Supported by:

Federal Ministry for Economic Affairs and Energy

on the basis of a decision by the German Bundestag

Novel GateMate FPGA Architecture

Novel architecture of GateMate FPGA

Overview

• Double checkerboard architecture:

There are only switch boxes on every second field Big and small switchboxes alternate

- Extremely small LUTs (Look Up Table)
- Cologne Programmable Element (CPE) with the following properties:

8 combinatorial inputs with 7 LUT2 as tree

2 flip-flops or latches

2 routed outputs, 2 outputs for additional functions

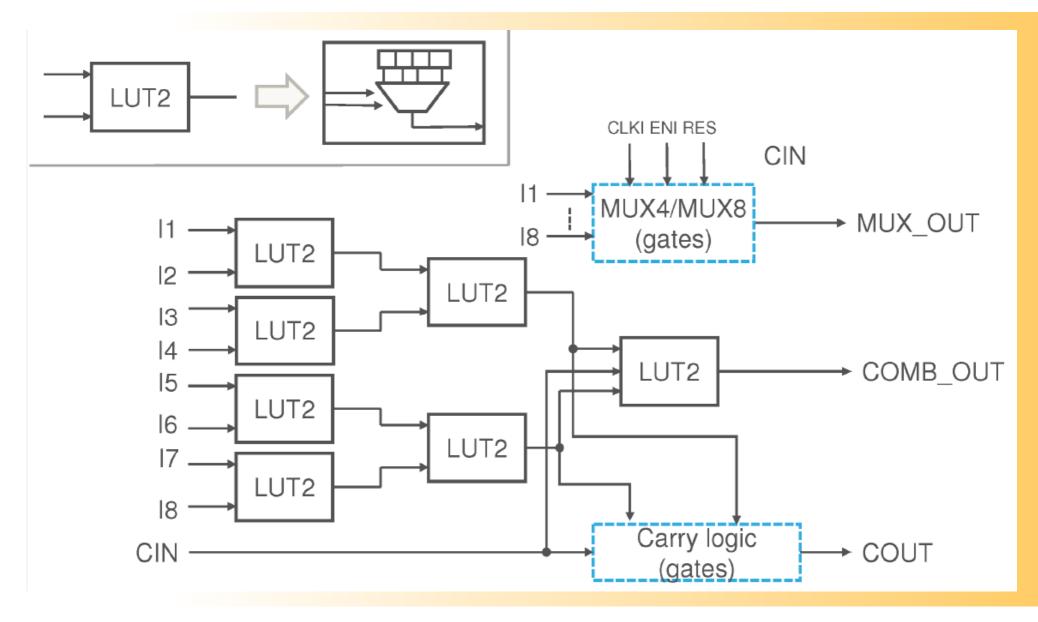
2 cascaded, not routed connections in the X and Y directions

very flexible clock routing, plus 4 global clocks

CPE can be configured with 2x 4 inputs or 1x 8 inputs

CPE can be 2-bit full-adder or 2x2 multiplier

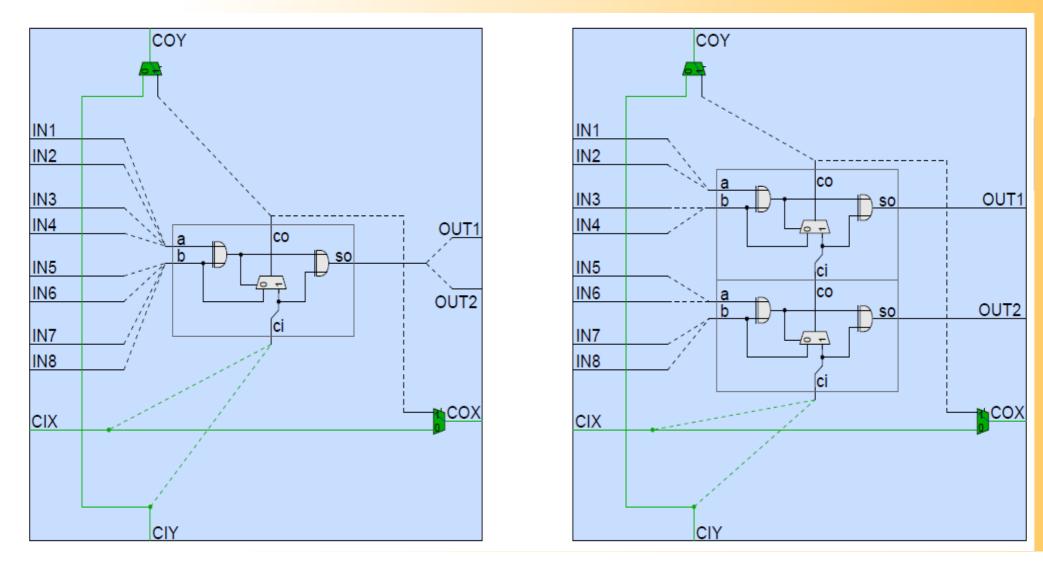
- Configuration memory of 8-bit latches leads to low internal routing and low SEU probabilities.
- 12 routing layers simplifies Place & Route software.
- Direction Change Multiplexer allows direction change of a signal in every switchbox


