oscillator

A typical clock oscillator circuitry using a 24.576 MHz crystal is shown in Figure 9.2. This Pierce oscillator is very popular for clock generation and is widely known from literature.

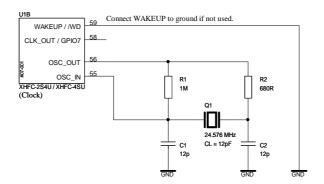


Figure 9.2: Standard XHFC-2S4U/4SU quartz circuitry

The feedback resistor R1 determines the DC operation point and is typically in the range $100 k\Omega .. 10 M\Omega$ for CMOS inverters.

The capacitive load $C_{\rm L}$ of the crystal is given in its data sheet. C1 and C2 should be chosen to fulfill

$$C_{\rm L} = \frac{\rm C1 \cdot C2}{\rm C1 + C2} + C_{\rm S}$$

where C_S is the stray capacitance. It is given by the input and output capacitances of the inverter and the shunt capacitance between the crystal terminals. Typically, C1 and C2 are chosen to be equal.

Finally, the resistor R2 is chosen to be roughly equal to the capacitive reactance of C2 at the frequency of oscillation.

$$\mathrm{R2} \sim \frac{1}{2\pi f_{\mathrm{Q1}}\cdot\mathrm{C2}}$$

The minimum value of R2 depends on the recommended power consumption of the crystal. A too small value may damage the crystal or shorten the lifetime. When R2 is too large, the oscillation might not start. As XHFC-2S4U/4SU has a bufffered inverter between pins OSC_IN and OSC_OUT the value of R2 can be increased. A factor of about 2..3, e.g., is well.

The circuitry shown in Figure 9.2 is based on a crystal with $C_L = 12 \text{ pF}$ and a stray capacitance of $C_S = 6 \text{ pF}$. This leads to

$$C1 = C2 = 2 \cdot (C_L - C_S) = 12 \, pF$$

and

$${\sf R2} = (1 ..3) \cdot \frac{1}{2\pi f_{{\sf Q1}} \cdot {\sf C2}} = (1 ..3) \cdot 540\,\Omega \sim 680\,\Omega \ .$$

Please note !

The here shown dimensioning of the oscillator circuitry is only an example and depends on the used crystal as well as on the particular board design. In general it is recommanded to check oscillation build-up, power consumption of the crystal and the so-called safety factor within the particular design.

The specified drive level should not be put to the extreme to avoid early crystal ageing. Typically, within a good dimensioned circuitry, a low load capacitance C_L is a condition for a low drive level.

9.1.3.3 3rd overtone oscillator

A different oscillator frequency with double frequency 49.152 MHz can be used alternatively. For this a 3rd overtone crystal or a clock oscillator can be used.

9.1.3.4 Crystal oscillator circuitry

It is possible to feed the OSC_IN input of XHFC-2S4U/4SU with a standard 3.3 V crystal oscillator. The input switching level is close to $V_{\rm DD}/2$ (CMOS level) and XHFC-2S4U/4SU can accept at least a duty cycle of 45% high/55% low to 55% high/45% low.

9.1.3.5 Several XHFC-2S4U/4SU with a single oscillator circuitry

When several XHFC-2S4U/4SU are used within an application, only one oscillator circuitry is required. Pin CLK_OUT can be used to distribute the clock to all XHFC-2S4U/4SU as shown in Figure 9.3.

Register setup:	
$R_CLK_CFG \ : \ V_CLK_F1 \ = 0$	oscillator input OSC_IN is used
: V_CLKO_HI = 1	high frequency, no divider
: V_CLKO_PLL = 0	divider output clock or PLL input clock is used
: V_CLKO_OFF = 0	clock output pin CLK_OUT is enabled

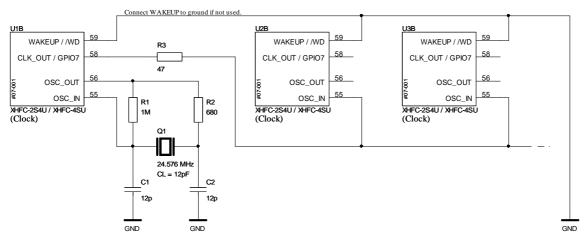


Figure 9.3: Clock distribution with only one quartz circuitry

9.2 Phase locked loop (PLL)

9.2.1 Overview

Depending on the external clock source connected to pin OSC_IN, the internal PLL shown in Figure 9.1 is either required for internal clock generation or it is available for other application needs.

- When a telecommunication quartz with either 24.576 MHz or 49.152 MHz is used, the PLL is not required for f_{SYS} generation. In this case, the PLL is not occupied from XHFC-2S4U/4SU and it can be used for any other application needs.
- When any other clock frequency is feed in pin OSC_IN, the PLL is required for f_{SYS} generation. f_{SU} and f_{PCM} are derived from f_{SYS} as shown in Figure 9.1.

The internal PLL is a fully digital implementation even though it is commonly seen to be an analog function. This is realized with the new DIGICCTM technology introduced by Cologne Chip¹.

Technical features:

- Oscillator frequency range $54 \text{ MHz} \le f_{\text{OSC}} \le 108 \text{ MHz}$
- Programmable loop multiplication $5 \le N \le 255$
- Programmable predivider *P* and post-scaler *S* with range 1..256 each
- Deterministic clock-to-clock jitter typical 120 ps
- f_{out} duty cycle $40\% \dots 60\%$
- No external loop filter or capacity needed
- Very short lock time (worst case 2000 periods of f_{ref})

9.2.2 PLL structure

The PLL consists of a predivider, the PLL circuitry and a post-scaler. This structure is shown in Figure 9.4.

The PLL loop with input frequency f_{ref} and output frequency f_{PLL} has the ratio

$$\frac{f_{\rm PLL}}{f_{\rm ref}} = N$$

with $N = V_PLL_N = 5..255$ (0..4 are not allowed).

The overall frequency ratio

$$\frac{f_{\rm out}}{f_{\rm in}} = \frac{N}{P \cdot S}$$

can be adjusted with the predivider and the post-scaler. Both dividers operate in the range 1..256.

¹Detailed information about the DIGICCTM technology and the here used PLL is documented in [1, 2]. It is *not necessary* to read these documents in order to understand this data sheet.

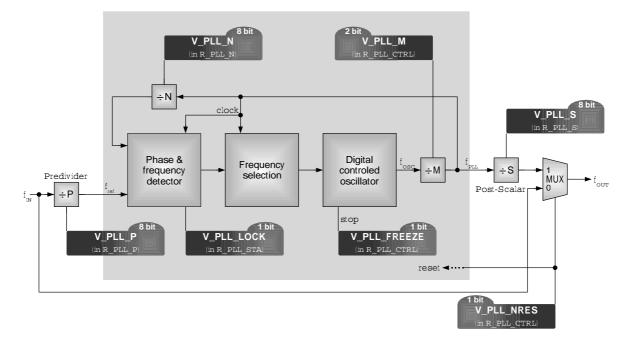


Figure 9.4: PLL block diagram

An additional divider with $M = V_PLL_M + 1 = 1..4$ has effect only inside the PLL circuitry. As the PLL output frequency f_{PLL} is used for internal PLL clock signal, the power consumption can be reduced with lower

$$f_{\rm PLL} = \frac{f_{\rm osc}}{M}$$

frequency.

9.2.3 PLL operation

The PLL is disabled after reset and the input frequency f_{in} is directly feed to the output, i.e. $f_{out} = f_{in}$. A '0' to '1' transition of bit V_PLL_NRES in register R_PLL_CTRL starts the PLL beginning with the lowest oscillator frequency. V_PLL_LOCK is '1' when the PLL is locked.

The PLL can be switched into standby mode without loss of current settings with V_PLL_FREEZE = '1' in register R_PLL_CTRL. Then $f_{out} = 0$ until V_PLL_NRES returns to '0' again. Re-activation takes only few f_{ref} periods. V_PLL_LOCK returns '0' in standby mode.

9.2.4 Supply noise requirements for PLL locking

It is very important to consider that power supply noise of XHFC-2S4U/4SU has strong influence on the PLL locking. Therefore, if the PLL's output clock needs high accuracy, power supply noise of XHFC-2S4U/4SU must be very low. Typically it is recommended, that supply noise does not exceeds 10 mV peak-to-peak in this case.

If the PLL output frequency is used to clock devices with low frequency accuracy requirements, power noise does not matter because the long term frequency deviation is always less than 100 ppm. This means, PLL jitter might be poor, but the PLL output frequency is accurate, of course.

Please see electrical characteristics in chapter 11 for more details.

9.2.5 PLL configuration

The PLL has four parameters P, M, N and S to be specified. Tables 9.2 and 9.3 show examples for PLL configuration settings. The parameter tuple (P,M,N,S) is given for often used frequencies. Approximate solutions have additional information about the f_{out} offset in parts per million and absolute value.

If other parameter sets are required, they can be calculated with the formulars given in section 9.2.2. Alternatively, the Cologne Chip support team will help you choosing suitable parameter sets for your application.

Please note !

The ISDN specification provides a clock precision of at least ± 100 ppm. PLL output offset must be added to the crystal precision. This must be taken into account when a PLL configuration setup is chosen from the examples in Tables 9.2 and 9.3.

f _{in} (MHz)	f _{out} (MHz) 7.68	12.288	24.576	49.152
1.8432	(1,2,25,6)	(1,2,20,3)	(1,1,40,3)	(3,2,80,1)
	exact	exact	exact	exact
3.579545	(5, 1, 118, 11)	(37,4,254,2)	(37,4,254,1)	(15, 2, 206, 1)
	-33 ppm , -249 Hz	-119 ppm , -1454 Hz	-119 ppm , -2908 Hz	+ 145 ppm , +7085 Hz
6	(5,2,32,5)	(13,1,213,8)	(13, 1, 213, 4)	(13, 1, 213, 2)
	exact	+38 ppm , +462 Hz	+38 ppm , +924 Hz	+ 38 ppm , +1847 Hz
7.68	(1,2,5,5)	(1,1,8,5)	(5,4,16,1)	(5,2,32,1)
	exact	exact	exact	exact
10.7	(41,2,206,7)	(31, 1, 178, 5)	(16, 1, 147, 4)	(16, 1, 147, 2)
	+19 ppm , +140 Hz	-22 ppm , -259 Hz	+23 ppm , +563 Hz	+ 23 ppm , +1125 Hz
12	(5,2,16,5)	(25, 1, 128, 5)	(26, 1, 213, 4)	(26, 1, 213, 2)
	exact	exact	+38 ppm , +924 Hz	+ 38 ppm , +1847 Hz
12.288	(1,1,5,8)	(1,1,5,5)	(1,1,6,3)	(1,1,8,2)
	exact	exact	exact	exact
14.31818	(53, 2, 199, 7)	(67,4,115,2)	(67,4,115,1)	(67, 2, 230, 1)
	+14 ppm , +102 Hz	-1 ppm , -10 Hz	-1 ppm , -20 Hz	-1 ppm , -39 Hz
16	(5,2,12,5)	(25,1,96,5)	(125,4,192,1)	(83,2,255,1)
	exact	exact	exact	+95 ppm , +4627 Hz
24.576	(2,1,5,8)	(2,1,5,5)	(2,1,6,3)	(2,1,8,2)
	exact	exact	exact	exact
25	(125,2,192,5)	(59,4,58,2)	(59,4,58,1)	(59,2,116,1)
	exact	+ 12 ppm , +136 Hz	+ 12 ppm , +272 Hz	+12 ppm, +543 Hz
32.768	(8,1,15,8)	(2,1,6,8)	(2,1,6,4)	(2,1,6,2)
	exact	exact	exact	exact
33	(25,1,64,11)	(61, 1, 159, 7)	(111, 1, 248, 3)	(143,2,213,1)
	exact	+5 ppm , +57 Hz	+ 24 ppm , +577 Hz	+ 38 ppm , +1847 Hz
48	(5,1,8,10)	(25,1,32,5)	(125,4,64,1)	(125,2,128,1)
	exact	exact	exact	exact
49.152	(4,1,5,8)	(3,1,6,8)	(3,1,6,4)	(3,1,6,2)
	exact	exact	exact	exact
66	(25,1,32,11)	(122, 1, 159, 7)	(205, 1, 229, 3)	(143, 1, 213, 2)
	exact	+ 5 ppm , +57 Hz	-16 ppm , -391 Hz	+38 ppm , +1847 Hz

Table 9.2: *PLL* setup examples (P, M, N, S) with ISDN related frequencies for \mathbf{f}_{out} , (approximations have additional information about f_{out} offset)

f _{out} (MHz)	f _{in} (MHz) 7.68	12.288	24.576	49.152
1.8432	(1,2,6,25)	(1,1,6,40)	(2,1,6,40)	(4,1,6,40)
	exact	exact	exact	exact
3.579545	(59,4,110,4)	(10, 1, 67, 23)	(20, 1, 67, 23)	(40, 1, 67, 23)
	+33 ppm , +117 Hz	+1 ppm, +3 Hz	+1 ppm, +3 Hz	+1 ppm , +3 Hz
6	(2,1,25,16)	(16, 1, 125, 16)	(32, 1, 125, 16)	(64, 1, 125, 16)
	exact	exact	exact	exact
7.68	(1,2,5,5)	(1,1,5,8)	(2,1,5,8)	(4,1,5,8)
	exact	exact	exact	exact
10.7	(89,4,248,2)	(89,4,155,2)	(89,2,155,4)	(89, 1, 155, 8)
	+22 ppm , +225 Hz	+22 ppm , +225 Hz	+22 ppm , +225 Hz	+22 ppm , +225 Hz
12	(2,1,25,8)	(16,1,125,8)	(32, 1, 125, 8)	(64,1,125,8)
	exact	exact	exact	exact
12.288	(1,1,8,5)	(1,1,5,5)	(2,1,5,5)	(3,1,6,8)
	exact	exact	exact	exact
14.31818	(59,4,110,1)	(23, 1, 134, 5)	(23,1,67,5)	(46, 1, 67, 5)
	+33 ppm , +465 Hz	+1 ppm, +12 Hz	+1 ppm, +12 Hz	+1 ppm , +12 Hz
16	(2,1,25,6)	(16,1,125,6)	(32,1,125,6)	(64,1,125,6)
	exact	exact	exact	exact
24.576	(5,4,16,1)	(1,1,6,3)	(2,1,6,3)	(3,1,6,4)
	exact	exact	exact	exact
25	(47,4,153,1)	(29,4,59,1)	(29,2,59,2)	(29, 1, 59, 4)
	+35 ppm , +852 Hz	-12 ppm , -276 Hz	-12 ppm , -276 Hz	-12 ppm , -276 Hz
32.768	(5,1,64,3)	(1,1,8,3)	(2,1,8,3)	(3,1,6,3)
	exact	exact	exact	exact
33	(37,3,159,1)	(89,3,239,1)	(89, 1, 239, 2)	(71, 1, 143, 3)
	+99 ppm , +3244 Hz	-58 ppm , -1888 Hz	-58 ppm , -1888 Hz	-38 ppm , -1240 Hz
48	(2,1,25,2)	(16,1,125,2)	(32, 1, 125, 2)	(64,1,125,2)
	exact	exact	exact	exact
49.152	(5,2,32,1)	(1,1,8,2)	(2,1,8,2)	(3,1,6,2)
	exact	exact	exact	exact
66	(27, 1, 232, 1)	(35, 1, 188, 1)	(89,1,239,1)	(178, 1, 239, 1)
	-135 ppm , -8889 Hz	+63 ppm , +4115 Hz	-58 ppm , -3776 Hz	-58 ppm , -3776 Hz

Table 9.3: *PLL* setup examples (P, M, N, S) with ISDN related frequencies for \mathbf{f}_{in} , (approximations have additional information about f_{out} offset)

9.3 Reset

XHFC-2S4U/4SU has a level sensitive reset input at pin 23 with active low level. The pins MODE0 and MODE1 must already be stable during reset. The reset pulse must not be shorter than 10 ns.

After reset XHFC-2S4U/4SU enters an initialization sequence. Its duration depends on the number of FIFOs and has a maximum length of 40 µs with $f_{SYS} = 24.576$ MHz. When the initialization process is finished, bit V_BUSY in register R_STATUS changes from '1' to '0'.

PCM initialization takes 149 µs with $f_{PCM} = 49.152 \text{ MHz}$. V_PCM_INIT in register R_STATUS has the value '1' during PCM reset phase. It changes to '0' when the PCM initialization has finished.

XHFC-2S4U/4SU has 4 different software resets which means that the registers are assigned to so-called reset groups.

The FIFO registers, PCM registers and ST/U_p registers belong to reset groups 1..3 and can be reset independently with the bits of register R_CIRM which are listed in Table 9.4.

A global software reset puts all registers of reset group 0 back to their default value and implies reset groups 1..3 as well. It is very similar to the hardware reset, except a few registers which have only hardware reset (see register list from page 21).

The reset bits must be set and cleared by software.

A hardware reset implies all reset groups 0..3, of course.

Reset name	Reset group	Register bit	Description
Hardware reset	Н	_	Hardware reset initiated by /RES input pin. The hardware reset implies reset of all registers of reset groups 03 as well.
Global Software reset	0	V_SRES	The global software reset, which is similar to the hardware reset, restores the default values to the most registers. The global software reset implies reset of all registers of reset groups 13 as well.
HFC reset	1	V_HFC_RES	Reset for all FIFO registers of XHFC-2S4U/4SU.
PCM reset	2	V_PCM_RES	Reset for all PCM registers of XHFC-2S4U/4SU.
ST/U _p reset	3	V_SU_RES	Reset for all ST/U $_p$ registers of XHFC-2S4U/4SU.

Information about the allocation of the registers to the different reset groups can be found in the register list on pages 22 and 24. Some registers are allocated to more than one reset group, some have only hardware reset, and some have no default value at all.