		C	PE			
+	IN1					
	IN2			OU	T2	•
	IN3				τ.	
	IN4 IN5			OU	11	-
	IN6			COUT	Y1	•
	IN7			POUT	Y1	•
•	IN8			COUT	Va	
+	CLK			COUT	A CALENCE	•
+				1 001		
•	EN SR					
	RAM I	2		RAM (าว	
	RAM I			RAM (and the second second	-
•	CINX	Σž	2 Z Z	COU	and the second se	•
-	PINX	CINY1 PINY1	PIN	POU	IX	•
		↑ ↑				I

Signals of a CPE (fixed connections in green, RAM-connections in blue)

٠

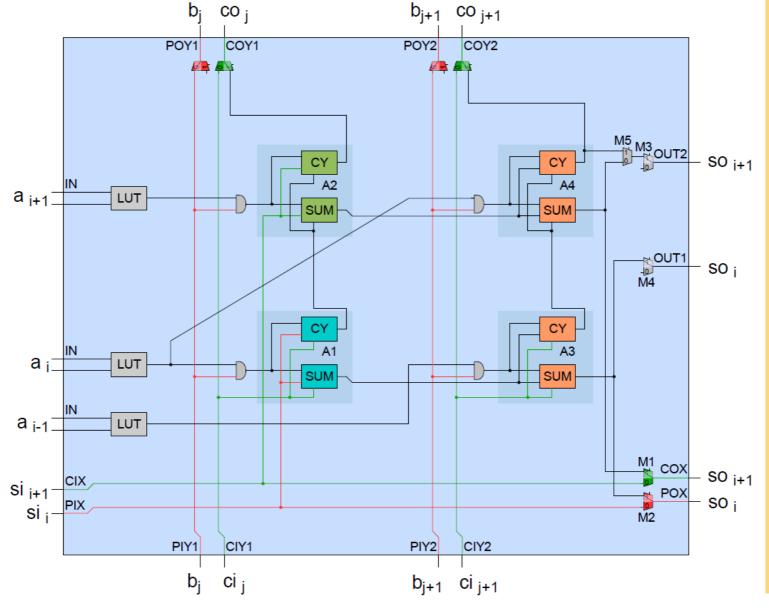
CPE combinatorial Part


٠

٠

CPE Fulladder

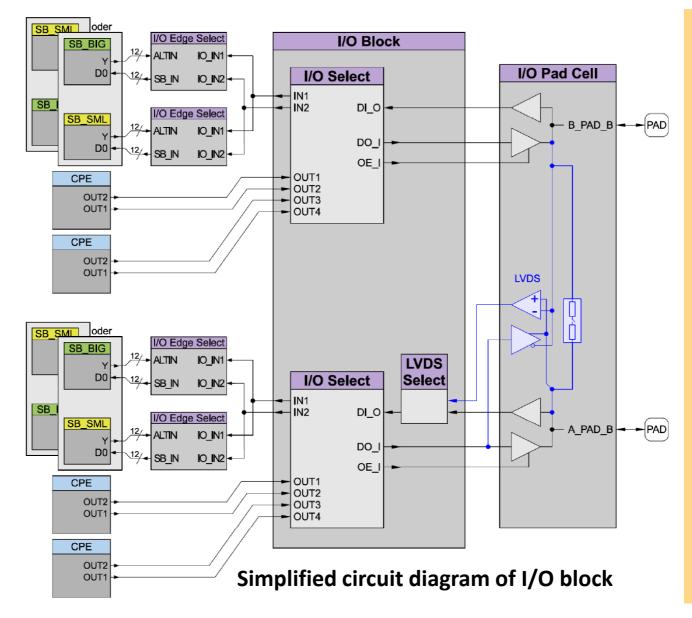
1-Bit- und 2-Bit-Fulladder in one CPE


٠

Cologne Chip AG © 2021

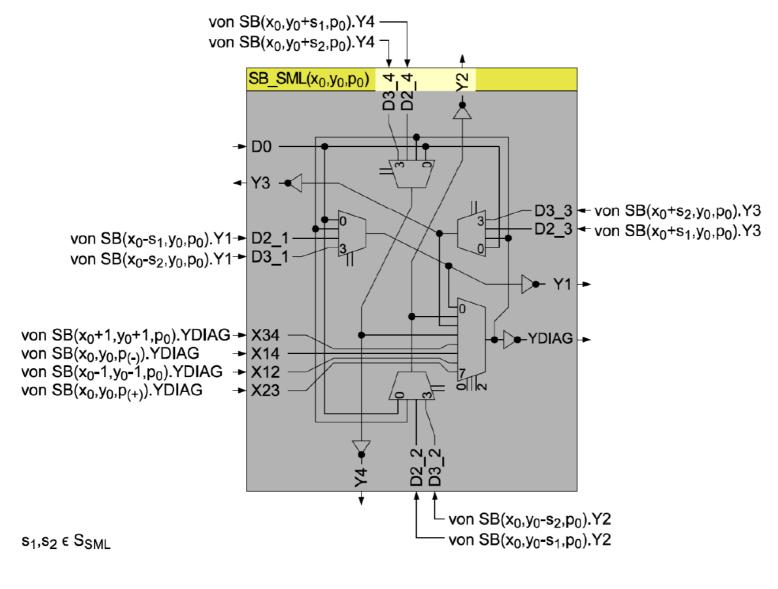
•

CPE as 2x2 Multiplier block

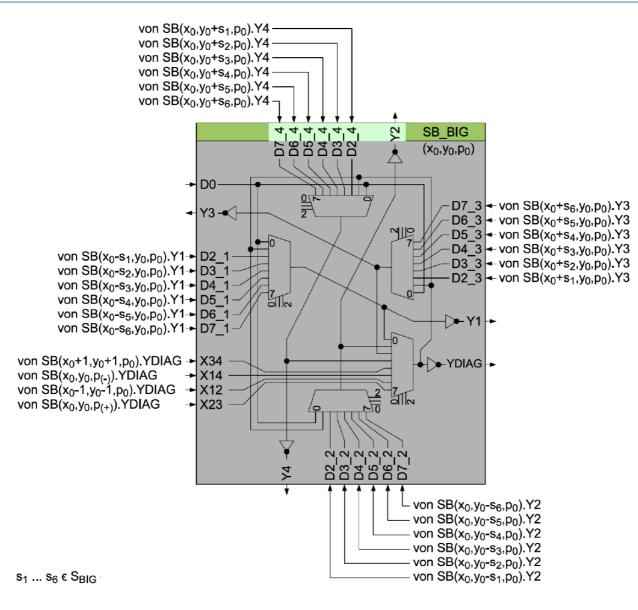


FLP2021, Dresden, Germany, 02 Sep 2021•Dr.-Ing. Michael Gude•Cologne Chip AG © 2021