9.4 Interrupt

9.4.1 Common features

XHFC-2S4U/4SU is equipped with a maskable interrupt engine. A big variety of interrupt sources can be enabled and disabled. All interrupt events are reported on reading the interrupt status registers independently of masking the interrupts or not. Reading an interrupt status register resets the bits. Interrupt bits which are set during the read access are reported at the next read access of the interrupt status register.

Mask bits are used to enable or disable signal generation on the interrupt pin /INT. Every interrupt bit can be masked individually.

Pin 22 is the interrupt output line. After reset, all interrupts are disabled. The interrupt line must be enabled with V_GLOB_IRQ_EN set to '1' in register R_IRQ_CTRL. The polarity of the interrupt signal can be changed from *active low* to *active high* with bitmap V_IRQ_POL in the same register. Please note, that the interrupt line cannot be shared with active high polarity.

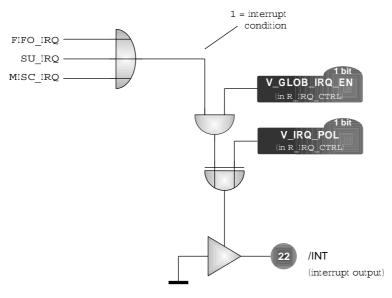
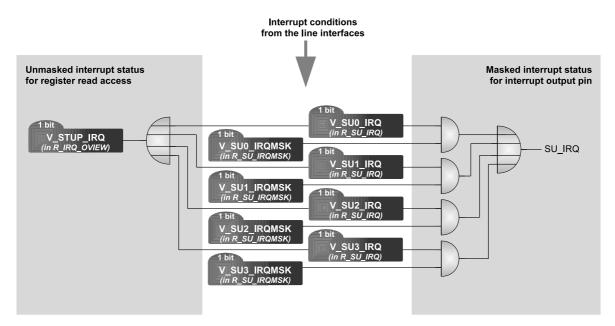


Figure 9.5: Interrupt output

9.4.2 ST/U_p interface interrupt


Every line interface can have its own interrupt capability to indicate a state change condition. The interrupt mask has to be programmed in register R_SU_IRQMSK.

When an ST/U_p interface interrupt occured, the corresponding line interface can be determined by reading register R_SU_IRQ. This register contains the state change condition even if the interrupts are disabled.

9.4.3 FIFO interrupt

FIFO interrupts can be enabled to indicate the status for every FIFO individually.

Figure 9.6: *ST*/*U*_p *interface interrupt*

The interrupt status of all 32 FIFOs can be read from registers R_FIFO_BL0_IRQ ...R_FIFO_BL3_IRQ. All FIFOs are organized in four blocks with 8 FIFOs each. Every block has an overview bit V_FIFO_BL0_IRQ...V_FIFO_BL3_IRQ in register R_IRQ_OVIEW.

FIFO interrupt status bits in registers $R_FIFO_BL0_IRQ...R_FIFO_BL3_IRQ$ are only set, when $V_FIFO_IRQ_EN = '1'$ in register R_IRQ_CTRL as shown in Figure 9.7.

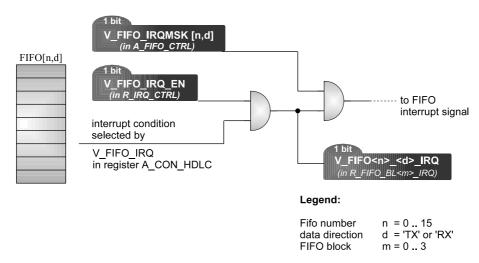


Figure 9.7: Enable FIFO interrupt condition with V_FIFO_IRQ_EN

- **FIFO in transparent mode** (V_HDLC_TRP = '1'): An interrupt occurs due to the setting of V_FIFO_IRQ in register A_CON_HDLC.
- **HDLC mode without mixed interrupt mode** (V_HDLC_TRP = '0' and V_MIX_IRQ = '0'): An interrupt occurs at *end of frame* condition (which leads to a frame counter increment) or after a FIFO underrun condition.

HDLC mode and mixed interrupt mode (V_HDLC_TRP = '0' and V_MIX_IRQ = '1'):

An interrupt occurs both at *end of frame* condition (which leads to a frame counter increment) or after a FIFO underrun condition and due to the setting of V_FIFO_IRQ in register A_CON_HDLC.

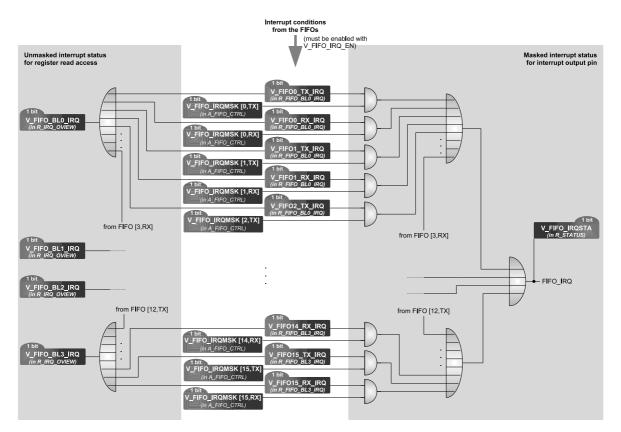


Figure 9.8: FIFO interrupt

9.4.4 Miscelleanous interrupts

Seven miscelleanous interrupts are available to report important XHFC-2S4U/4SU status. Figure 9.9 shows the block diagram of these interrupt capabilities.

An overview bit V_MISC_IRQ can be read from register R_IRQ_OVIEW.

9.4.4.1 Line interface frequency slip interrupt

The frame synchronization signal can either be the F0IO or the AF0 signal as shown in Figure 5.16 on page 190. The actual selection of a line interface can be read from bit V_SU_AF0 in register A_SU_STA or together for all line interfaces from register R_AF0_OVIEW. Any change of these selections causes an interrupt event when V_SLIP_IRQMSK in register R_MISC_IRQMSK is set to '1'.

The interrupt condition is shown in V_SLIP_IRQ of register R_MISC_IRQ even if the mask bit is not set.

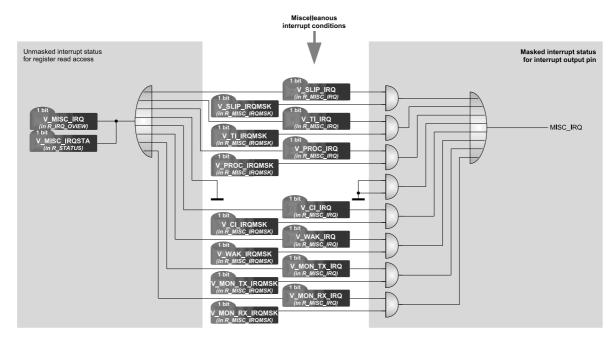


Figure 9.9: Miscelleanous interrupts

It is recommended to store the R_AF0_OVIEW value by the application software to detect any frequency slips.

Data might be corrupted when a frequency slip occurs. This is explained in detail in section 5.4.2 from page 189.

Unused line interfaces might trigger interrupts because of their free running 8 kHz frame signal FSC_RX. These unwanted interrupt events can be avoided when the unused line interfaces are switched into NT mode with V_SU_MD = '1' in register A_SU_CTRL0. Moreover, V_SU_SYNC_NT must be in its default state '0' in register A_SU_CTRL2.

Please note, that the upper line interfaces 2 and 3 of XHFC-2S4U should also be switched into U_p - NT mode even in S/T applications where line interfaces 0 and 1 are used in S/T mode.

9.4.4.2 Timer interrupt

XHFC-2S4U/4SU includes a timer with interrupt capability. The timer counts F0IO pulses, i.e. it is incremented every $125 \,\mu s$.

A timer event is indicated with $V_TI_IRQ = '1'$ in register R_MISC_IRQ. This event generates an interrupt if the mask bit V_TI_IRQMSK is set to '1' in register R_MISC_IRQMSK.

A timer event is generated every $2^{V_EV_TS} \cdot 250 \mu s$ where $V_EV_TS = 0..15$ in register R_TI_WD. 16 timer event frequencies are available in the range 250 µs . . 8.192 s.

9.4.4.3 Processing / non-processing interrupt

XHFC-2S4U/4SU changes every 125 μ s from non-processing into processing state. When it returns to non-processing state, this event can be reported with an interrupt.

Bit V_PROC_IRQMSK in register R_MISC_IRQMSK must be set to '1' to enable this interrupt capability. In case of an interrupt, bit V_PROC_IRQ in register R_MISC_IRQ has the value '1'.

This interrupt occurs once in every 125 µs cycle but the distance between two consecutive interrupts changes due to the load of the internal processing machine.

9.4.4.4 Command / indication interrupt (GCI interface)

This interrupt occurs when the received indication bits of the C/I-channel have changed.

9.4.4.5 Wakeup interrupt

The wakeup pin can be enabled with V_WAK_EN = '1' in register R_PWM_MD as shown in Figure 9.10. A high level is stored in V_WAK_IRQ of register R_MISC_IRQ. This bit generates an interrupt if the mask bit V_WAK_IRQMSK = '1' in register R_MISC_IRQMSK.

The wakeup pin can also be used as common external interrupt input, or as general purpose input configurable with or without interrupt capability.

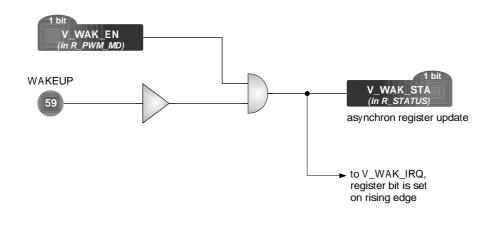


Figure 9.10: Wakeup interrupt

9.4.4.6 Interrupt for GCI monitor byte transmission

The interrupt bit V_MON_TX_IRQ in register R_MISC_IRQ is set to '1' when the next monitor byte can be written into register R_MON_TX.

The interrupt status is reported in V_MON_TX_IRQ of register R_MISC_IRQ even when the mask bit V_MON_TX_IRQMSK in register R_MISC_IRQMSK is not set.

9.4.4.7 Interrupt after GCI monitor byte received

After a monitor byte has been received and stored in register R_MON_RX, an interrupt can be generated.

The interrupt status is reported in V_MON_RX_IRQ of register R_MISC_IRQ even when the mask bit V_MON_RX_IRQMSK in register R_MISC_IRQMSK is not set.

9.5 Watchdog reset

The parallel processor interface of XHFC-2S4U/4SU includes a watchdog functionality.

A watchdog event generates a low signal at pin /WD. The watchdog timer can either be reset manually or automatically.

- Manual watchdog reset is selected with V_AUTO_WD_RES = '0' in register R_BERT_WD_MD. Then, writing V_WD_RES = '1' in register R_BERT_WD_MD resets the watchdog timer. This bit is automatically cleared afterwards.
- V_AUTO_WD_RES = '1' must be set to switch on the automatically watchdog reset. In this case every access to the chip clears the watchdog timer.

The watchdog counter is incremented every 2 ms. An event occurs after $2^{V_WD_TS} \cdot 2$ ms where $V_WD_TS = 0..15$ in register R_TI_WD . This leads to a watchdog event frequency from 2 ms to 65 536 s.

9.6 Register description

9.6.1 Write only registers

			(w)	(Reset group: H)	0x0
nterrupt a	nd reset r	egister			
Ill reset bits pending.	s in this re	gister must be cleared l	by software. It i	s not allowed to write any regist	er while rese
Bits	Reset value	Name	Desci	ription	
0	0	V_CLK_OFF	'0' = a enabl '1' = a This b	Ill internal clocks are disabled bit is reset at every write access C-2S4U/4SU or with a wake-up	to
1	0	V_WAIT_PROC	The v regist not yo '0' = 1 '1' = a This 1	tional /WAIT signal after write wait signal gets low with every a er when a preceding write acces et completed. hormal /WAIT signal additional /WAIT signal bit should be set if timing proble cast processors.	ccess to a s is internall
2	0	V_WAIT_REG	phase The v regist FIFO interr '0' = 1 '1' = 2 This	tional /WAIT signal during interval wait signal gets low with every and er if a preceding change FIFO, i or reset FIFO operation has actional busy phase. normal /WAIT signal additional /WAIT signal during br bit can be set when busy polling usy) is not used by the software.	ccess to a ncrement vated an usy phase
3	0	V_SRES	This their of regist addre active '0' = o	al software reset (reset group (reset sets alls registers of reset g default value. It includes also the ers of reset groups 13. The se ss (CIP) remains unchanged. The until the bit is cleared. leactivate reset activate reset	roup 0 to e reset of all lected I/O

(continued on next page)

Т

(continued from previous page)

Bits	Reset value	Name	Description
4	0	V_HFC_RES	<pre>HFC reset (reset group 1) Sets all FIFO and HDLC registers to their initial values. The reset is active until the bit is cleared. '0' = deactivate reset '1' = activate reset</pre>
5	0	V_PCM_RES	PCM reset (reset group 2) Sets all PCM registers to their initial values. The reset is active until the bit is cleared. '0' = deactivate reset '1' = activate reset
6	0	V_SU_RES	Line interface reset (reset group 3) Sets all registers of every line interface to their initial values. The reset is active until the bit is cleared. '0' = deactivate reset '1' = activate reset
7	0	(reserved)	Must be '0'.

R_CLK_C	FG		(w)	(Reset group: H)	0x02
Clock conf	figuration	register			
Bits	Reset value	Name	Desc	ription	
0	0	V_CLK_PLL	'0' = input	k source selection CLK_OUT clock is derived from OSC_IN CLK_OUT clock is derived from	
1	0	V_CLKO_HI	When input eithe (high by 8 '0' =	I/low frequency selection for c in CLK_OUT clock is derived fro OSC_IN or F1_1 alternatively, r directly be passed to the CLK_ frequency) or the frequency can (low frequency). low frequency, divider by 8 high frequency, no divider	m oscillator the signal can OUT pin
2	0	V_CLKO_PLL	'0' = CLK_	ce selection for clock output either OSC_IN or F1_1 signal is _OUT PLL output clock is passed to C	
43	0	(reserved)	Must	be '00'.	
5	0	V_PCM_CLK	'0' = '1' =	k of the PCM module $f_{PCM} = 2 \cdot f_{SYS}$ $f_{PCM} = f_{SYS}$ c clock must be set up to 49.152	MHz.
6	0	V_CLKO_OFF	'0' =	k output enable / disable clock output pin CLK_OUT is en clock output pin CLK_OUT is di ate)	
7	0	V_CLK_F1	The s as we '0' =	election for PLL input frequent selected pin is used for PLL input ell as for CLK_OUT signal. oscillator input OSC_IN is used F1_1 input pin is used	it frequency

R_	_MISC_I	RQMSK	()	w)	(Reset group: H)	0x11			
A1 '0'	Miscellaneous interrupt mask register Any miscellaneous interrupt can be enabled with bit value '1' individually. '0' means that the interrupt is not used for generating a signal on the interrupt pin 22. The interrupt status can be read from register R_MISC_IRQ nevertheless.								
Bits Reset value Name Description									
	0	0	V_SLIP_IRQMSK	Inter slip	rupt mask of the line interface	frequency			
	1	0	V_TI_IRQMSK	Time	r interrupt mask				
	2	0	V_PROC_IRQMSK	mask	essing/non-processing transitie x y 125 µs)	on interrupt			
	3	0	(reserved)	Must	be '0'.				
	4	0	V_CI_IRQMSK	Com	mand/indication interrupt ma	sk			
	5	0	V_WAK_IRQMSK	Wak	eup interrupt mask				
	6	0	V_MON_TX_IRQMSK	Tran	smit monitor byte interrupt ma	ask			
	7	0	V_MON_RX_IRQMSK	Rece	ive monitor byte interrupt mas	k			

R	_SU_IRQ	MSK		(w)	(Reset group: H, 0, 3)	0x12			
	State change interrupt mask register of the line interfaces								
'0'	The line interface interrupt can be enabled with bit value '1' for every interface individually. '0' means that the interrupt is not used for generating a signal on the interrupt pin 22. The interrupt status can be read from register R_SU_IRQ nevertheless.								
Bits Reset value Name Description									
	0	0	V_SU0_IRQMSK	'1	<pre>hterrupt mask of line interface 0 ' = V_SU0_IRQ in register R_SU_IF or interrupt generation</pre>	RQ is used			
	1	0	V_SU1_IRQMSK	'1	<pre>hterrupt mask of line interface 1 ' = V_SU1_IRQ in register R_SU_IF or interrupt generation</pre>	RQ is used			
	2	0	V_SU2_IRQMSK	'1	nterrupt mask of line interface 2 ' = V_SU2_IRQ in register R_SU_IF or interrupt generation	RQ is used			
	3	0	V_SU3_IRQMSK	'1	<pre>hterrupt mask of line interface 3 ' = V_SU3_IRQ in register R_SU_IF or interrupt generation</pre>	RQ is used			
	74	0	(reserved)	N	lust be '0000'.				

R	_IRQ_CT	RL		(w)	(Reset group: H, 0)	0x13		
In	Interrupt control register							
	Bits	Reset value	Name	Des	cription			
	0	0	V_FIFO_IRQ_EN	'0' = '1' = Not cap inte V_1	O interrupt all FIFO interrupts disabled all FIFO interrupts enabled e: This bit enables or disables the i ability of all FIFOs together. Each I rrupt can be masked individually w FIFO_IRQMSK setting in register FIFO_CTRL.	FIFO		
	21	0	(reserved)	Mu	st be '00'.			
	3	0	V_GLOB_IRQ_EN	The '0' =	bal interrupt signal enable interrupt line is pin 22. disable e enable			
	4	0	V_IRQ_POL	'0' =	arity of interrupt signal = active low signal = active high signal			
	75	0	(reserved)	Mu	st be '000'.			

XHFC-2S4U XHFC-4SU

R_TI_WD			(w) (Reset group: H, 0)	0x1A
Timer and watchdog control register				
Bits	Reset value	Name	Description	
30	0	V_EV_TS	Timer event after $2^n \cdot 250 \mu s$ $0 = 250 \mu s$ $1 = 500 \mu s$ 2 = 1 m s 3 = 2 m s 4 = 4 m s 5 = 8 m s 6 = 16 m s 7 = 32 m s 8 = 64 m s 9 = 128 m s 0xA = 256 m s 0xB = 512 m s 0xC = 1.024 s 0xC = 2.048 s 0xE = 4.096 s 0xF = 8.192 s	
74	0	V_WD_TS	Watchdog event after $2^n \cdot 2 \text{ ms}$ 0 = 2 ms 1 = 4 ms 2 = 8 ms 3 = 16 ms 4 = 32 ms 5 = 64 ms 6 = 128 ms 7 = 256 ms 8 = 512 ms 9 = 1.024 s 0xA = 2.048 s 0xB = 4.096 s 0xC = 8.192 s 0xC = 8.192 s 0xE = 32.768 s 0xF = 65.536 s	

R	_PLL_C1	RL		(w)	(Reset group: H)	0x50
Pl	LL contro	ol register				
	Bits	Reset value	Name	Desci	ription	
	0	0	V_PLL_NRES	'0' = I to PL '1' = I	reset (active low) PLL reset, PLL disabled, input cl L output PLL enabled, a '0' to '1' transition peginning with the lowest oscillat	starts the
	1	0	V_PLL_TST	'0' = t	test input est state disabled, normal operati est state enabled	ion
	42	0	(reserved)	Must	be '000'.	
	5	0	V_PLL_FREEZE	'0' = r	standby mode normal PLL operation PLL is in standby mode, no output	ıt clock
	76	0	V_PLL_M	The o	lator divider programming val scillator output signal is divided L_M+1.	

Cologne Chip

9.6.2 Read only registers

R_IRQ_OV	IEW	(r)	(Reset group: H, 0, 1) 0	x10		
FIFO intern	FIFO interrupt overview register					
This register	r gives an o	overview of all XHFC-2S4U/4	SU interrupt conditions.			
a signal on t	he interrup	ot pin 22 if the belonging mask		ting		
Reading this		register does not clear any inte	errupt status bit.			
Bits	Reset value	Name	Description			
0	0	V_FIFO_BL0_IRQ	Interrupt overview of FIFO block 0 FIFO block 0 consists of transmit FIFOs 03 a receive FIFOs 03. The exact FIFO can be determined by reading register R_FIFO_BL0_IRQ. '0' = No FIFO interrupt occured '1' = At least one FIFO interrupt is pending.	and		
1	0	V_FIFO_BL1_IRQ	Interrupt overview of FIFO block 1 FIFO block 1 consists of transmit FIFOs 47 a receive FIFOs 47. The exact FIFO can be determined by reading register R_FIFO_BL1_IRQ. '0' = No FIFO interrupt occured '1' = At least one FIFO interrupt is pending.	and		
2	0	V_FIFO_BL2_IRQ	Interrupt overview of FIFO block 2 FIFO block 2 consists of transmit FIFOs 811 and receive FIFOs 811. The exact FIFO can determined by reading register R_FIFO_BL2_IRQ. '0' = No FIFO interrupt occured '1' = At least one FIFO interrupt is pending.			
3	0	V_FIFO_BL3_IRQ	Interrupt overview of FIFO block 3 FIFO block 3 consists of transmit FIFOs 121 and receive FIFOs 1215. The exact FIFO can determined by reading register R_FIFO_BL3_IRQ. '0' = No FIFO interrupt occured '1' = At least one FIFO interrupt is pending.			

(continued on next page)

i.

(continued from previous page)

Bits	Reset value	Name	Description
4	0	V_MISC_IRQ	Miscellaneous interrupt overview All miscellaneous interrupts of register R_MISC_IRQ are 'ored'. '0' = No miscellaneous interrupt occured '1' = At least one miscellaneous interrupt is pending. This bit has always the same value as V_MISC_IRQSTA in register R_STATUS. Reading register R_MISC_IRQ clears the miscellaneous interrupt bits.
5	0	V_STUP_IRQ	Line interface interrupt overview '0' = No line interface interrupt occured '1' = At least one line interface interrupt is pending. Reading register R_SU_IRQ clears the line interface interrupt bits.
76		(reserved)	

R_	_MISC_IR	Q	(r)	(Reset group: H, 0, 1) 0x11		
M	Miscellaneous interrupt status register					
	This register reports miscellaneous interrupt events. Reading this register clears the bits. These bits are n masked by register R_MISC_IRQMSK, i.e. they show interrupt conditions even if the interrupt is disable					
	Bits	Reset value	Name	Description		
	0	0	V_SLIP_IRQ	Interrupt status of the line interface frequency slip This interrupt occurs when the frame synchronization pulse of any line interface switches from F0IO to AF0 or reverse. The current FSC signal selection can be read from V_SU_AF0 in register A_SU_STA for the selected line interface or it can be read from the overview register R_AF0_OVIEW for all line interfaces. A change can happen from time to time if two TEs operate on slightly different frame synchronization clocks. Data might be destroyed in these cases.		
	1	0	V_TI_IRQ	Timer interrupt status '1' = timer elapsed		
	2	0	V_PROC_IRQ	Processing/non-processing transition interrupt status '1' = XHFC-2S4U/4SU has changed from processing to non-processing phase (every 125 μs). Note: The current processing/non-processing status can be read from V_PROC in register R_STATUS.		
	3		(reserved)			
	4	0	V_CI_IRQ	Command / indication interrupt status '1' = received indication bits changed		
	5	0	V_WAK_IRQ	Wakeup interrupt status '1' = a wakeup signal at pin WAKEUP occured		
	6	0	V_MON_TX_IRQ	Transmit monitor byte interrupt status '1' = the next monitor byte can be written		
	7	0	V_MON_RX_IRQ	Receive monitor byte interrupt status '1' = monitor byte received		

R	_SU_IRC	2		(r)	(Reset group: H, 0)	0x12
	State change interrupt status register of the line interfaces This register reports state changes of the line interfaces. Reading this register clears the bits. These bits					
ar	-	-	•		v state change conditions even if th	
	Bits	Reset value	Name	Des	scription	
	0	0	V_SU0_IRQ		errupt status of line interface 0 = a state change occured in line inte	erface 0
	1	0	V_SU1_IRQ		errupt status of line interface 1 = a state change occured in line inter	erface 1
	2	0	V_SU2_IRQ		errupt status of line interface 2 = a state change occured in line interface	erface 2
	3	0	V_SU3_IRQ		errupt status of line interface 3 = a state change occured in line interface	erface 3
	74		(reserved)			

STATUS	i	(r)	(Reset group: H, 0, 3) 0x1	
(HFC-2S4U/4SU status register				
Bits	Reset value	Name	Description	
0		V_BUSY	BUSY/NOBUSY status '0' = XHFC-2S4U/4SU is not busy, all accesses ar allowed '1' = XHFC-2S4U/4SU is BUSY after initialising FIFO reset, increment <i>F</i> -counter or change FIFO	
1		V_PROC	 Processing / non-processing status '0' = XHFC-2S4U/4SU has finished the processing phase during the 125 μs cycle '1' = XHFC-2S4U/4SU is in processing phase (once every 125 μs cycle) Note: The processing / non-processing transition can be notified with an interrupt (see V_PROC_IRQ in register R_MISC_IRQ). 	
2		(reserved)		
3	0	V_LOST_STA	LOST error (frames have been lost) This means that XHFC-2S4U/4SU did not process all data in 125 μs. So data may be corrupted. Bit V_RES_LOST of register A_INC_RES_FIFC must be set to reset this bit.	
4		V_PCM_INIT	PCM module initialization '0' = initialization sequence is finished '1' = initialization sequence is in progress (after hardware reset, global software reset or PCM reset Note: The PCM clocks F0IO and C4IO are ignored during initialization.	
5		V_WAK_STA	Wakeup status This bit contains the current value of pin WAKEUF when V_WAK_EN = '1' in register R_PWM_MD.	
6	0	V_MISC_IRQSTA	Miscellaneous interrupt overview All miscellaneous interrupts of register R_MISC_IRQ are 'ored'. '0' = No miscellaneous interrupt occured '1' = At least one miscellaneous interrupt is pending This bit has always the same value as V_MISC_IRQ in register R_IRQ_OVIEW. Reading register R_MISC_IRQ clears the miscellaneous interrupt bits.	

(continued on next page)

(continued from previous page)

Bits Reset value	Name	Description
7	V_FIFO_IRQSTA	Any FIFO interrupt All enabled FIFO interrupts in registers R_FIFO_BL0_IRQR_FIFO_BL3_IRQ are 'ored'. '0' = No FIFO interrupt is pending '1' = At least one FIFO interrupt is pending.

R_FIFO_BL0_IRQ	(r)	(Reset group: H, 0, 1)	0x20
----------------	--------------	------------------------	------

Interrupt status register for FIFO block 0

This register reports the interrupt status of FIFO block 0. A bit is set to '1' when an interrupt event occures.

Reading this register clears the bits. These bits are not masked by V_FIFO_IRQMSK in register A_FIFO_CTRL, i.e. they show the FIFO conditions even if the interrupt is disabled. But it is important to enable FIFO interrupts globally with V_FIFO_IRQ_EN = '1' in register R_IRQ_CTRL.

The interrupt condition can be configured for every FIFO individually (see bitmap V_FIFO_IRQ in register V_FIFO_IRQ and bit V_MIX_IRQ in register V_MIX_IRQ).

Bits	Reset value	Name	Description
0	0	V_FIFO0_TX_IRQ	FIFO[0,TX] interrupt status
1	0	V_FIFO0_RX_IRQ	FIFO[0,RX] interrupt status
2	0	V_FIFO1_TX_IRQ	FIFO[1,TX] interrupt status
3	0	V_FIFO1_RX_IRQ	FIFO[1,RX] interrupt status
4	0	V_FIFO2_TX_IRQ	FIFO[2,TX] interrupt status
5	0	V_FIFO2_RX_IRQ	FIFO[2,RX] interrupt status
6	0	V_FIFO3_TX_IRQ	FIFO[3,TX] interrupt status
7	0	V_FIFO3_RX_IRQ	FIFO[3,RX] interrupt status

Interrupt status register for FIFO block 1

This register reports the interrupt status of FIFO block 1. A bit is set to '1' when an interrupt event occures.

Reading this register clears the bits. These bits are not masked by V_FIFO_IRQMSK in register A_FIFO_CTRL, i.e. they show the FIFO conditions even if the interrupt is disabled. But it is important to enable FIFO interrupts globally with V_FIFO_IRQ_EN = '1' in register R_IRQ_CTRL.

The interrupt condition can be configured for every FIFO individually (see bitmap V_FIFO_IRQ in register V_FIFO_IRQ and bit V_MIX_IRQ) in register V_MIX_IRQ).

Bits	Reset value	Name	Description
0	0	V_FIFO4_TX_IRQ	FIFO[4,TX] interrupt status
1	0	V_FIFO4_RX_IRQ	FIFO[4,RX] interrupt status
2	0	V_FIFO5_TX_IRQ	FIFO[5,TX] interrupt status
3	0	V_FIFO5_RX_IRQ	FIFO[5,RX] interrupt status
4	0	V_FIFO6_TX_IRQ	FIFO[6,TX] interrupt status
5	0	V_FIFO6_RX_IRQ	FIFO[6,RX] interrupt status
6	0	V_FIFO7_TX_IRQ	FIFO[7,TX] interrupt status
7	0	V_FIFO7_RX_IRQ	FIFO[7,RX] interrupt status

R_FIFO_BL2_IRQ	(r)	(Reset group: H, 0, 1)	0x22
----------------	--------------	------------------------	------

Interrupt status register for FIFO block 2

This register reports the interrupt status of FIFO block 2. A bit is set to '1' when an interrupt event occures.

Reading this register clears the bits. These bits are not masked by V_FIFO_IRQMSK in register A_FIFO_CTRL, i.e. they show the FIFO conditions even if the interrupt is disabled. But it is important to enable FIFO interrupts globally with V_FIFO_IRQ_EN = '1' in register R_IRQ_CTRL.

The interrupt condition can be configured for every FIFO individually (see bitmap V_FIFO_IRQ in register V_FIFO_IRQ and bit V_MIX_IRQ in register V_MIX_IRQ).

Bits	Reset value	Name	Description
0	0	V_FIFO8_TX_IRQ	FIFO[8,TX] interrupt status
1	0	V_FIFO8_RX_IRQ	FIFO[8,RX] interrupt status
2	0	V_FIFO9_TX_IRQ	FIFO[9,TX] interrupt status
3	0	V_FIFO9_RX_IRQ	FIFO[9,RX] interrupt status
4	0	V_FIFO10_TX_IRQ	FIFO[10,TX] interrupt status
5	0	V_FIFO10_RX_IRQ	FIFO[10,RX] interrupt status
6	0	V_FIFO11_TX_IRQ	FIFO[11,TX] interrupt status
7	0	V_FIFO11_RX_IRQ	FIFO[11,RX] interrupt status

Interrupt status register for FIFO block 3

This register reports the interrupt status of FIFO block 3. A bit is set to '1' when an interrupt event occures.

Reading this register clears the bits. These bits are not masked by V_FIFO_IRQMSK in register A_FIFO_CTRL, i.e. they show the FIFO conditions even if the interrupt is disabled. But it is important to enable FIFO interrupts globally with V_FIFO_IRQ_EN = '1' in register R_IRQ_CTRL.

The interrupt condition can be configured for every FIFO individually (see bitmap V_FIFO_IRQ in register V_FIFO_IRQ and bit V_MIX_IRQ) in register V_MIX_IRQ).

Bits	Reset value	Name	Description
0	0	V_FIFO12_TX_IRQ	FIFO[12,TX] interrupt status
1	0	V_FIFO12_RX_IRQ	FIFO[12,RX] interrupt status
2	0	V_FIFO13_TX_IRQ	FIFO[13,TX] interrupt status
3	0	V_FIFO13_RX_IRQ	FIFO[13,RX] interrupt status
4	0	V_FIFO14_TX_IRQ	FIFO[14,TX] interrupt status
5	0	V_FIFO14_RX_IRQ	FIFO[14,RX] interrupt status
6	0	V_FIFO15_TX_IRQ	FIFO[15,TX] interrupt status
7	0	V_FIFO15_RX_IRQ	FIFO[15,RX] interrupt status

R_	_PLL_S1	ГА		(r)	(Reset group: H)	0x50
PI	LL status	s register				
	Bits	Reset value	Name	Desci	ription	
	60		(reserved)			
	00		(reserved)			
	7	0	V_PLL_LOCK	'0' = 1	lock status PLL is unlocked or in standby mo PLL is locked	ode

9.6.3 Read/write registers

R_	_PLL_P			(r/w)	(Reset group: H)	0x51
PI	LL prediv	vider prog	ramming value			
	-					
	Bits	Reset value	Name	Desci	ription	
		-				
	70	0	V_PLL_P	The d	vider programming value ivisor of the predivider is V_PLI p value 0 has the meaning of 250	

(See Section 13 on page 351 for a fault description and workaround of an address decoding problem which concerns this register among others.)

R.	_PLL_N			(r/w)	(Reset group: H)	0x52
P]	LL loop fa	actor				
	Bits	Reset value	Name	Des	scription	
	70	0	V_PLL_N	The	p factor programming value loop factor is V_PLL_N. ce: 04 are not allowed.	

(See Section 13 on page 351 for a fault description and workaround of an address decoding problem which concerns this register among others.)

R_	_PLL_S			(r/w)	(Reset group: H)	0x53
PL	L post-s	caler prog	gramming value			
	-					
	Bits	Reset value	Name	Descr	iption	
	70	0	V PLL S	Post-	scaler programming value	
	,	Ŭ		The d	ivisor of the post-scaler is V_PL p value 0 has the meaning of 256	

(See Section 13 on page 351 for a fault description and workaround of an address decoding problem which concerns this register among others.)

Chapter 10

General purpose I/O pins (GPIO)

Write only registers: Read only registers: Address Name Page Address Name Page 0x40 R_GPIO_OUT1 333 0x40 R_GPIO_IN1 342 0x41 R_GPIO_OUT3 334 0x41 R_GPIO_IN3 343 0x42 R_GPIO_EN1 334 R_GPIO_IN2 343 0x45 0x43 R_GPIO_EN3 335 0x48 R_GPIO_IN0 344 0x44 R_GPIO_SEL_BL 336 0x45 R_GPIO_OUT2 337 0x47 R_GPIO_EN2 337 0x48 R_GPIO_OUT0 338 0x4A R_GPIO_EN0 339 0x4C R_GPIO_SEL 340

Table 10.1: Overview of the XHFC-2S4U/4SU general purpose I/O registers

10.1 GPIO functionality

XHFC-2S4U/4SU has up to 32 general purpose I/O (GPIO) pins. 24 pins are shared with the line interfaces and every unused ST/U_p interface makes six additional GPIO pins available. Eight further pins are shared with PCM, PWM and clock functions and are individually selectable as GPIO.

Every pin listed in Table 10.2 has three functions. A detailed GPIO block diagram is shown in Figure 10.1. For GPIO8, e.g., the following configurations are available:

• GPIO selection bit V_GPIO_SEL0 = '0' in register R_GPIO_SEL:

The line interface function $(1^{st} \text{ pin function})$ is selected for interface #0. GPIO8 output is disabled within a group of six pins $(2^{nd} \text{ pin functions GPIO8}..GPIO11, GPIO16 and GPIO17 are not available).$

• GPIO selection bit V_GPIO_SEL0 = '1' in register R_GPIO_SEL and GPIO enable bit V_GPIO_EN8 = '0' in register R_GPIO_EN1:

The line interface function $(1^{st} \text{ pin function})$ is disabled for interface #0. GPIO functionality is enabled for a group of six pins $(2^{nd} \text{ pin function})$. GPIO8 ouput is disabled, i.e. the output driver is tristated.

• GPIO selection bit V_GPIO_SEL0 = '1' in register R_GPIO_SEL and GPIO enable bit V_GPIO_EN8 = '1' in register R_GPIO_EN1:

The line interface function $(1^{st} \text{ pin function})$ is disabled for interface #0. GPIO functionality is enabled for a group of six pins $(2^{nd} \text{ pin function})$. GPIO8 ouput is enabled.