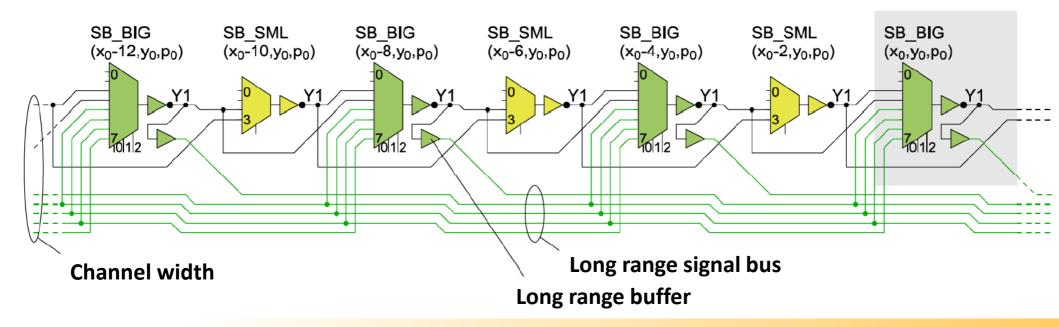
I/O Block as Interface to chip outside



Dr.-Ing. Michael Gude


٠

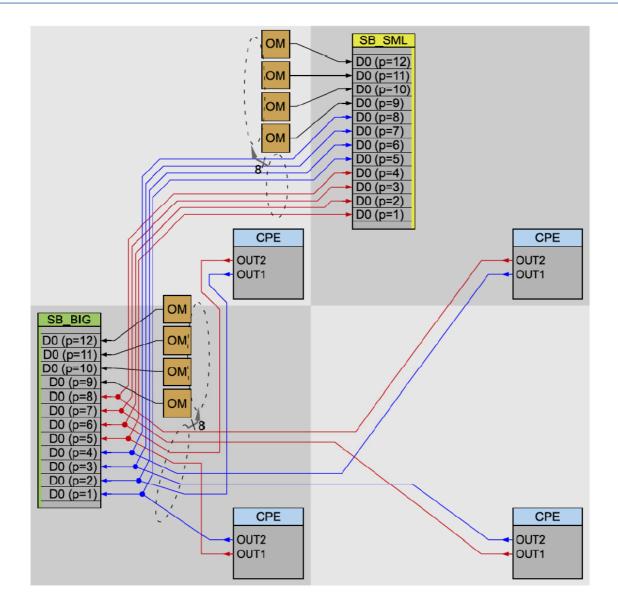
Switchbox (small) for Routing



Switchbox (big) for Routing

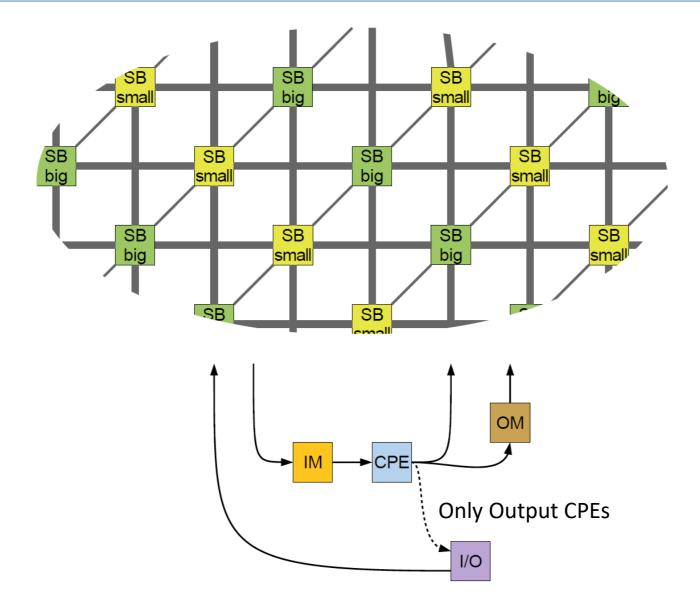
Cologne Chip

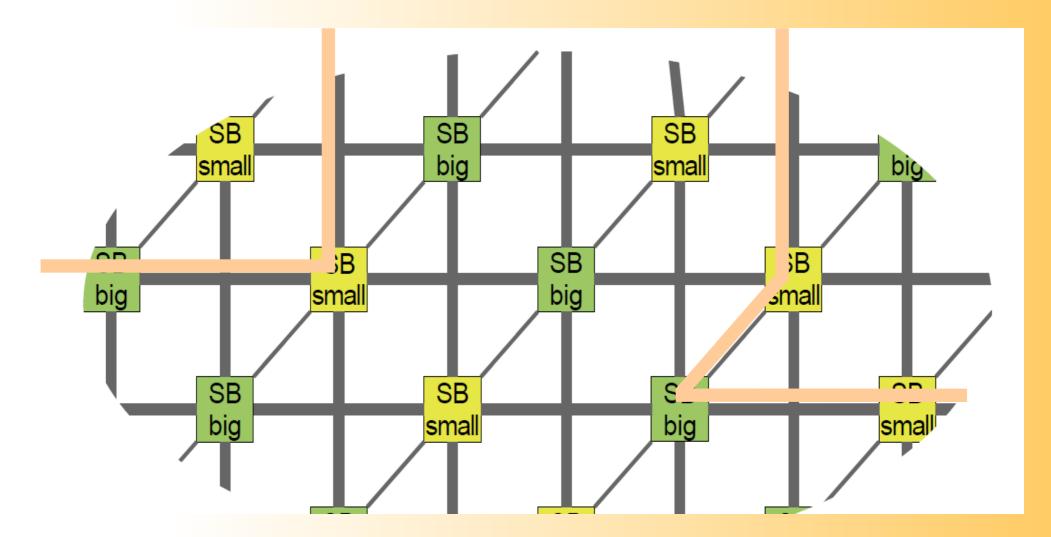
Switchbox-Routing in one dimension