The GPIO input functionality is always enabled, i.e. registers $R_GPIO_IN0..R_GPIO_IN3$ can always be read.

GPIO 0..7 are implemented in the same way with the exception that the selection bits in register R_GPIO_SEL switch only one pin from first to second function.

Unused GPIO pins should be configured as output ports. This sets the level of the input buffer – which is always active at the same pin – to a stable level and avoids floating input effect.

10.2 GPIO output voltage

As the output drivers of the ST/U_p interfaces are supplied from an external source, the GPIO output voltage of these pins is influenced by this external source as well.

Yet it is recommended to connect the VDD_SU0 . . VDD_SU3 pins of unused ST/U $_p$ interfaces to VDD .

For a few applications a GPIO output voltage different from VDD might be useful. In this case the external voltage must not exceed 3.6 V. Table 10.2 shows the allocation of power supply pins to the GPIO output drivers.

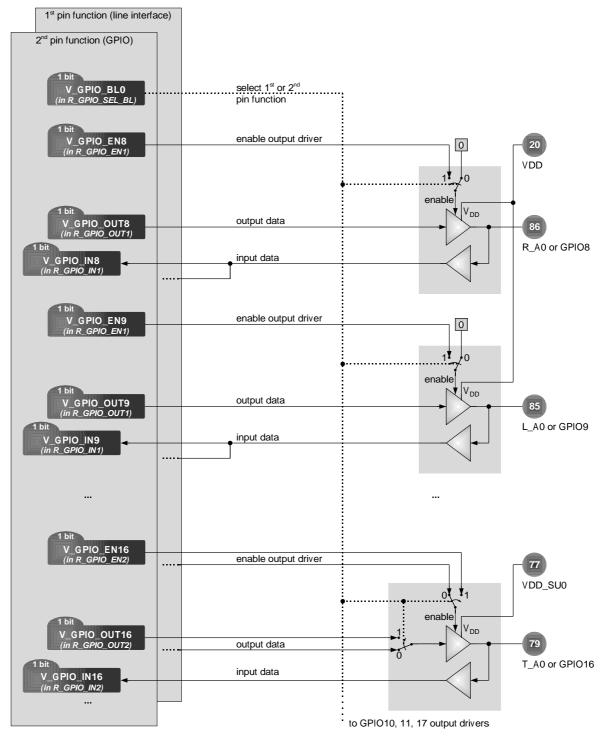


Figure 10.1: GPIO block diagram (GPIO8, GPIO9 and GPIO16 exemplarily)

Cologne Chip

Pin number	GPIO pin	GPIO byte	Shared with (1 st function)	Output driver power supply
61	GPIO0	0	PWM0	VDD
60	GPIO1	0	PWM1	VDD
50	GPIO2	0	F1_0	VDD
49	GPIO3	0	F1_1	VDD
33	GPIO4	0	STIO1	VDD
34	GPIO5	0	STIO2	VDD
24	GPIO6	0	SYNC_O	VDD
58	GPIO7	0	CLK_OUT	VDD
86	GPIO8	1	R_A0	VDD
85	GPIO9	1	L_A0	VDD
84	GPIO10	1	L_B0	VDD
83	GPIO11	1	R_B0	VDD
70	GPIO12	1	R_B1	VDD
69	GPIO13	1	L_B1	VDD
68	GPIO14	1	L_A1	VDD
67	GPIO15	1	R_A1	VDD
79	GPIO16	2	T_A0	VDD_SU0
78	GPIO17	2	T_B0	VDD_SU0
75	GPIO18	2	T_B1	VDD_SU1
74	GPIO19	2	T_A1	VDD_SU1
39	GPIO20	2	T_A2	VDD_SU2
38	GPIO21	2	T_B2	VDD_SU2
96	GPIO22	2	T_B3	VDD_SU3
95	GPIO23	2	T_A3	VDD_SU3
46	GPIO24	3	R_A2	VDD
45	GPIO25	3	L_A2	VDD
44	GPIO26	3	L_B2	VDD
43	GPIO27	3	R_B2	VDD
91	GPIO28	3	R_B3	VDD
90	GPIO29	3	L_B3	VDD
89	GPIO30	3	L_A3	VDD
88	GPIO31	3	R_A3	VDD

Table 10.2: GPIO pins

10.3 Activation state F7/G3 signalling

Some GPIO outputs can alternatively be used to report the activation states F7 or G3. This function is typically used to drive LEDs directly from XHFC-2S4U/4SU pins. Figure 10.2 shows exemplarily for GPIO0, how the activation state is linked up to the GPIO signal path.

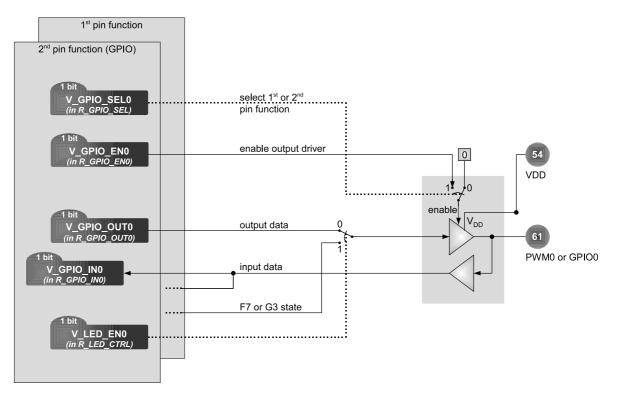


Figure 10.2: Activation state signalling exemplarily shown with GPIO0 (similar for GPIO1 . . GPIO5)

	v	_LED_ROT in regist	ter R_SU_LED_CTR	L
Line interface	'00'	'01'	'10'	'11'
0	GPIO0 and GPIO4	GPIO1 and GPIO5	GPIO2	GPIO3
1	GPIO1 and GPIO5	GPIO2	GPIO3	GPIO0 and GPIO4
2	GPIO2	GPIO3	GPIO0 and GPIO4	GPIO1 and GPIO5
3	GPIO3	GPIO0 and GPIO4	GPIO1 and GPIO5	GPIO2

 Table 10.3: State F7/G3 reporting

The line activation state of each line interface numer 0..3 can be assigned to pins GPIO0..GPIO5 by a signal rotator / shifter.

GPIO port number = (line interface number + V_LED_ROT) mod 4

Additionally, GPIO4 can be used to report the activation state in parallel to GPIO0 and GPIO5 can be used to report the activation state in parallel to GPIO1.

Table 10.3 shows the assignment of GPIO port numbers 0..5 and line interface numbers 0..3.

10.4 Register description

10.4.1 Write only registers

R	_gpio_g	OUT1		(w)	(Reset group: H, 0)	0x40		
G	GPIO output data bits 158							
	Bits	Reset value	Name	Des	cription			
	0	0	V_GPIO_OUT8	Out	tput data bit for pin GPIO8			
	1	0	V_GPIO_OUT9	Out	put data bit for pin GPIO9			
	2	0	V_GPIO_OUT10	Out	put data bit for pin GPIO10			
	3	0	V_GPIO_OUT11	Out	put data bit for pin GPIO11			
	4	0	V_GPIO_OUT12	Out	put data bit for pin GPIO12			
	5	0	V_GPIO_OUT13	Out	put data bit for pin GPIO13			
	6	0	V_GPIO_OUT14	Out	put data bit for pin GPIO14			
	7	0	V_GPIO_OUT15	Out	put data bit for pin GPIO15			

R_	_GPIO_	OUT3		(w)	(Reset group: H, 0)	0x41
G	PIO outj	put data bi	its 3124			
	Bits	Reset value	Name	Des	cription	
	0	0	V_GPIO_OUT24	Out	put data bit for pin GPIO24	
	1	0	V_GPIO_OUT25	Out	put data bit for pin GPIO25	
	2	0	V_GPIO_OUT26	Out	put data bit for pin GPIO26	
	3	0	V_GPIO_OUT27	Out	put data bit for pin GPIO27	
	4	0	V_GPIO_OUT28	Out	put data bit for pin GPIO28	
	5	0	V_GPIO_OUT29	Out	put data bit for pin GPIO29	
	6	0	V_GPIO_OUT30	Out	put data bit for pin GPIO30	
	7	0	V_GPIO_OUT31	Out	put data bit for pin GPIO31	

is used for data input. Bits Reset value Name Description	ie pin
Bits value Name Description	ne pin
Bits value Name Description	
0 0 V_GPIO_EN8 Output enable for pin GPIO8	
1 0 V_GPIO_EN9 Output enable for pin GPIO9	
20V_GPIO_EN10Output enable for pin GPIO10	
30V_GPIO_EN11Output enable for pin GPIO11	

Output enable for pin GPIO12

Output enable for pin GPIO13

Output enable for pin GPIO14

Output enable for pin GPIO15

V_GPIO_EN12

V_GPIO_EN13

V_GPIO_EN14

V_GPIO_EN15

4

5

6

7

0

0

0

0

R_	_GPIO_E	EN3		(w)	(Reset group: H, 0)	0x43				
Ev	GPIO output enable bits 3124 Every bit value '1' enables the allocated output driver. If an output driver is disabled (bit value '0'), the pin is used for data input.									
	Bits	Reset value	Name	Des	cription					
	0	0	V_GPIO_EN24	Out	put enable for pin GPIO24					
	1	0	V_GPIO_EN25	Out	put enable for pin GPIO25					
	2	0	V_GPIO_EN26	Out	put enable for pin GPIO26					
	3	0	V_GPIO_EN27	Out	put enable for pin GPIO27					
	4	0	V_GPIO_EN28	Out	put enable for pin GPIO28					
	5	0	V_GPIO_EN29	Out	put enable for pin GPIO29					
	6	0	V_GPIO_EN30	Out	put enable for pin GPIO30					
	7	0	V_GPIO_EN31	Out	put enable for pin GPIO31					

R_	_gpio_s	EL_BL	(w) (Reset group: H, 0) 0x44							
Se	Selection register for GPIO block										
Еv	Every line interface has six GPIO pins as second pin function which can be enabled or disabled in groups.										
Th	is register	controls o	only the output driver, whereas	the input functionality needs no programming.							
	Bits	Reset value	Name	Description							
	0	0	V_GPIO_BL0	GPIO function on line interface no. 0 '0' = line interface no. 0 used (first pin function) '1' = GPIO8 GPIO11, GPIO16 and GPIO17 used (second pin function)							
	1	0	V_GPIO_BL1	GPIO function on line interface no. 1 '0' = line interface no. 1 used (first pin function) '1' = GPIO12GPIO15, GPIO18 and GPIO19 used (second pin function)							
	2	0	V_GPIO_BL2	GPIO function on line interface no. 2 '0' = line interface no. 2 used (first pin function) '1' = GPIO24GPIO27, GPIO20 and GPIO21 used (second pin function)							
	3	0	V_GPIO_BL3	GPIO function on line interface no. 3 '0' = line interface no. 3 used (first pin function) '1' = GPIO28GPIO31, GPIO22 and GPIO23 used (second pin function)							
	74	0	(reserved)	Must be '0000'.							

R	_gpio_c	OUT2		(w)	(Reset group: H, 0)	0x45
G	PIO outp	out data bi	its 2316			
	Bits	Reset value	Name	Des	cription	
	0	0	V_GPIO_OUT16	Out	put data bit for pin GPIO16	
	1	0	V_GPIO_OUT17	Out	put data bit for pin GPIO17	
	2	0	V_GPIO_OUT18	Out	put data bit for pin GPIO18	
	3	0	V_GPIO_OUT19	Out	put data bit for pin GPIO19	
	4	0	V_GPIO_OUT20	Out	put data bit for pin GPIO20	
	5	0	V_GPIO_OUT21	Out	put data bit for pin GPIO21	
	6	0	V_GPIO_OUT22	Out	put data bit for pin GPIO22	
	7	0	V_GPIO_OUT23	Out	put data bit for pin GPIO23	

R	_gpio_e	EN2		(w)	(Reset group: H, 0)	0x47				
Εv	GPIO output enable bits 2316 Every bit value '1' enables the allocated output driver. If an output driver is disabled (bit value '0'), the pin is used for data input.									
	Bits	Reset value	Name	Des	cription					
	0	0	V_GPIO_EN16	Out	put enable for pin GPIO16					
	1	0	V_GPIO_EN17	Out	put enable for pin GPIO17					
	2	0	V_GPIO_EN18	Out	put enable for pin GPIO18					
	3	0	V_GPIO_EN19	Out	put enable for pin GPIO19					
	4	0	V_GPIO_EN20	Out	put enable for pin GPIO20					
	5	0	V_GPIO_EN21	Out	put enable for pin GPIO21					
	6	0	V_GPIO_EN22	Out	put enable for pin GPIO22					
	7	0	V_GPIO_EN23	Out	put enable for pin GPIO23					

R	_gpio_o	OT0		(w) (Reset group: H, 0)	0x48
G	PIO outp	ut data bi	its 70		
	Bits	Reset value	Name	Description	
	0	0	V_GPIO_OUT0	Output data bit for pin GPIO0	
	1	0	V_GPIO_OUT1	Output data bit for pin GPIO1	
	2	0	V_GPIO_OUT2	Output data bit for pin GPIO2	2
	3	0	V_GPIO_OUT3	Output data bit for pin GPIO3	1
	4	0	V_GPIO_OUT4	Output data bit for pin GPIO4	
	5	0	V_GPIO_OUT5	Output data bit for pin GPI05	i
	6	0	V_GPIO_OUT6	Output data bit for pin GPIO6)
	7	0	V_GPIO_OUT7	Output data bit for pin GPIO7	,

(See Section 13 on page 351 for a fault description and workaround of an address decoding problem which concerns this register among others.)

R_	_gpio_i	EN0		(w)	(Reset group: H, 0)	0x4A
	_	p ut enable alue '1' ena		river. If an	output driver is disabled (bit valu	e '0'), the pin
	•	data input.	Ĩ			
	Bits	Reset value	Name	Desc	cription	
	0	0	V_GPIO_EN0	Out	put enable for pin GPIO0	
	1	0	V_GPIO_EN1	Out	put enable for pin GPIO1	
	2	0	V_GPIO_EN2	Outj	put enable for pin GPIO2	
	3	0	V_GPIO_EN3	Outj	put enable for pin GPIO3	
	4	0	V_GPIO_EN4	Outj	put enable for pin GPIO4	
	5	0	V_GPIO_EN5	Outj	put enable for pin GPIO5	
	6	0	V_GPIO_EN6	Out	put enable for pin GPIO6	
	7	0	V_GPIO_EN7	Out	put enable for pin GPIO7	

R_	_gpio_s	SEL		(w) (Reset group: H, 0)	0x4C
Gl	PIO seleo	ction regis	ster		
Th	is registe	er controls	only the output driver, who	ereas the input functionality needs no programming	·
	Bits	Reset value	Name	Description	
	0	0	V_GPIO_SEL0	Selection of first or second pin function '0' = PWM0 (first pin function) '1' = GPIO0 (second pin function)	
	1	0	V_GPIO_SEL1	Selection of first or second pin function '0' = PWM1 (first pin function) '1' = GPIO1 (second pin function)	
	2	0	V_GPIO_SEL2	Selection of first or second pin function '0' = F1_0 (first pin function) '1' = GPIO2 (second pin function)	
	3	0	V_GPIO_SEL3	Selection of first or second pin function '0' = F1_1 (first pin function) '1' = GPIO3 (second pin function)	
	4	0	V_GPIO_SEL4	Selection of first or second pin function '0' = STIO1 (first pin function) '1' = GPIO4 (second pin function)	
	5	0	V_GPIO_SEL5	Selection of first or second pin function '0' = STIO2 (first pin function) '1' = GPIO5 (second pin function)	
	6	0	V_GPIO_SEL6	Selection of first or second pin function '0' = SYNC_O (first pin function) '1' = GPIO6 (second pin function)	
	7	0	V_GPIO_SEL7	Selection of first or second pin function '0' = CLK_OUT (first pin function) '1' = GPIO7 (second pin function)	

(See Section 13 on page 351 for a fault description and workaround of an address decoding problem which concerns this register among others.)

R_	_SU_LED	_CTRL		(w)	(Reset group: H, 0)	0x4D
LF	ED contro	l register				
Ac	U	ate is ind			or G3 on four pins of GPIO0GPIO5. with series resistor can directly be con	nected to
	Bits	Reset value	Name		Description	
	0	0	V_LED_EN0		Enable LED output signal on pin GPIO '0' = normal GPIO function on pin GPIOO '1' = activated state is indicated on pin GF)
	1	0	V_LED_EN1		Enable LED output signal on pin GPIO '0' = normal GPIO function on pin GPIO1' '1' = activated state is indicated on pin GP	1
	2	0	V_LED_EN2		Enable LED output signal on pin GPIO '0' = normal GPIO function on pin GPIO2' '1' = activated state is indicated on pin GP	2
	3	0	V_LED_EN3		Enable LED output signal on pin GPIO '0' = normal GPIO function on pin GPIO3' '1' = activated state is indicated on pin GP	3
	4	0	V_LED_EN4		Enable LED output signal on pin GPIO '0' = normal GPIO function on pin GPIO4' '1' = activated state is indicated on pin GP	4
	5	0	V_LED_EN5		Enable LED output signal on pin GPIO '0' = normal GPIO function on pin GPIOS '1' = activated state is indicated on pin GF	5
	76	0	V_LED_ROT		LED output rotator / shifter Activated state of the line interfaces can be assigned to pins GPIO0 GPIO5 via a sign rotator / shifter. When I_n is the line interface with number '00' = I_0 is assigned to GPIO0 and GPIO4 assigned to GPIO1 and GPIO5, I_2 is assig GPIO2, I_3 is assigned to GPIO1 and GPIO3 '01' = I_0 is assigned to GPIO1 and GPIO5 assigned to GPIO2, I_2 is assigned to GPIO2 assigned to GPIO2, I_2 is assigned to GPIO4 '10' = I_0 is assigned to GPIO2, I_1 is assigned to GPIO3, I_2 is assigned to GPIO4 '10' = I_0 is assigned to GPIO2, I_1 is assigned to GPIO1 and GPIO5 '11' = I_0 is assigned to GPIO3, I_1 is assigned to GPIO1 and GPIO5 '11' = I_0 is assigned to GPIO3, I_1 is assigned to GPIO3, I_1 is assigned to GPIO4, I_2 is assigned to GPIO3, I_1 is assigned to GPIO4, I_2 is assigned to GPIO3, I_1 is assigned to GPIO4, I_2 is assigned to GPIO3, I_3 is assigned to GPIO3, I_1 is assigned to GPIO3, I_3 is assigned to GPIO3, I_1 is assigned to GPIO3, I_3 is assigned to GPIO3	gnal r n: r, I_1 is gned to r, I_1 is $D3, I_3$ is ned to $D4, I_3$ is ned to

(See Section 13 on page 351 for a fault description and workaround of an address decoding problem which concerns this register among others.)