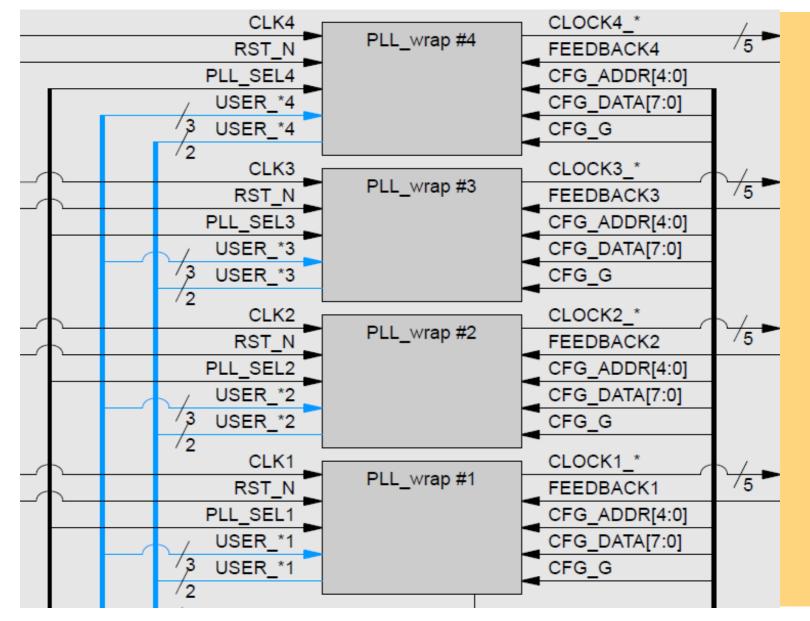
Cologne

Chip


Connections of CPEs with Switchboxes

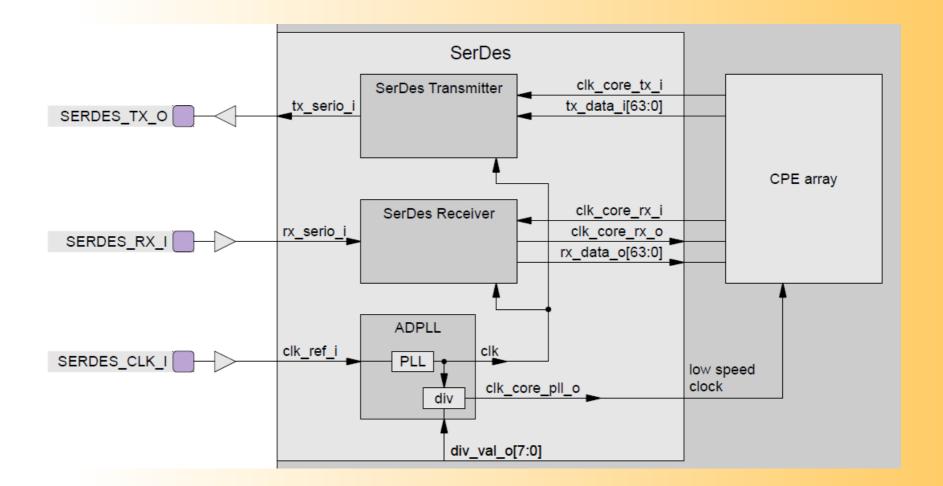

Interaction of FPGA Circuit Elements

Direction Change via Switch Boxes

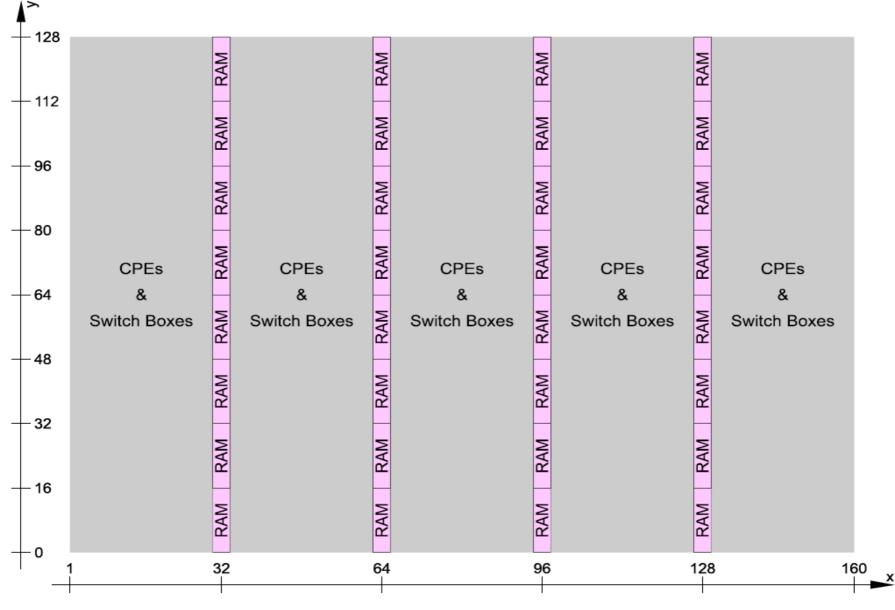


FLP2021, Dresden, Germany, 02 Sep 2021•Dr.-Ing. Michael Gude•Cologne Chip AG © 2021