10.4.2 Read only registers

R_	_gpio_i	N1		(r)	(Reset group: -)	0x40
		it data bit	s 158 pins should be configur	ed as output pins		
110	Bits	Reset value	Name	Descri		
	0		V_GPIO_IN8	Input	data bit from pin GPIO8	
	1		V_GPIO_IN9	Input	data bit from pin GPIO9	
	2		V_GPIO_IN10	Input	data bit from pin GPIO10	
	3		V_GPIO_IN11	Input	data bit from pin GPIO11	
	4		V_GPIO_IN12	Input	data bit from pin GPIO12	
	5		V_GPIO_IN13	Input	data bit from pin GPIO13	
	6		V_GPIO_IN14	Input	data bit from pin GPlO14	
	7		V_GPIO_IN15	Input	data bit from pin GPIO15	

R_	_gpio_i	N3		(r)	(Reset group: -)	0x41
	-	i t data bit s sed GPIO _I	s 3124 pins should be configure	ed as output pins.		
	Bits	Reset value	Name	Descri	ption	
	0		V_GPIO_IN24	Input	data bit from pin GPIO24	
	1		V_GPIO_IN25	Input	data bit from pin GPIO25	
	2		V_GPIO_IN26	Input	data bit from pin GPIO26	
	3		V_GPIO_IN27	Input	data bit from pin GPIO27	
	4		V_GPIO_IN28	Input	data bit from pin GPIO28	
	5		V_GPIO_IN29	Input	data bit from pin GPlO29	
	6		V_GPIO_IN30	Input	data bit from pin GPlO30	
	7		V_GPIO_IN31	Input	data bit from pin GPIO31	

R_	_gpio_i	N2		(r)	(Reset group: -)	0x45
G	PI input	data bits 2	2316			
No	o te: Unus	sed GPIO j	pins should be configu	red as output pins.		
	Bits	Reset value	Name	Descri	ption	
	0		V_GPIO_IN16	Input	data bit from pin GPIO16	
	1		V_GPIO_IN17	Input	data bit from pin GPIO17	
	2		V_GPIO_IN18	Input	data bit from pin GPIO18	
	3		V_GPIO_IN19	Input	data bit from pin GPIO19	
	4		V_GPIO_IN20	Input	data bit from pin GPIO20	
	5		V_GPIO_IN21	Input	data bit from pin GPIO21	
	6		V_GPIO_IN22	Input	data bit from pin GPIO22	
	7		V_GPIO_IN23	Input	data bit from pin GPIO23	

R	_gpio_i	NO		(r)	(Reset group: –)	0x48
G	PIO inpu	ıt data bit	s 70			
N	ote: Unus	sed GPIO	pins should be configure	d as output pins	S.	
	Bits	Reset value	Name	Desci	ription	
	0		V_GPIO_IN0	Input	t data bit from pin GPIO0	
	1		V_GPIO_IN1	Input	t data bit from pin GPIO1	
	2		V_GPIO_IN2	Input	t data bit from pin GPIO2	
	3		V_GPIO_IN3	Input	t data bit from pin GPIO3	
	4		V_GPIO_IN4	Input	t data bit from pin GPIO4	
	5		V_GPIO_IN5	Input	t data bit from pin GPIO5	
	6		V_GPIO_IN6	Input	t data bit from pin GPIO6	
	7		V_GPIO_IN7	Input	t data bit from pin GPIO7	

Chapter 11

Electrical characteristics

Absolute maximum ratings *1

Parameter	Symbol	Min.	Max.	Conditions
Power supply	$V_{\rm DD}$	-0.3 V	+4.6 V	
Input voltage	VI	-0.3 V	$V_{\rm DD} + 0.3 {\rm V} ~(\leq 4.6 {\rm V})$	3.3 V pins
	V_{I}	-0.3 V	6.0 V	5 V tolerant pins
Output voltage	V _O	-0.3 V	$V_{\rm DD}$ + 0.3 V	
Storage temperature	T _{stg}	-55°C	+125 °C	

Recommended operating conditions

Parameter	Symbol	Min.	Тур.	Max	Conditions
Power supply	$V_{\rm DD}$	3.0 V	3.3 V	3.6 V	
Operating temperature	T _{opr}	-30°C		+85 °C	
Peak-to-peak power supply noise	V _{noise} , pp			50 mV	PLL not used or no locking requirement
	$V_{ m noise,pp}$			10 mV	PLL used, stable locking required

Electrical characteristics for 3.3 V power supply

Parameter	Symbol	Min.	Тур.	Max	Conditions
Low input voltage *2	V_{IL}	-0.3 V		0.8 V	
High input voltage *3	V_{IH}	2.0 V		$V_{\rm DD} + 0.3 \mathrm{V}$	
High input voltage *4	V_{IH}	2.0 V		5.5 V	
Low output voltage *2	V _{OL}			0.4 V	
High output voltage *2	V _{OH}	2.4 V			
Internal pull-up resistor to V _{DD}	R _{pu,int}	$55 k\Omega$	110 kΩ	$330k\Omega$	
(pin type IOpu # only, see pin li	st from page	36 and lege	end on pag	ge 42)	

The pin capacitance depends on the pin type. For details see legend of the pin list on page 42.

^{*1}: Stresses beyond those listed under 'Absolute maximum ratings' may cause permanent damage to the device. These are stress ratings only, and operation of the device at these or at any other conditions above those given in this data sheet is not implied. Exposure to limiting values for extended periods may affect device reliability.

^{*2}: All pins except oscillator and $S/T/U_p$ type.

 *3 : All pins except oscillator, S/T / U_p type and 5 V tolerant pins.

^{*4}: Only 5 V tolerant pins.

Power consumption for 3.3 V power supply

Parameter	Symbol	Min. Typ. Max	Conditions
Oscillator running with 24.576 MHz, internal clock disabled	I _{opr}	4 mA	21 °C
Oscillator running with 24.576 MHz, internal clock enabled,			
FIFOs and PCM 30 clocks running	Iopr	19 mA	21 °C
Oscillator running with 24.576 MHz, internal clock enabled, FIFOs and PCM 30 clocks running, all S/T interfaces sending 96 kHz			
test signal on 50Ω load	Iopr	59 mA	21 °C
Oscillator stopped	Iopr	1 mA	21 °C
Power consumption of PLL only with $f_{OSC} = 74$ MHz and $M = 1$	Iopr	7 mA	21 °C
Power consumption of PLL only with $f_{OSC} = 74$ MHz and $M = 3$	I _{opr}	5 mA	21 °C

Thermal package characteristics

Parameter	Symbol	Min. Typ. Max	Conditions
Junction to air	Θ_{JA}	+54 °C/W	Multi-Layer PCB
Junction to case	Θ_{JC}	+22 °C/W	Multi-Layer PCB

Chapter 12

XHFC-2S4U/4SU package dimensions

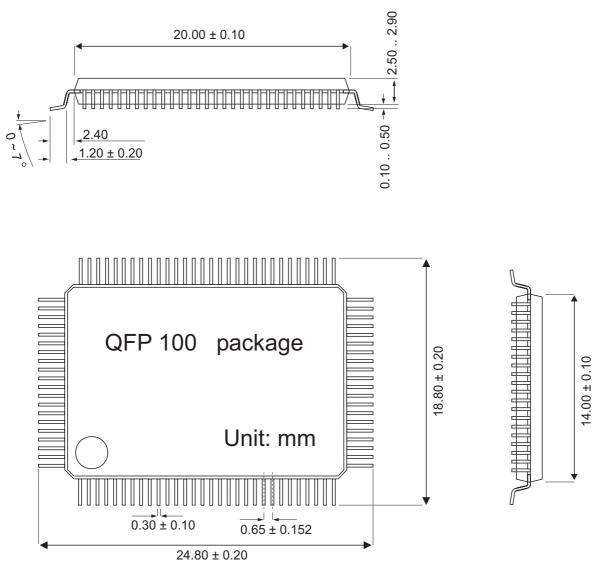


Figure 12.1: XHFC-2S4U and XHFC-4SU package dimensions

Chapter 13

XHFC-2S4U/4SU address decoding erratum

13.1 Fault description

XHFC-2S4U/4SU has an address decoding problem with write access to some registers. This erratum chapter describes the problem as well as work-arounds to avoid unwanted chip behaviour.

The address decoding fault refers to register addresses 0x48..0x5F. Any write access to these registers writes also to their counterregisters at in the address range 0x08..0x1F.

Due to the fact, that some addresses are not used by the chips, there are only few registers involved as shown in Table 13.1.

	Write access to	Writes also to		
0x48	R_GPIO_OUT0	0x08	R_RAM_ADDR	
0x4C	R_GPIO_SEL	0x0C	R_FIFO_THRES	
0x4D	R_SU_LED_CTRL	0x0D	R_FIFO_MD	
0x50	R_PLL_CTRL	0x10	R_SLOT	
0x51	R_PLL_P	0x11	R_MISC_IRQMSK	
0x52	R_PLL_N	0x12	R_SU_IRQMSK	
0x53	R_PLL_S	0x13	R_IRQ_CTRL	

 Table 13.1: Involved registers of the address decoding fault

Read-only registers are not concerned in this fault.

13.2 Work-Around

The general work-around is to write registers in the address range 0x48..0x5F only once during chip initialization. The counterregisters 0x08..0x1F should be written afterwards. Exceptionally, register R_GPIO_OUT0 (0x48) can be written at any time, because it's counterregister R_RAM_ADDR (0x08) is normally not used.

Table 13.2 shows a complete list of the involved register adresses. Only gray marked lines are concerned in the decoding fault. In these cases, a detailed work-around is described to ensure a faultless chip behaviour.

V	Vrite access to		Writes also to	Remark
0x48	R_GPIO_OUT0	0x08	R_RAM_ADDR	R_RAM_ADDR must be written again af- ter R_GPIO_OUT0 write access. Typi- cally, there is no reason for using register R_RAM_ADDR, so that any write access to register R_GPIO_OUT0 causes no problem.
0x49	_	0x09	R_RAM_CTRL	Address 0x49 is not used for write access.
0x4A	R_GPIO_EN0	0x0A	-	Counterregister 0x0A is not available.
0x4B	_	0x0B	R_FIRST_FIFO	Address 0x4B is not used for write access.
0x4C	R_GPIO_SEL	0x0C	R_FIFO_THRES	Register R_GPIO_SEL should be writ- ten during chip initialization. Typically, there is no need to write R_GPIO_SEL later once more. If necessary, regis- ter R_FIFO_THRES must be rewritten afterwards and unwanted FIFO fill levels might be reported in registers R_FILL_BLOR_FILL_BL3. Software should always check the actual FIFO fill level before writing or reading FIFO bytes and should not rely on the expected FIFO fill level threshold.
				(continued on next page)

	Table 13.2:	Detailed register list and work-around descript	ion
--	-------------	---	-----

(continued from previous page)

V	Vrite access to		Writes also to	Remark
0x4D	R_SU_LED_CTRL	0x0D	R_FIFO_MD	Register R_SU_LED_CTRL should be written during chip initialization. Typically, there is no need to write R_SU_LED_CTRL later once more. If necessary in particular applications, write access to R_SU_LED_CTRL is only al- lowed when no FIFO is in use because this destroys the overall FIFO setup. Write access to this pair of registers must fulfill strong timing constraints as follows:
				1. Configure FIFO mode by writing R_FIFO_MD.
				2. Initiate a global software reset to accept this setting.
				 Configure R_SU_LED_CTRL within a not-busy phase (V_BUSY = '0' in register R_STATUS). This write access is not allowed while V_BUSY = '1'!
				 Re-write R_FIFO_MD within the same not-busy phase. As the FIFO setup is evaluated only dur- ing busy phases, it is important to restore the value immediately after R_SU_LED_CTRL write access.
0x4E 0x4F	-	0x0E 0x0F	A_INC_RES_FIFO	Addresses 0x4E and 0x4F are not used for write access.
0x50	R_PLL_CTRL	0x10	R_SLOT	Typically, register R_PLL_CTRL is written during initialization. R_SLOT should be written afterwards. Applications that use the PLL's en- able/disable function should ensure that PCM time slot selection with register R_SLOT and following access to PCM slot array registers is not interrupted by R_PLL_CTRL write access.
0x51	R_PLL_P	0x11	R_MISC_IRQMSK	It is strongly recommended to write registers
0x52 0x53	R_PLL_N R_PLL_S	0x12 0x13	R_SU_IRQMSK R_IRQ_CTRL	R_PLL_P, R_PLL_N and R_PLL_S dur- ing initialization only. The counterpart reg- isters R_MISC_IRQMSK, R_SU_IRQMSK and R_IRQ_CTRL should be initialized af- terwards to avoid unwanted interrupt gener- ation, interrupt suppression or unwanted in- terrupt controller behaviour. (continued on next page)

-

Write access to	,	Writes also to	Remark
0x54 –	0x14	R_PCM_MD0	Addresses 0x540x5F are not used for
0x55 –	0x15	(11 multi-registers)	write access.
0x56 –	0x16	R_SU_SEL	
0x57 –	0x17	R_SU_SYNC	
0x58 –	0x18	_	
0x59 –	0x19	_	
0x5A –	0x1A	R_TI_WD	
0x5B –	0x1B	R_BERT_WD_MD	
0x5C –	0x1C	_	
0x5D –	0x1D	_	
0x5E –	0x1E	R_PWM_CFG	
0x5F –	0x1F	_	

References

- [1] Cologne Chip AG. *DIGICCTM PLL Technology*, November 2004.
- [2] Cologne Chip AG. C3-PLL-2– Phase-locked Loop (PLL) Frequency Synthesizer IP Core, June 2005.
- [3] Electronic Manufacturing Industry Association of Germany, Information & Communication Technology Group (ZVEI Zentralverband Elektrotechnik, Fachverband Informations- und Kommunikationstechnik (I+K Forum)). ZVEI Documentation DKZ-N; Interfaces and signaling protocols for ISDN telecommunication installations. (only available in German under title: ZVEI-Dokumentation DKZ-N; Schnittstellen und Signalisierungsprotokolle für Telekommunikationsanlagen im ISDN), Mai 1989. Volume IV: DKZ-N part 1.2, DKZ-N2 part 2.2.
- [4] European Telecommunications Standards Institute. *Technical Basis for Regulation (TBR 3):* Integrated Services Digital Network (ISDN); Attachment requirements for terminal equipment to connect to an ISDN using ISDN basic access.
- [5] European Telecommunications Standards Institute. *Technical Basis for Regulation (TBR 4): Integrated Services Digital Network (ISDN); Attachment requirements for terminal equipment to connect to an ISDN using ISDN primary rate access.*
- [6] Infineon Technologies. *PEB 2096 Data Sheet; ICs for Communications: Octal Transceiver for Upn Interfaces (OCTAT-P)*, 2.1 edition, April 1999.
- [7] Siemens AG. ICs for Communication. IOM[®]-2 Interface Reference Guide, 3 1991.
- [8] Telecommunication Standardization Sector of International Telecommunication Union (ITU). ITU-T V.27: Data communication over the telephone network; 4800 bits per second MODEM with manual equalizer standardized for use on leased telephone-type circuits, 1988, 1993.
- [9] Telecommunication Standardization Sector of International Telecommunication Union (ITU). ITU-T 1.430: Integrated services digital network (ISDN); ISDN user-network interfaces. Basic user-network interface – Layer 1 specification, November 1995.
- [10] Telecommunication Standardization Union (ITU). O.151: Error performance measuring equipment operating at the primary rate and above. In *Specification of measurement equipment*. ITU-T (Telecommunication Standardization Sector of ITU), 1992.
- [11] Telecommunication Standardization Union (ITU). O.150: Equipment for the measurement of digital and analogue/digital parameters. In *General requirements for instrumentation for performance measurements on digital transmission equipment*. ITU-T (Telecommunication Standardization Sector of ITU), 1996.

List of register and bitmap abbreviations

This list shows all abbreviations which are used to define the register and bitmap names. Appended digits are not shown here except they have a particular meaning.

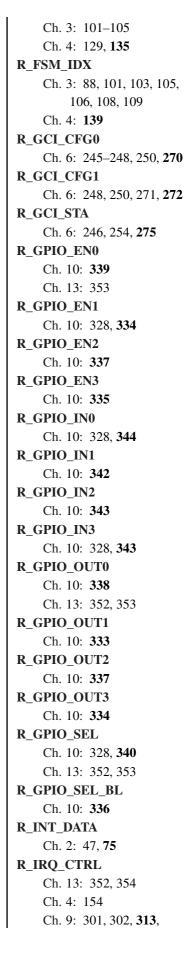
16KHZ	16 kHz	CHANNEL	HFC-channel	Е	E-channel
		CHIP	microchip	ECH	error counter, high
2KHZ	2 kHz	CI			byte
			Command/Indication	ECL	error counter, low
AB	A/B-bit		(C/I channel of the GCI interface)		byte
ABO	abort	016	<i>´</i>	EN	enable
ACT	active, activation	CI6	6 bit C/I-channel length	END	end
ADDR	address	CIRM	configuration,	ERR	error
ADJ	adjust	On IM	interrupt and reset	EV	event
AF0	alternative frame	CLK	clock	EXCHG	exchange
	synchronization signal	CLKO	clock output	EXP	expired
AUTO	automatic	CNT	counter	F	<i>F</i> -counter
AUTO	automatic	CNTH	counter, high byte	F F0	frame
B1	B1-channel	CNTL	counter, low byte	FU	synchronization
B12	B1- and	CON	connection settings		signal
012	B2-channels	CONT	contention	F1	F1_1 pin
B2	B2-channel	CRC	cyclic redundancy	F1	F1-counter
BAC	BAC-bit		check	F2	F2-counter
BERT	bit error rate test	CTRL	control	FDIR	direction
BIT	bit	-			(FIFO-related)
BL	block	D	D-channel	FIFO	FIFO
BUSY	busy	DATA	data	FILL	fill level
		DC	DC-balancing bit	FIRST	first
С	command bits of	DF	data flow	FLOW	flow
	the C/I-channel	DIR	direction	FNUM	number
C2I	C2 clock input	DLL	double last look criterion		(FIFO-related)
	(PCM bit clock)	DIV		FR	frame
C2O	C2 clock output	DLY	delay	FREEZE	freeze
	(PCM bit clock)	DLYH	delay, high byte	FRQ	frequency
C4	C4IO clock (PCM	DLYL	delay, low byte	FSM	FIFO sequence
050	double bit clock)	DONE	done		mode
CFG	configuration	DR	data rate		
СН	HFC-channel	DST	destination	G2	G2 state

XHFC-2S4U XHFC-4SU

G3	G3 state	MD	mode	RDY	ready
GCI	GCI interface	MERGE	merge	REG	register
GLOB	global	MISC	miscellaneous	REP	repetition
GPIO	general purpose	MIX	mixed	RES	reset
	input/output	MOD	modification	REV	reverse
GRD	guard	MON	monitor channel of	ROT	Rotator, rotation
	0	MON	the GCI interface	ROUT	routing
HDLC	high-level data link	MR	handshake bit MR	RPT	repeat
	control	MS		RV	revision
HFC	HDLC FIFO		multiframe / superfram	ne RX	receive
	controller	MSK	mask	RXHS	receiver handshake
HI	high	MSS		RXR	receiver ready
HPRIO9	high priority, 9 bits		multiframe / superfram	ne	
			synchronization	S	S-bit
I	indication bits of	MULT	multiple	S	PLL post-scaler
	the C/I-channel	МХ	handshake bit MX	SCRM	scrambler
ICR	increase			SDIR	direction
ID	identifier	Ν	PLL loop factor		(slot-related)
IDX	index	NEG	negative	SEL	select, selection
IFF	inter frame fill	NEXT	next	SEQ	sequence
IGNO	ignore	NINV	no inversion	SET	setup
IN	input	NO	no	SG	S/G-bit
INC	increment	NOINC	no increment	SH	shape
INFO0	INFO 0 line	NRES	active low reset	SH0H	shape 0, high byte
	condition (no	NT	NT mode	SHOL	shape 0, low byte
	signal)	NUM	number	SH1H	shape 1, high byte
INIT	initialization			SH1L	shape 1, low byte
INT	internal	OD	open drain output	SIG	signal
INV	invert, inversion	OFF	off	SL	time slot
IRQ	interrupt	OFFS	offset	SLIP	frequency slip time slot
IRQMSK	interrupt mask	OSC	oscillator	SLOT	
IRQSTA	interrupt status	OUT	output	SLOW SMPL	slow
		OVIEW	overview	SNUM	sample number
LD	load			SNOW	(slot-related)
LED	Light emitting	Р	PLL predivider	SQ	S/Q-bits
	diode	PAT	pattern	SRAM	SRAM
LEN	length	РСМ	pulse code	SRC	source
LO	low		modulation	SRES	software reset
LOCK	locked	PLL	phase locked loop	SSYNC	single
LOOP	loop	POL	polarity		synchronization
LOST	frame data lost	PROC	processing		pulse
LPRIO	low priority	PU	pulse	ST	S/T interface
LPRIO11	low priority, 11 bits	PULSE	pulse	STA	state, status
		PWM	pulse width	START	start
M	M-bit		modulation	STATUS	status
M	divider value M			STIO	STIO pins
MAN	manual	RAM	RAM	STOP	stop
MAX	maximum	RD	read	STR	strict

XHFC-2S4U XHFC-4SU

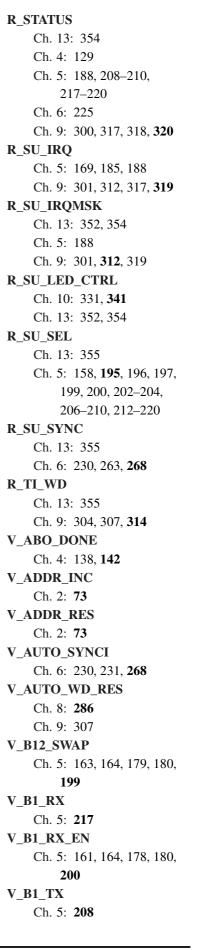
STUP SU SUBCH SWAP	S/T / U _p interface) Universal ISDN Port (combined S/T and U _p interface) subchannel swap	THRES TI TRI TRP TS	threshold timer tristate transparent time step	USAGE USE VAL VIO	usage use, usage value code violation
SYNC	swap synchronize,	TST TX	test transmit	WAIT	wait
	synchronization	TXHS	transmitter	WAK	wakeup
SYNCI	synchronization input signal	TXR	handshake transmitter ready	WD WR	watchdog timer write
T T2	T-bits S/T timer T2	UNIDIR UP	unidirectional U _p interface	Z1 Z2	Z1-counter Z2-counter


Index of register and bitmap names

Index entries are sorted by name. Pages of the register tables are printed in bold type.

A B1 RX 188, 206, 215, **219**, 220 Ch. 4: 128, 129, 131, 133, Ch. 5: 161, 164, 179, 180, A_D_TX 138 Ch. 5: 161, 179, 188, 200, Ch. 9: 320 188, 217 202, 209 A_B1_TX A_MS_DF Ch. 5: 161, 179, 188, 208 A E RX Ch. 5: 200, 206, 219, 220 A_B2_RX Ch. 5: 161, 163, 164, 179, A_MS_RX 180, 188, 206, 215, 219, Ch. 5: 159, 163, 169, 178, Ch. 5: 161, 164, 179, 180, 188, 218 220 179, 185, 215, 219, 220 **A_F1** A_B2_TX A_MS_TX Ch. 3: 88 Ch. 5: 161, 179, 188, 208 Ch. 5: 159, 163, 164, 169, Ch. 4: 140 178-180, 185, 202, 206, A_BAC_S_TX Ch. 5: 161, 179, 188, 200, A_F2 209, 210, 215 Ch. 3: 88 A SL CFG 202, 210 A CHANNEL Ch. 4: 141 Ch. 2: 47 Ch. 2: 47 A FIFO CTRL Ch. 3: 84-86, 92-94, 98, 99, Ch. 2: 47 Ch. 3: 85, 86, 88, 95, 97-99, 107, 118, 119, 124, 125 101, 103, 105, 106, 108, Ch. 3: 88, 103 Ch. 6: 223-225, 248, 250, 109, 121, 122, 124, 125 Ch. 4: 142, 149, 154 272, 276 Ch. 4: 152 Ch. 8: 282, 285 A_ST_CTRL3 A_CH_MSK Ch. 9: 313, 321-324 Ch. 5: 158, 198, 203, 204 Ch. 2: 47 A_FIFO_DATA A_SUBCH_CFG Ch. 3: 88, 89, 96, 103, 104, Ch. 3: 88 Ch. 2: 47 Ch. 4: 130, 147 110, 111, 115-118, 120, Ch. 3: 88, 89, 95, 96, 103, A_FIFO_DATA_NOINC 104, 110, 111, 115, 116, 121, 123, 124 Ch. 4: 138, 148 Ch. 3: 88 118, 119, 121-125 A_CON_HDLC Ch. 4: 130, 133, 147 Ch. 4: 134, 148, 151 Ch. 2: 47 A_FIFO_SEQ A_SU_CLK_DLY Ch. 5: 160, 165, 169, 181, Ch. 3: 79, 81, 88, 89, 91–93, Ch. 2: 47 96-99, 103, 104, Ch. 3: 88, 103, 105, 106, 185, 207 106-108, 116, 118, 119, 108, 109 A_SU_CTRL0 121, 122, 124, 125 Ch. 4: 153 Ch. 5: 161, 169, 178, 185, Ch. 4: 128, 130, 133, 149, A_FIFO_STA 197, 201, 216 Ch. 4: 138, 142, 155 Ch. 9: 304 154 Ch. 9: 302, 303 A_INC_RES_FIFO A SU CTRL1 A D RX Ch. 13: 354 Ch. 4: 129 Ch. 5: 161, 164, 179, 180, Ch. 3: 88 Ch. 5: 165, 166, 169, 182,

184, 185, 199 A SU CTRL2 Ch. 5: 161, 169, 171, 178, 185, 197, 200 Ch. 9: 304 A SU DLYH Ch. 5: 169, 185, 213, 214 A_SU_DLYL Ch. 5: 169, 185, 213, 214 A SU RD STA Ch. 5: 165, 169, 181, 184, 185, 196, 212 A SU STA Ch. 5: 211, 216 Ch. 9: 303, 318 A_SU_WR_STA Ch. 5: 165, 166, 169, 181, 182, 184, 185, **196**, 199, 212 A_UP_CTRL3 Ch. 5: 158, 184, 203, 204 A USAGE Ch. 4: 143 A Z1 Ch. 3: 88 Ch. 4: 140 A Z2 Ch. 3: 88 Ch. 4: 140 **R_AF0_OVIEW** Ch. 5: 211, 217 Ch. 9: 303, 304, 318 **R_BERT_ECH** Ch. 8: 282, 285, 287, 288 **R_BERT_ECL** Ch. 8: 282, 285, 287, 288 **R_BERT_STA** Ch. 6: 230, 268 Ch. 8: 282, 285, 287 R_BERT_WD_MD Ch. 13: 355 Ch. 8: 282, 286 Ch. 9: 307 **R_CHIP_ID** Ch. 2: 74 **R** CHIP RV Ch. 2: 74 **R** CIRM Ch. 4: 128


Ch. 9: 290, 300, 308 **R** CI RX Ch. 6: 245, 274 R_CI_TX Ch. 6: 246, 269 **R** CLK CFG Ch. 9: 290, 294, 310 **R_CTRL** Ch. 2: 72 Ch. 9: 290 **R F0 CNTH** Ch. 6: 273 **R F0 CNTL** Ch. 6: 273 **R** FIFO Ch. 3: 81, 86-88, 91-93, 95, 97-99, 101, 103, 104, 106-108, 111, 115-125 Ch. 4: 128, 132, 133, 138, 139, 140–143, 147–154 **R_FIFO_BL0_IRQ** Ch. 4: 154 Ch. 9: 302, 316, 321 **R FIFO BL1 IRQ** Ch. 9: 316, 322 **R_FIFO_BL2_IRQ** Ch. 9: 316, 323 R_FIFO_BL3_IRQ Ch. 4: 154 Ch. 9: 302, 316, 321, 324 **R_FIFO_MD** Ch. 13: 352, 354 Ch. 3: 87, 95, 101 Ch. 4: 130, 135, **137**, 139 **R_FIFO_THRES** Ch. 13: 352, 353 Ch. 4: 136, 143–146 R_FILL_BL0 Ch. 13: 353 Ch. 4: 143 **R_FILL_BL1** Ch. 4: 144 R_FILL_BL2 Ch. 4: 145 R_FILL_BL3 Ch. 13: 353 Ch. 4: 146 **R FIRST FIFO** Ch. 13: 353

oane

321-324 **R IRO OVIEW** Ch. 9: 302, 303, 316, 320 **R_MISC_IRQ** Ch. 6: 246 Ch. 9: 303–306, 311, 317, 318, 320 **R_MISC_IRQMSK** Ch. 13: 352, 354 Ch. 5: 211, 217 Ch. 6: 245, 246 Ch. 9: 303-306, 311, 318 **R MON RX** Ch. 6: 245, 246, 254, 275 Ch. 9: 305 R_MON_TX Ch. 6: 246, 251, 252, 254, **272**, 275 Ch. 9: 305 R_MSS0 Ch. 6: 237, 239–241, 256, 259 R_MSS1 Ch. 5: 200 Ch. 6: 239, 256, 265 R_PCM_MD0 Ch. 13: 355 Ch. 6: 222, 225, 241–243, 248, 250, 256, 257–259, 261, 263, 265-267 R PCM MD1 Ch. 6: 222, 224, 230, 232, 255, 256, **261**, 263, 273, 276 R PCM MD2 Ch. 6: 225, 230, 232, 256, 263 **R_PLL_CTRL** Ch. 13: 352, 354 Ch. 9: 296, 315 R_PLL_N Ch. 13: 352, 354 Ch. 9: 325 **R** PLL P Ch. 13: 352, 354 Ch. 9: 325 **R PLL S** Ch. 13: 352, 354 Ch. 9: 325

R_PLL_STA Ch. 9: 324 R PWM0 Ch. 7: 278, 279 R_PWM1 Ch. 7: 278, 279, 280 **R_PWM_CFG** Ch. 13: 355 Ch. 7: 278, 279 R PWM MD Ch. 7: 278, 280 Ch. 9: 305, 320 **R RAM ADDR** Ch. 13: 352, 353 Ch. 2: 73, 76 **R_RAM_CTRL** Ch. 13: 353 Ch. 2: 73, 76 **R RAM DATA** Ch. 2: 47, 73, 76 **R RAM USE** Ch. 2: 74 R SH0H Ch. 6: 242, 243, 256-258, 266 R SHOL Ch. 6: 242, 243, 256-258, 266 R SH1H Ch. 6: 243, 256–258, 267 R SH1L Ch. 6: 243, 256-258, 266 **R_SLOT** Ch. 13: 352, 354 Ch. 3: 84-86, 92-94, 98, 99, 107, 118, 119, 124, 125 Ch. 6: 248, 250, **255**, 272, 276 **R SL MAX** Ch. 6: 273 R_SL_SEL0 Ch. 6: 242, 256, 257 **R SL SEL1** Ch. 6: 242, 243, 256, 257, 258 R SL SEL7 Ch. 2: 72 Ch. 5: 168, 184 Ch. 6: 256, 258

loane

V_B1_TX_EN Ch. 5: 161, 163, 178, 179, 197 V B2 RX Ch. 5: 218 V_B2_RX_EN Ch. 5: 161, 164, 178, 180, 200 V_B2_TX Ch. 5: 208 V_B2_TX_EN Ch. 5: 161, 163, 178, 179, 197 V BAC D Ch. 5: 163, 199 V_BAC_NINV Ch. 5: 163, 179, 206 V_BAC_S_SEL Ch. 5: 163, 179, 200, 206 V_BAC_TX Ch. 5: 210 V_BERT_ECH Ch. 8: 284, 288 **V BERT ECL** Ch. 8: 284, 287 V_BERT_EN Ch. 4: 154 Ch. 8: 282-285 V_BERT_ERR Ch. 8: 282, 283, 286 V_BERT_INV_DATA Ch. 8: 284, 285, 287 V_BERT_SYNC Ch. 8: 282, 284, 287 V_BIT_CNT Ch. 3: 110-113, 116, 118, 119, 121, 122, 124, 125 Ch. 4: 148, 151 Ch. 8: 282-285 V BUSY Ch. 13: 354 Ch. 4: 129 Ch. 9: 300. 320 V C2I EN Ch. 6: 225, 231, 232, 263 V C2O EN Ch. 6: 231, 232, 263 V C4 POL Ch. 6: 231, 256

V_CHIP_ID Ch. 2: 74 V CHIP RV Ch. 2: 74 V_CH_FDIR Ch. 3: 86, 95, 97–99, 105, 106, 108, 109, 121, 122, 124, 125 Ch. 4: 152 V CH FNUM Ch. 3: 86, 95, 97–99, 105, 106, 108, 109, 121, 122, 124, 125 Ch. 4: 152 V CH MSK Ch. 3: 114-116, 118, 121, 124 Ch. 4: 148 V CH SDIR Ch. 3: 84, 86, 92-94, 98, 99, 107, 118, 119, 124, 125 Ch. 6: 248, 250, 276 V_CH_SNUM Ch. 3: 84, 86, 92-94, 98, 99, 107, 118, 119, 124, 125 Ch. 6: 248, 250, 276 V_CI_IRQ Ch. 6: 246 Ch. 9: 304, 318 V_CI_IRQMSK Ch. 6: 245, 246 Ch. 9: 304, 311 V_CLKO_HI Ch. 9: 290, 291, 294, 310 V_CLKO_OFF Ch. 9: 290, 291, 294, 310 V_CLKO_PLL Ch. 9: 290, 291, 294, 310 V CLK F1 Ch. 9: 290, 291, 294, **310** V_CLK_OFF Ch. 9: 290, 291, 308 V_CLK_PLL Ch. 9: 290, 291, 310 V_DATA_FLOW Ch. 3: 79, 81–83, 91–93, 97-99, 106-108, 116, 118, 119, 121, 122, 124, 125