4 general purpose PLL circuits



FLP2021, Dresden, Germany, 02 Sep 2021 • Dr.-Ing. Michael Gude • Cologne Chip AG © 2021


SERDES high speed interface at 2,5 GBit/s

Dual Port SRAM map

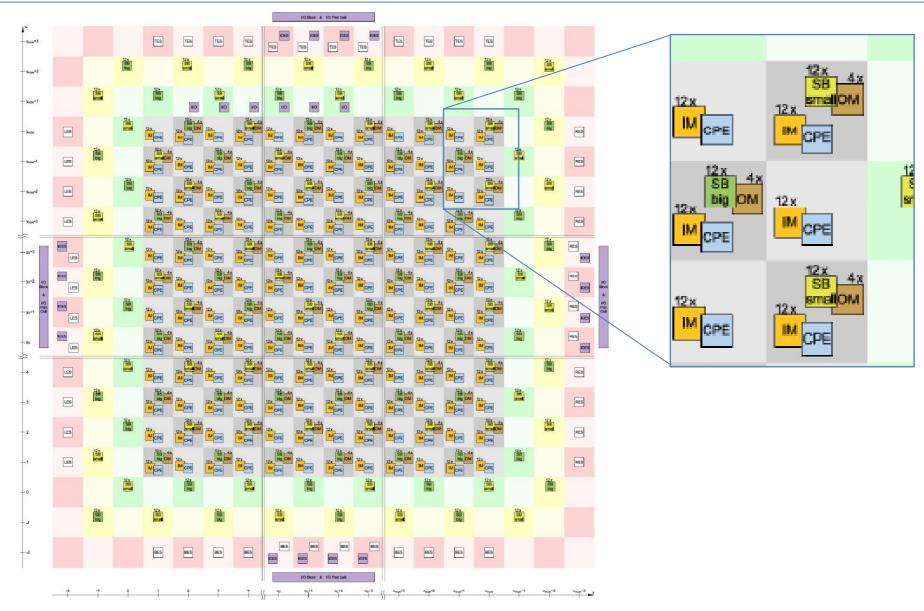
FLP2021, Dresden, Germany, 02 Sep 2021

Dr.-Ing. Michael Gude

•

Cologne Chip AG © 2021

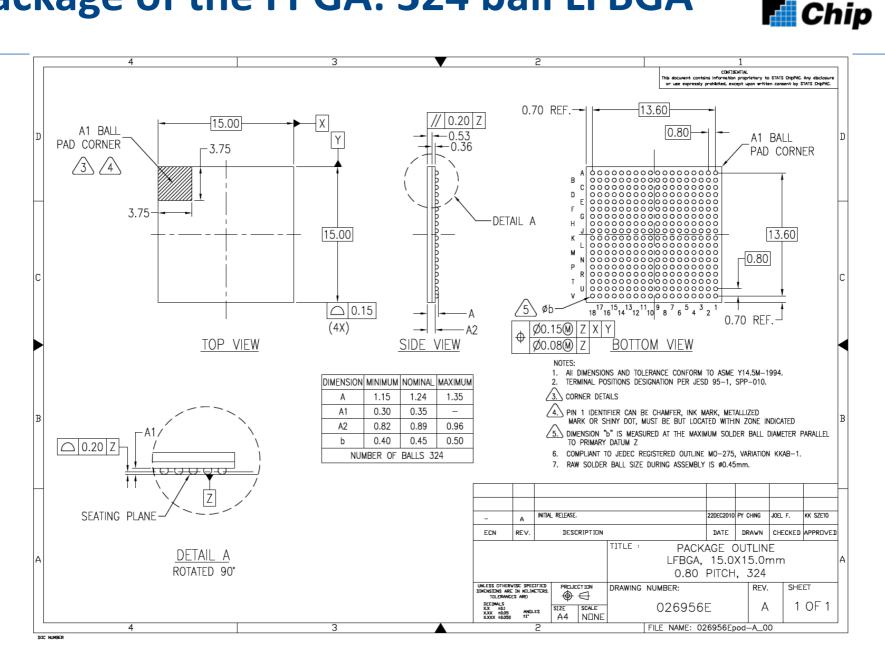
Dual Port SRAM configuration


DPSRAM	Non-Split TDP	Non-Split SDP	DPSRAM	Split TDP	Split SDP
configuration	40 Kbit	40 Kbit	configuration	2x20 Kbit	2×20 Kbit
$32 \mathrm{K} \times 1 \mathrm{bit}$	\checkmark	\checkmark	(RAM size per	20 Kbit block	()
$16 \mathrm{K} \times 2 \mathrm{bit}$	\checkmark	\checkmark	$16\mathrm{K} \times 1\mathrm{bit}$	\checkmark	\checkmark
$8\mathrm{K} imes 5\mathrm{bit}$	\checkmark	\checkmark	$8 \mathrm{K} \times 2 \mathrm{bit}$	\checkmark	\checkmark
$4 \mathrm{K} \times 10 \mathrm{bit}$	\checkmark	\checkmark	$4 \mathrm{K} \times 5 \mathrm{bit}$	\checkmark	\checkmark
$2 \mathrm{K} \times 20 \mathrm{bit}$	\checkmark	\checkmark	$2 \mathrm{K} \times 10 \mathrm{bit}$	\checkmark	\checkmark
$1 \mathrm{K} imes 40 \mathrm{bit}$	\checkmark	\checkmark	$1 \mathrm{K} imes 20 \mathrm{bit}$	\checkmark	\checkmark
$512 \text{K} \times 80 \text{bit}$	×	\checkmark	$512 \mathrm{K} \times 40 \mathrm{bit}$	×	\checkmark

Every data bit has an own write enable bit

FLP2021, Dresden, Germany, 02 Sep 2021•Dr.-Ing. Michael Gude•Cologne Chip AG © 2021

Overview: Strukture of the FPGA


•

Overall View of the FPGA Die

																						- L	egend
																							8x8 tile
							Ч								Т						_		DPSRAM 4x512x20