Ch. 4: 150 V DF MD Ch. 3: 87, 95, 101 Ch. 4: 137, 139 V_D_MERGE_RX Ch. 6: 268 V_D_MERGE_TX Ch. 6: 268 V_D_RES Ch. 4: 129 Ch. 5: 163, 179, 199 V_D_RX Ch. 5: 219 V D RX AB Ch. 5: 219 V D RX S Ch. 5: 219 V D RX SG Ch. 5: 219 V_D_TX Ch. 5: 209 V_D_TX_BAC Ch. 5: 209 V_D_TX_S Ch. 5: 209, 210 V EV TS Ch. 9: 304, 314 V E MERGE RX Ch. 6: 268 V_E_RX Ch. 5: 220 V_E_RX_AB Ch. 5: 220 V_E_RX_S Ch. 5: 220 V_E_RX_SG Ch. 5: 220 V_F0_CNTH Ch. 6: 273 V_F0_CNTL Ch. 6: 273 V FO LEN Ch. 6: 225, 231, 238, 240, 241, 256 V F0 NEG Ch. 6: 231, 256 **V F1** Ch. 4: 140 **V_F2**

oane

Ch. 4: 141 V_FIFO0_RX_IRQ Ch. 9: 303, 321 V_FIFO0_TX_IRQ Ch. 9: 303, 321 V_FIFO10_RX_IRQ Ch. 9: 323 V_FIFO10_TX_IRQ Ch. 9: 323 V_FIFO11_RX_IRQ Ch. 9: 323 V_FIFO11_TX_IRQ Ch. 9: 323 V_FIFO12_RX_IRQ Ch. 9: 324 V_FIFO12_TX_IRQ Ch. 9: 324 V FIFO13 RX IRQ Ch. 9: 324 V_FIFO13_TX_IRQ Ch. 9: 324 V_FIFO14_RX_IRQ Ch. 9: 303, 324 V_FIF014_TX_IRQ Ch. 9: 324 V_FIFO15_RX_IRQ Ch. 9: 303, 324 V_FIFO15_TX_IRQ Ch. 9: 303, 324 V_FIFO1_RX_IRQ Ch. 9: 303, 321 V_FIFO1_TX_IRQ Ch. 9: 303, 321 V_FIFO2_RX_IRQ Ch. 9: 321 V_FIFO2_TX_IRQ Ch. 9: 303, 321 V_FIFO3_RX_IRQ Ch. 9: 321 V_FIFO3_TX_IRQ Ch. 9: 321 V_FIFO4_RX_IRQ Ch. 9: 322 V_FIFO4_TX_IRQ Ch. 9: 322 V FIFO5 RX IRQ Ch. 9: 322 V_FIFO5_TX_IRQ Ch. 9: 322

V_FIFO6_RX_IRQ Ch. 9: 322 V_FIFO6_TX_IRQ Ch. 9: 322 V_FIFO7_RX_IRQ Ch. 9: 322 V_FIFO7_TX_IRQ Ch. 9: 322 V_FIFO8_RX_IRQ Ch. 9: 323 V_FIFO8_TX_IRQ Ch. 9: 323 V_FIFO9_RX_IRQ Ch. 9: 323 V_FIFO9_TX_IRQ Ch. 9: 323 V FIFO BLO IRQ Ch. 9: 302, 303, 316 V_FIFO_BL1_IRQ Ch. 9: 303, 316 V_FIFO_BL2_IRQ Ch. 9: 303, 316 V FIFO BL3 IRQ Ch. 9: 302, 303, 316 V FIFO DATA Ch. 4: 147 V_FIFO_DATA_NOINC Ch. 4: 147 V_FIFO_DIR Ch. 3: 81, 83, 86, 91–93, 95, 97-99, 106-108, 116, 118, 119, 121, 122, 124, 125 Ch. 4: 139, 150 V_FIFO_ERR Ch. 4: 138, 142, 155 V_FIFO_IRQ Ch. 3: 89, 91-93, 96-99, 104–108, 116, 118, 119, 121, 122, 124, 125 Ch. 4: 128, 149, 150, 154 Ch. 9: 302, 303, 321-324 V_FIFO_IRQMSK Ch. 4: 154 Ch. 9: 313, 321-324 **V FIFO IROSTA** Ch. 9: 321 V_FIFO_IRQ_EN Ch. 4: 154

Ch. 9: 302, 303, 313, 321-324 V_FIFO_LPRIO Ch. 2: 72 V_FIFO_MD Ch. 4: 130, 137 V_FIFO_NUM Ch. 3: 86, 91-93, 97-99, 106–108, 116, 118, 119, 121, 122, 124, 125 Ch. 4: 139 **V FILL FIFO0 RX** Ch. 4: 143 V FILL FIFO0 TX Ch. 4: 143 V_FILL_FIFO10_RX Ch. 4: 145 V_FILL_FIFO10_TX Ch. 4: 145 V_FILL_FIFO11_RX Ch. 4: 145 V_FILL_FIFO11_TX Ch. 4: 145 V_FILL_FIFO12_RX Ch. 4: 146 V_FILL_FIFO12_TX Ch. 4: 146 V_FILL_FIFO13_RX Ch. 4: 146 V_FILL_FIFO13_TX Ch. 4: 146 V_FILL_FIFO14_RX Ch. 4: 146 V_FILL_FIFO14_TX Ch. 4: 146 V_FILL_FIFO15_RX Ch. 4: 146 V_FILL_FIFO15_TX Ch. 4: 146 V_FILL_FIFO1_RX Ch. 4: 143 V FILL FIFO1 TX Ch. 4: 143 V_FILL_FIFO2_RX Ch. 4: 143 V FILL FIFO2 TX Ch. 4: 143 **V FILL FIFO3 RX** Ch. 4: 143

V_FILL_FIFO3_TX Ch. 4: 143 V_FILL_FIFO4_RX Ch. 4: 144 V_FILL_FIFO4_TX Ch. 4: 144 V_FILL_FIFO5_RX Ch. 4: 144 V_FILL_FIFO5_TX Ch. 4: 144 V_FILL_FIFO6_RX Ch. 4: 144 **V FILL FIFO6 TX** Ch. 4: 144 V_FILL_FIFO7_RX Ch. 4: 144 **V FILL FIFO7 TX** Ch. 4: 144 V_FILL_FIFO8_RX Ch. 4: 145 V FILL FIFO8 TX Ch. 4: 145 V_FILL_FIFO9_RX Ch. 4: 145 V_FILL_FIFO9_TX Ch. 4: 145 V_FIRST_FIFO_DIR Ch. 3: 103, 105 Ch. 4: 129, 135 V_FIRST_FIFO_NUM Ch. 3: 103, 105 Ch. 4: 129, 135 V_FR_ABO Ch. 4: 142, 155 V_G2_G3 Ch. 5: 165, 184, **212** V_G2_G3_EN Ch. 5: 165, 166, 182, 184, 199 V_GCI_ABO Ch. 6: 254, 275 V GCI C Ch. 6: 246, 269 V_GCI_EN Ch. 6: 245, 248, 250, 271 V GCI I Ch. 6: 246, 274 V GCI MR Ch. 6: 275

V_GCI_MX Ch. 6: 275 V_GCI_RX Ch. 6: 275 V_GCI_SL Ch. 6: 244, 245, 248, 250, 272 V_GCI_SWAP_RXHS Ch. 6: 247, 250, **270**, 271 V GCI SWAP STIO Ch. 6: 247, 250, 270, 271 V_GCI_SWAP_TXHS Ch. 6: 247, 250, 270, 271 V GLOB IRO EN Ch. 9: 301, 313 V_GPIO_BL0 Ch. 10: 329, 336 V GPIO BL1 Ch. 10: 336 V_GPIO_BL2 Ch. 10: 336 V_GPIO_BL3 Ch. 10: 336 V_GPIO_EN0 Ch. 10: 331, 339 V_GPIO_EN1 Ch. 10: 339 V GPIO EN10 Ch. 10: 334 V_GPIO_EN11 Ch. 10: 334 V_GPIO_EN12 Ch. 10: 334 V_GPIO_EN13 Ch. 10: 334 V_GPIO_EN14 Ch. 10: 334 V_GPIO_EN15 Ch. 10: 334 V_GPIO_EN16 Ch. 10: 329, 337 V_GPIO_EN17 Ch. 10: 337 V_GPIO_EN18 Ch. 10: 337 V GPIO EN19 Ch. 10: 337 V GPIO EN2 Ch. 10: 339

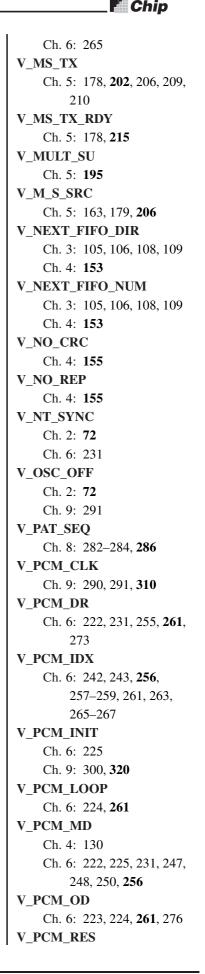
V_GPIO_EN20 Ch. 10: 337 V_GPIO_EN21 Ch. 10: 337 V_GPIO_EN22 Ch. 10: 337 V_GPIO_EN23 Ch. 10: 337 V_GPIO_EN24 Ch. 10: 335 V_GPIO_EN25 Ch. 10: 335 V GPIO EN26 Ch. 10: 335 V_GPIO_EN27 Ch. 10: 335 V GPIO EN28 Ch. 10: 335 V_GPIO_EN29 Ch. 10: 335 V GPIO EN3 Ch. 10: 339 V_GPIO_EN30 Ch. 10: 335 V_GPIO_EN31 Ch. 10: 335 V_GPIO_EN4 Ch. 10: 339 V_GPIO_EN5 Ch. 10: 339 V GPIO EN6 Ch. 10: 339 V_GPIO_EN7 Ch. 10: 339 V_GPIO_EN8 Ch. 10: 328, 329, 334 V_GPIO_EN9 Ch. 10: 329, 334 V_GPIO_IN0 Ch. 10: 331, 344 V_GPIO_IN1 Ch. 10: 344 V_GPIO_IN10 Ch. 10: 342 V_GPIO_IN11 Ch. 10: 342 V_GPIO_IN12 Ch. 10: 342 V_GPIO_IN13

oloane

Ch. 10: 342 V_GPIO_IN14 Ch. 10: 342 V_GPIO_IN15 Ch. 10: 342 V_GPIO_IN16 Ch. 10: 329, 343 V_GPIO_IN17 Ch. 10: 343 V_GPIO_IN18 Ch. 10: 343 V_GPIO_IN19 Ch. 10: 343 V_GPIO_IN2 Ch. 10: **344** V_GPIO_IN20 Ch. 10: 343 V GPIO IN21 Ch. 10: 343 V_GPIO_IN22 Ch. 10: 343 V_GPIO_IN23 Ch. 10: 343 V_GPIO_IN24 Ch. 10: 343 V_GPIO_IN25 Ch. 10: 343 V_GPIO_IN26 Ch. 10: 343 V_GPIO_IN27 Ch. 10: 343 V_GPIO_IN28 Ch. 10: 343 V_GPIO_IN29 Ch. 10: 343 V_GPIO_IN3 Ch. 10: 344 V_GPIO_IN30 Ch. 10: 343 V_GPIO_IN31 Ch. 10: 343 V_GPIO_IN4 Ch. 10: 344 V_GPIO_IN5 Ch. 10: 344 V GPIO IN6 Ch. 10: 344 V GPIO IN7 Ch. 10: 344

V_GPIO_IN8 Ch. 10: 329, 342 V_GPIO_IN9 Ch. 10: 329, 342 V_GPIO_OUT0 Ch. 10: 331, 338 V_GPIO_OUT1 Ch. 10: 338 V_GPIO_OUT10 Ch. 10: 333 V_GPIO_OUT11 Ch. 10: 333 V GPIO OUT12 Ch. 10: 333 V_GPIO_OUT13 Ch. 10: 333 V GPIO OUT14 Ch. 10: 333 V_GPIO_OUT15 Ch. 10: 333 V GPIO OUT16 Ch. 10: 329, 337 V_GPIO_OUT17 Ch. 10: 337 V_GPIO_OUT18 Ch. 10: 337 V_GPIO_OUT19 Ch. 10: 337 V_GPIO_OUT2 Ch. 10: 338 V_GPIO_OUT20 Ch. 10: 337 V_GPIO_OUT21 Ch. 10: 337 V_GPIO_OUT22 Ch. 10: 337 V_GPIO_OUT23 Ch. 10: 337 V_GPIO_OUT24 Ch. 10: 334 V_GPIO_OUT25 Ch. 10: 334 V_GPIO_OUT26 Ch. 10: 334 V_GPIO_OUT27 Ch. 10: 334 V_GPIO_OUT28 Ch. 10: 334 V_GPIO_OUT29

Ch. 10: 334 V_GPIO_OUT3 Ch. 10: 338 V_GPIO_OUT30 Ch. 10: 334 V_GPIO_OUT31 Ch. 10: 334 V_GPIO_OUT4 Ch. 10: 338 V_GPIO_OUT5 Ch. 10: 338 V_GPIO_OUT6 Ch. 10: 338 V_GPIO_OUT7 Ch. 10: 338 V_GPIO_OUT8 Ch. 10: 329, 333 V_GPIO_OUT9 Ch. 10: 329, 333 V_GPIO_SEL0 Ch. 10: 328, 331, 340 V_GPIO_SEL1 Ch. 10: 340 V GPIO SEL2 Ch. 10: 340 V_GPIO_SEL3 Ch. 10: 340 V_GPIO_SEL4 Ch. 10: 340 V_GPIO_SEL5 Ch. 10: 340 V_GPIO_SEL6 Ch. 10: 340 V_GPIO_SEL7 Ch. 10: 340 V_HDLC_TRP Ch. 3: 89, 91–93, 97–99, 105-108, 116, 118, 119, 121, 122, 124, 125 Ch. 4: 133, 149 Ch. 9: 302, 303 V_HFC_RES Ch. 4: 128 Ch. 9: 300, 309 V_IDX Ch. 3: 103, 105, 106, 108, 109 Ch. 4: 139 V_IFF


oloane

Chip

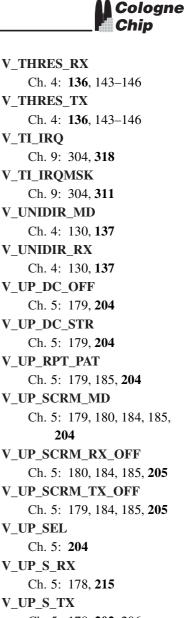
XHFC-2S4U XHFC-4SU

Ch. 3: 91–93, 97–99, 106–108, 116, 118, 119, 121, 122, 124, 125 Ch. 4: 130, 149 V INC F Ch. 4: 131, 133, 138 V INT DATA Ch. 2: 75 V_INV_DATA Ch. 3: 116, 118, 119, 121, 122, 124, 125 Ch. 4: 151 V_IRQ_POL Ch. 9: 301, 313 V_LED_EN0 Ch. 10: 331, 341 V LED EN1 Ch. 10: 341 V_LED_EN2 Ch. 10: 341 V_LED_EN3 Ch. 10: 341 V_LED_EN4 Ch. 10: 341 V LED EN5 Ch. 10: 341 V_LED_ROT Ch. 10: 331, 341 V_LOOP_FIFO Ch. 3: 116, 118, 119, 121, 122, 124, 125 Ch. 4: 151 V_LOST_STA Ch. 9: 320 V MAN SYNC Ch. 5: 189 Ch. 6: 230, 231, 268 V_MISC_IRQ Ch. 9: 303, 304, 317, 320 V_MISC_IRQSTA Ch. 9: 317, 320 V MIX IRQ Ch. 4: 149, 154 Ch. 9: 302, 303, 321-324 V MON CI6 Ch. 6: 246, 269, 270, 274 **V MON DLL** Ch. 6: 246, 270 V_MON_END

Ch. 6: 246, 252, 270 V_MON_RX Ch. 6: 275 V_MON_RXR Ch. 6: 246, 254, 275 V_MON_RX_IRQ Ch. 9: 304, 306, 318 V_MON_RX_IRQMSK Ch. 6: 245 Ch. 9: 304, 306, 311 **V MON SLOW** Ch. 6: 270 V MON TX Ch. 6: 272 V_MON_TXR Ch. 6: 246, 252, 275 V_MON_TX_IRQ Ch. 6: 246 Ch. 9: 304, 305, 318 V_MON_TX_IRQMSK Ch. 6: 246 Ch. 9: 304, 305, 311 V MSS DLY Ch. 6: 238–240, 265 V_MSS_MOD Ch. 6: 238, 240, 241, 259 V_MSS_MOD_REP Ch. 6: 238, 240, 259 V_MSS_OFFS Ch. 6: 238, 265 V MSS OUT EN Ch. 6: 238, 241, **259** V_MSS_OUT_REP Ch. 6: 238, 241, 259 V_MSS_SRC Ch. 6: 238, 239, 260 V_MSS_SRC_EN Ch. 6: 237-239, 259 V_MSS_SRC_GRD Ch. 6: 238, 239, 259 V_MS_RX Ch. 5: 178, 215 V MS RX RDY Ch. 5: 178, 215 V MS SSYNC1 Ch. 5: 200 Ch. 6: 238, 265 V MS SSYNC2 Ch. 5: 163, 179, 200

oloane

Ch. 9: 300, 309 **V PCM SMPL** Ch. 6: 224, 262 V_PLL_ADJ Ch. 6: 230–232, 261, 263 **V PLL FREEZE** Ch. 9: 296, 315 V_PLL_ICR Ch. 6: 230–232, 263, 264 **V PLL LOCK** Ch. 9: 296, 324 V_PLL_M Ch. 9: 296, 315 V PLL MAN Ch. 6: 230-232, 263, 264 V PLL N Ch. 9: 295, 296, 325 **V PLL NRES** Ch. 9: 296, 315 V_PLL_P Ch. 9: 296, 325 V_PLL_S Ch. 9: 296, 325 V_PLL_TST Ch. 9: **315** V PROC Ch. 5: 188, 208–210, 217 - 220Ch. 9: 318, 320 V_PROC_IRQ Ch. 9: 304, 305, 318, 320 V_PROC_IRQMSK Ch. 9: 304, 305, 311 V_PWM0 Ch. 7: 279 V_PWM0_16KHZ Ch. 7: 278, 279 V_PWM0_MD Ch. 7: 278, 280 V PWM1 Ch. 7: 280 V PWM1 16KHZ Ch. 7: 278, 279 V_PWM1_MD Ch. 7: 278, 280 V PWM FRQ Ch. 7: 278, 279 V RAM ADDR0 Ch. 2: 73