				_		_					-		_		_			_	_				SwitchBox ring around CPE arra
	x 1 x 9 x 17 y 121 y 121 y 121	x 25 y 121 x		x 41 x 4 y 121 y 1	49 x 57 121 y 12	21 ×	x 65 y 121	x 73 y 121	x 81 y 121	x 89 y 121		(97 x (121 y	105 x 121 y	113	x 121 y 121	x	x 129 y 121	x 137 y 121	x 145 y 121	x 153 y 121			PLL
	x1 x9 x17	33	x 33	S	-	65 y					97	5	105 x	-		129 y		-	-	x 153		1 -	Clock wire
	ŷ 113 ŷ 113 ŷ 113	ý 113 ¹¹³	y 113	ŷ 113 ŷ 1				y 113				113 y			y 113	113	y 113	y 113	y 113			_	Crackstop & moisture barrier
	x 1 x 9 x 17 y 105 y 105 y 105	x 25 y 105 x	x 33 y 105	x 41 x 4 y 105 y 1			x 65 y 105	x 73 y 105		x 89 y 105	x 1 97	(97 x 105 y	105 x 105 y	113	x 121 y 105	x			x 145 y 105	x 153 y 105			 Die-2-Die transceivers
	x1 x9 x17 y97 y97 y97	x 25 97			49 x 5	7 97			x 81	x 89	y 97		105 x					x 137		x 153			 Die-2-Die connections
- W2		y 97	-	y 97 y			y 97		-	y 97	-	-	-	_	y 97				y 97	y 97	E2		SERDES Phy (RTL frontend)
	x 1 x 9 x 17 y 89 y 89 y 89	x 25 y 89 x 33	x 33 y 89		49 x 5 89 y 8		x 65 y 89			x 89 y 89					x 121 y 89	x 129	x 129 y 89	x 137 y 89	x 145 y 89	x 153 y 89			SERDES Phy (macro)
	x1 x9 x17 y81 y81 y81	x 25 81 y 81	x 33 y 81	x 41 x y 81 y	49 x 5 81 y 8		x 65 y 81			x 89 y 81					x 121 y 81		x 129 y 81	x 137 y 81	x 145 y 81	x 153 y 81			
	x1 x9 x17	x 25	x 33		49 x 5		x 65		-	x 89			105 x	-			_	x 137	x 145	x 153			SERDES associated bondpad
	y 73 y 73 y 73	y 73 X 33	y 73		73 y 7		v 73			v 73		ŷ73 ŷ			y 73	x 129		y 73	y 73	y 73			Ground bondpad VDD core bondpad
	x1 x9 x17 y65 y65 y65	x 25 y 65	x 33 y 65		49 x 5 65 y 6		x 65 y 65			x 89 y 65		x 97 x y 65 y		113 65	x 121 y 65	, 65	x 129 y 65	x 137 y 65	x 145 y 65	x 153 y 65			VDD IO bondpad
	x1 x9 x17	x 25	x 33		49 x 5	7	x 65	x 73	x 81	x 89				113	x 121		x 129	x 137	x 145	x 153		Ê 🗖	VDD Analog bondpad
	y 57 y 57 y 57	y 57 X 33 y	y 57		57 y 5	65 V			-		97 V		-	-	y 57	129 V		y 57		y 57			GPIO/LVDS bondpad
	x1 x9 x17 y49 y49 y49	x 25 y 49	x 33 y 49		49 x 5 49 y 4		x 65 y 49			x 89 y 49				113 49	x 121 y 49	49		x 137 y 49	x 145 y 49	x 153 y 49			Auxiliary IO bondpad (JTAG,SP
-w-1	x1 x9 x17 y41 y41 y41	x 25 y 41 x	x 33 y 41	x 41 x 41 y 41 y	49 x 5 41 y 4	7 1 ×	x 65 y 41			x 89 y 41	x			113	x 121 y 41	x	x 129 y 41	x 137 y 41	x 145 y 41	x 153 y 41			GPIO/LVDS padcell
	x1 x9 x17	33 y x 25 33			49 x 5	65 V			-	_	97 V		-	-		129 y 33	-	x 137	-	x 153	P3 D		VDD core padcell
	y 33 y 33 y 33	y 33		y 33 y		3	y 33	y 33	y 33	y 33	~	y 33 y	33 y	33	y 33	~	y 33	y 33	y 33	y 33			VDD IO padcell
	x 1 x 9 x 17 y 25 y 25 y 25	x 25 y 25 X	x 33 y 25		49 x 5 25 y 2	7 5 x 65	x 65 y 25			x 89 y 25		x 97 x y 25 y		113 25		x		x 137 y 25	x 145 y 25	x 153 y 25			VDD Analog padcell
	x1 x9 x17	x 25 17	× 33		49 x 5	7 y	x 65			x 89	y 17		105 x	113	x 121				x 145	x 153			IO bank with individual IO voltage
		y 17	y 17 x 33	y 17 y	17 y 1 49 x 5		y 17 x 65		-	y 17 x 89			-	-	y 17		y 17 x 129	y 17 x 137	y 17 x 145	y 17 x 153		-	corner cell
	x1 x9 x17 y9 y9 y9	y 9 X 33	y 9	x 41 x y 9 y			y 9			v9			9 y		x 121 y 9	x 129	y 9	y 9	y 9	y 9			
	x1 x9 x17 y1 y1 y1	x 25 1 y 1	x 33 y 1	x 41 x y y	49 x 51 1 y 1		x 65 y 1			x 89 y 1			105 x 1 y		x 121 y 1	y 1	x 129 y 1		x 145 y 1	x 153 y 1			
							2				1			1	T	19							
																ť						N	o. of Die-2-Die (X-dir): 1088
								598un														↓ N	o. of Die-2-Die (Y-dir): 1088