V_RAM_ADDR1 Ch. 2: 73 V RAM DATA Ch. 2: 76 V_RD_SYNC_SRC Ch. 6: 230, 268 Ch. 8: 287 V_RES_FIFO Ch. 4: 128, 129, 138 V_RES_FIFO_ERR Ch. 4: 129, 138, 142 V_RES_LOST Ch. 4: 138 Ch. 9: 320 V REV Ch. 3: 89, 91-93, 96-99, 105–108, 116, 118, 119, 121, 122, 124, 125 Ch. 4: 133, 139 V_ROUT Ch. 3: 92–94, 98, 99, 107, 118, 119, 124, 125 Ch. 6: 223, 224, 248, 250, 276 V SEQ END Ch. 3: 103, 105, 106, 108, 109 Ch. 4: 153 V_SG_AB_INV Ch. 5: 164, 180, 206 V SH0H Ch. 6: 243, 266 V_SHOL Ch. 6: 243, 266 V SH1H Ch. 6: 243, 267 V SH1L Ch. 6: 243, 266 V SH SELO Ch. 6: 242, 257 V_SH_SEL1 Ch. 6: 242, 243, 257, 258 V SLIP IRQ Ch. 9: 303, 304, 318 V_SLIP_IRQMSK Ch. 5: 211.217 Ch. 9: 303, 304, 311 V SL DIR Ch. 3: 86, 92-94, 98, 99,

107, 118, 119, 124, 125 Ch. 6: 248, 250, 255 V SL MAX Ch. 6: 273 V_SL_NUM Ch. 3: 86, 92-94, 98, 99, 107, 118, 119, 124, 125 Ch. 6: 248, 250, 255 V_SL_SEL0 Ch. 6: 242. 257 V SL SEL1 Ch. 6: 242, 243, 257, 258 V SL SEL7 Ch. 6: 258 V_SQ_T_DST Ch. 5: 164, 180, 206, 219, 220 V SQ T SRC Ch. 5: 163, 179, 206 V_SRAM_USE Ch. 2: 74 V SRES Ch. 4: 128 Ch. 9: 300, 308 V START BIT Ch. 3: 110–113, 116–119, 121, 122, 124, 125 Ch. 4: 151 V_STUP_IRQ Ch. 9: 302, 317 V_ST_D_ACT Ch. 5: 216 V_ST_D_CONT Ch. 5: 216 V ST D HPRIO9 Ch. 5: 216 V_ST_D_LPRIO Ch. 5: 197, 216 V_ST_D_LPRIO11 Ch. 5: 216 V_ST_E_IGNO Ch. 5: 163, 199 V ST E LO Ch. 5: 163, 199 V ST PULSE Ch. 5: 198. 203 V ST PU CTRL Ch. 5: 163, 198 V_ST_SEL

Ch. 5: 158, 203 **V ST SMPL** Ch. 5: 207 V_ST_SQ_EN Ch. 5: 161, 163, 197 V_SU0_AF0 Ch. 5: 211 V_SU0_IRQ Ch. 5: 188 Ch. 9: 302, 312, 319 V_SU0_IRQMSK Ch. 5: 188 Ch. 9: 302, 312 V SU1 AF0 Ch. 5: 211 V_SU1_IRQ Ch. 9: 302, 312, 319 V SU1 IRQMSK Ch. 9: 302, 312 V_SU2_AF0 Ch. 5: 211 V_SU2_IRQ Ch. 9: 302, 312, 319 V_SU2_IRQMSK Ch. 9: 302, 312 V_SU3_AF0 Ch. 5: 211 V SU3 IRQ Ch. 5: 188 Ch. 9: 302, 312, 319 **V SU3 IRQMSK** Ch. 5: 188 Ch. 9: 302, 312 V_SU_2KHZ Ch. 5: 163, 179, 197, 201 V SU ACT Ch. 5: 165, 181, 196 V_SU_AF0 Ch. 5: 190, 216, 217 Ch. 9: 303, 318 V_SU_CLK Ch. 2: 72 Ch. 9: 290, 291 V_SU_CLK_DLY Ch. 5: 160, 207 V SU DLYH Ch. 5: 214 V SU DLYL Ch. 5: 213

V_SU_EXCHG Ch. 5: 163, 169, 171, 179, 185. 201 V_SU_FR_SYNC Ch. 5: 212 V SU INFO0 Ch. 5: 165, 212 V_SU_LD_STA Ch. 5: 165, 181, 184, 196 V_SU_MD Ch. 5: 169, 185, 197 Ch. 9: 304 V SU RES Ch. 9: 300, 309 V_SU_RX_VAL Ch. 5: 164, 180, 206, 219, 220 V SU SEL Ch. 5: 158, 195 V_SU_SET_G2_G3 Ch. 5: 166, 182, **196**, 199 V_SU_SET_STA Ch. 5: 196 V SU STA Ch. 5: 212 **V SU STOP** Ch. 5: 164, 169, 180, 185, 198 V_SU_SYNC_NT Ch. 5: 169, 185, 200 Ch. 9: 304 V_SU_T2_EXP Ch. 5: 212 V_SU_TRI Ch. 5: 163, 169, 179, 185, 201 V_SU_TST_SIG Ch. 5: 163, 179, 197, 201 V_SYNC_OUT1 Ch. 6: 231, 263 V_SYNC_OUT2 Ch. 6: 231, 263, 264 **V SYNC SEL** Ch. 5: 189 Ch. 6: 230, 231, 268 **V SYNC SRC** Ch. 6: 230, 231, 263 V S TX Ch. 5: 209, 210

V UP RPT PAT Ch. 5: 179, 185, 204 V_UP_SCRM_MD V_UP_SCRM_RX_OFF V_UP_SCRM_TX_OFF V_UP_SEL Ch. 5: 204 V UP S RX Ch. 5: 178, 215 V_UP_S_TX Ch. 5: 178, 202, 206 V_UP_VIO Ch. 5: 204 V_USAGE Ch. 4: 143 **V WAIT PROC** Ch. 9: 308 V_WAIT_REG Ch. 9: 308 V WAK EN Ch. 7: 280 Ch. 9: 305, 320 V WAK IRQ Ch. 9: 304, 305, 318 V_WAK_IRQMSK Ch. 9: 304, 305, 311 V WAK STA Ch. 9: 305, 320 V_WD_EN

Cologne Chip

Ch. 8: **286 V_WD_RES** Ch. 8: **286** Ch. 9: 307 V_WD_TS Ch. 9: 307, 314 V_Z1 Ch. 4: 140 V_Z2 Ch. 4: 140

Index of pin names

Index entries are sorted by name. Pages of the pin list are printed in bold type.

/CS	ADJ_1	D3		
Ch. 1: 34, 36	Ch. 1: 34, 35, 39	Ch. 1: 34, 36		
Ch. 2: 45, 46, 48, 49, 51, 54,	ADJ_2	Ch. 2: 48, 51		
56	Ch. 1: 34, 35, 38	D4		
/INT	ADJ_3	Ch. 1: 34, 36		
Ch. 1: 34, 35, 37	Ch. 1: 34, 35, 41	Ch. 2: 48, 51		
Ch. 2: 45, 59	Ch. 5: 170	D5		
Ch. 4: 154	ALE	Ch. 1: 34, 36		
Ch. 9: 301, 311-313, 316	Ch. 1: 34, 41	Ch. 2: 48, 51		
/IOR	Ch. 2: 45, 46, 49, 53–56	D6		
Ch. 1: 34, 36		Ch. 1: 34, 36		
Ch. 2: 45, 46, 49	C2IO	Ch. 2: 48, 51		
/IOW	Ch. 1: 34, 35, 37	D7		
Ch. 1: 34, 36	Ch. 4: 130	Ch. 1: 34, 36		
Ch. 2: 45, 46, 49	Ch. 6: 225, 232, 263	Ch. 2: 45, 46, 48, 51		
/RES	C4IO	DN0		
Ch. 1: 34, 35, 37	Ch. 1: 34, 35, 37	Ch. 1: 35, 36		
Ch. 2: 45, 59	Ch. 4: 130	Ch. 2: 59		
Ch. 9: 300	Ch. 6: 222, 225, 226, 228,	DN1		
/SPISEL	230, 232, 234, 239–241,	Ch. 1: 35, 36		
Ch. 1: 33, 35, 36	244, 247, 256, 261, 266,	Ch. 2: 59		
Ch. 2: 59, 61–68	267	DN2		
/WAIT	CLK_OUT	Ch. 1: 35, 36		
Ch. 1: 34, 41	Ch. 10: 330, 340	Ch. 2: 59		
Ch. 2: 45, 48, 51	Ch. 1: 34, 35, 39	DN3		
Ch. 9: 308	Ch. 9: 290, 291, 293, 294,	Ch. 1: 35, 36		
/WD	310	Ch. 2: 59		
Ch. 1: 34, 35, 39	D0	011. 2. 35		
Ch. 9: 307	Ch. 1: 34, 36	F0IO		
Cii. <i>7</i> . 507	Ch. 2: 45, 46, 48, 51	Ch. 1: 34, 35, 37		
A0	D1	Ch. 4: 128, 130		
Ch. 1: 34, 36	Ch. 1: 34, 36	Ch. 5: 168, 184, 189–192,		
Ch. 2: 45, 46, 48–53, 55		217		
ADJ_0	Ch. 2: 48, 51 D2	Ch. 6: 222, 225, 226, 228,		
Ch. 1: 34, 35, 40	Ch. 1: 34, 36	230, 232, 234, 237,		
Ch. 5: 170	Ch. 2: 48, 51	230, 232, 234, 237, 239–242, 244, 247, 256,		
Cii. <i>5</i> . 170	Cn. 2. 70, 51	237 - 2 + 2, 2 + 4, 2 + 7, 230,		

260, 273 Ch. 9: 303, 304 F1 0 Ch. 10: 330, 340 Ch. 1: 34, 35, 38 Ch. 6: 242, 257, 266 F1 1 Ch. 10: 330, 340 Ch. 1: 34, 35, 38 Ch. 6: 242, 258, 266, 267 Ch. 9: 290, 291, 310 GND Ch. 1: 34, 35, **36–41 GPIO0** Ch. 10: 330, 331, 338-341, 344 Ch. 1: 34, 35, 39 GPIO1 Ch. 10: 330-332, 338-341, 344 Ch. 1: 34, 35, 39 GPIO10 Ch. 10: 330, 333, 334, 342 Ch. 1: 34, 35, 40 GPIO11 Ch. 10: 328, 330, 333, 334, 336.342 Ch. 1: 34, 35, 40 GPIO12 Ch. 10: 330, 333, 334, 336, 342 Ch. 1: 34, 35, 39 GPIO13 Ch. 10: 330, 333, 334, 342 Ch. 1: 34, 35, 39 GPIO14 Ch. 10: 330, 333, 334, 342 Ch. 1: 34, 35, 39 GPIO15 Ch. 10: 330, 333, 334, 336, 342 Ch. 1: 34, 35, 39 GPIO16 Ch. 10: 328–330, 336, 337, 343 Ch. 1: 34, 35, 40 GPIO17 Ch. 10: 328, 330, 336, 337, 343

Ch. 1: 34, 35, 40 GPIO18 Ch. 10: 330, 336, 337, 343 Ch. 1: 34, 35, 40 GPIO19 Ch. 10: 330, 336, 337, 343 Ch. 1: 34, 35, 40 GPIO2 Ch. 10: 330, 331, 338-341, 344 Ch. 1: 34, 35, 38 GPIO20 Ch. 10: 330, 336, 337, 343 Ch. 1: 34, 35, 38 GPIO21 Ch. 10: 330, 336, 337, 343 Ch. 1: 34, 35, 37 GPIO22 Ch. 10: 330, 336, 337, 343 Ch. 1: 34, 35, 41 GPIO23 Ch. 10: 330, 336, 337, 343 Ch. 1: 34, 35, 41 GPIO24 Ch. 10: 330, 334–336, 343 Ch. 1: 34, 35, **38** GPIO25 Ch. 10: 330, 334, 335, 343 Ch. 1: 34, 35, **38** GPIO26 Ch. 10: 330, 334, 335, 343 Ch. 1: 34, 35, 38 GPIO27 Ch. 10: 330, 334-336, 343 Ch. 1: 34, 35, 38 GPIO28 Ch. 10: 330, 334–336, 343 Ch. 1: 34, 35, 41 GPIO29 Ch. 10: 330, 334, 335, 343 Ch. 1: 34, 35, 41 GPIO3 Ch. 10: 330, 331, 338–341, 344 Ch. 1: 34, 35, 38 GPIO30 Ch. 10: 330, 334, 335, 343 Ch. 1: 34, 35, 40 GPIO31

Ch. 10: 330, 334-336, 343 Ch. 1: 34, 35, 40 GPIO4 Ch. 10: 330, 331, 338-341, 344 Ch. 1: 34, 35, 37 GPIO5 Ch. 10: 330, 331, 338-341, 344 Ch. 1: 34, 35, 37 GPIO6 Ch. 10: 330, 338-340, 344 Ch. 1: 34, 35, 37 GPIO7 Ch. 10: 330, 338-340, 344 Ch. 1: 34, 35, 39 GPIO8 Ch. 10: 328-330, 333, 334, 336, 342 Ch. 1: 34, 35, 40 GPIO9 Ch. 10: 329, 330, 333, 334, 342 Ch. 1: 34, 35, 40 L_A0 Ch. 10: 329, 330 Ch. 1: 34, 35, 40 Ch. 5: 170 L A1 Ch. 10: 330 Ch. 1: 34, 35, 39 L A2 Ch. 10: 330 Ch. 1: 34, 35, 38 L A3 Ch. 10: 330 Ch. 1: 34, 35, 40 L B0 Ch. 10: 330 Ch. 1: 34, 35, 40 Ch. 5: 170 L B1 Ch. 10: 330 Ch. 1: 34, 35, 39 L_B2 Ch. 10: 330 Ch. 1: 34, 35, 38 L B3 Ch. 10: 330

Ch. 1: 34, 35, 41 MODE0 Ch. 1: 34, 35, 38 Ch. 2: 44-46, 59 Ch. 9: 300 MODE1 Ch. 1: 34, 35, 38 Ch. 2: 44-46, 59 Ch. 9: 300 NC Ch. 1: 34, 35, 36-39, 41 OSC_IN Ch. 1: 34, 35, 38 Ch. 9: 291, 293–295, 310 OSC_OUT Ch. 1: 34, 35, 38 Ch. 9: 290, 291, 293 PWM0 Ch. 10: 330, 331, 340 Ch. 1: 34, 35, 39 Ch. 7: 278-280 PWM1 Ch. 10: 330, 340 Ch. 1: 34, 35, 39 Ch. 7: 278-280 R A0 Ch. 10: 329, 330 Ch. 1: 34, 35, 40 Ch. 5: 159, 168-170, 184, 185 R A1 Ch. 10: 330 Ch. 1: 34, 35, 39 R A2 Ch. 10: 330 Ch. 1: 34, 35, 38 R A3 Ch. 10: 330 Ch. 1: 34, 35, 40 Ch. 5: 168, 184 R B0 Ch. 10: 330 Ch. 1: 34, 35, 40 Ch. 5: 159, 168-170, 184, 185

R B1 Ch. 10: 330 Ch. 1: 34, 35, 39 R B2 Ch. 10: 330 Ch. 1: 34, 35, 38 R B3 Ch. 10: 330 Ch. 1: 34, 35, 41 Ch. 5: 168, 184 SPI CLK Ch. 1: 35, 36 Ch. 2: 59, 67, 68 SPI INV Ch. 1: 35, 41 Ch. 2: 59, 67, 68 SPI_RX Ch. 1: 35, 36 Ch. 2: 59, 61, 62, 64-66 SPI TX Ch. 1: 35, 36 Ch. 2: 59, 61-66 STI01 Ch. 10: 330, 340 Ch. 1: 34, 35, 37 Ch. 3: 92-94, 98, 99, 107, 118, 124 Ch. 6: 222–226, 228, 239, 244, 245, 247, 248, 250, 260, 261, 271, 276 STIO2 Ch. 10: 330, 340 Ch. 1: 34, 35, 37 Ch. 3: 92-94, 98, 99, 107, 119, 125 Ch. 6: 222–226, 228, 239, 244, 245, 247, 248, 250, 261, 271, 276 SYNC I Ch. 1: 34, 35, 37 Ch. 6: 230, 233–236, 239, 260, 263, 264, 268 Ch. 8: 287 SYNC O Ch. 10: 330, 340 Ch. 1: 34, 35, 37 Ch. 6: 232-236, 263 T A0

Ch. 10: 329, 330 Ch. 1: 34, 35, 40 Ch. 5: 159, 169, 171, 185 T_A1 Ch. 10: 330 Ch. 1: 34, 35, 40 T A2 Ch. 10: 330 Ch. 1: 34, 35, 38 T A3 Ch. 10: 330 Ch. 1: 34, 35, 41 T_B0 Ch. 10: 330 Ch. 1: 34, 35, 40 Ch. 5: 159, 169, 171, 185 T B1 Ch. 10: 330 Ch. 1: 34, 35, 40 T B2 Ch. 10: 330 Ch. 1: 34, 35, 37 T B3 Ch. 10: 330 Ch. 1: 34, 35, 41 VDD Ch. 10: 329-331 Ch. 1: 34, 35, 37-41, 42 VDD SU0 Ch. 10: 328-330 Ch. 1: 34, 35, 40 Ch. 5: 171 VDD SU1 Ch. 10: 330 Ch. 1: 34, 35, 40 VDD_SU2 Ch. 10: 330 Ch. 1: 34, 35, 37 VDD_SU3 Ch. 10: 328, 330 Ch. 1: 34, 35, 41 Ch. 5: 171 WAKEUP Ch. 1: 34, 35, 39 Ch. 2: 72 Ch. 7: 280 Ch. 9: 290, 308, 318, 320

oane

Cologne Chip AG Data Sheet of XHFC-2S4U/4SU