Package of the FPGA: 324 ball LFBGA

Cologne

Package Connections of the FPGA (ball positions and Signal names)

	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	
Α	GND	VDD_ WC	IO_NA _A0	IO_NA _A1	VDD_ NA	IO_NA _A4	GND	IO_NA _A7	IO_NB _B0	GND	IO_NB _B2	IO_NB _B4	GND	IO_NB _B7	IO_EB _B8	VDD_ EB	IO_EB _B5	GND	Α
в	IO_WC _A8	IO_WC _B8	IO_NA _B0	IO_NA _B1	IO_NA _A2	IO_NA _B4	VDD_ NA	IO_NA _B7	IO_NB _A0	VDD_ NB	IO_NB _A2	IO_NB _A4	VDD_ NB	IO_NB _A7	IO_EB _A8	GND	IO_EB _A5	VDD_ EB	в
С	GND	VDD_ WC	IO_WC _A7	IO_WC _B7	IO_NA _B2	IO_NA _A3	10_NA _A5	IO_NA _A6	IO_NA _A8	IO_NB _B1	IO_NB _B3	IO_NB _B5	IO_NB _B6	IO_NB _B8	IO_EB _B7	IO_EB _B6	IO_EB _B4	IO_EB _A4	С
D	IO_WC _A5	IO_WC _B5	IO_WC _A6	IO_WC _B6	VDD_ WC	IO_NA _B3	IO_NA _B5	IO_NA _B6	IO_NA _B8	IO_NB _A1	IO_NB _A3	IO_NB _A5	IO_NB _A6	IO_NB _A8	IO_EB _A7	IO_EB _A6	IO_EB _B2	IO_EB _A2	D
Е	IO_WC _A3	IO_WC _B3	IO_WC _A4	IO_WC _B4	GND	VDD_ NA	GND	VDD_ NA	GND	VDD_ NB	GND	VDD_ NB	GND	VDD_ EB	IO_EB _B3	IO_EB _A3	VDD_ EB	GND	Е
F	GND	VDD_ WC	IO_WC _A2	IO_WC _B2	VDD_ WC	GND	VDD_ NA	GND	VDD	GND	VDD_ NB	GND	VDD_ EB	GND	IO_EB _B1	IO_EB _A1	IO_EB _B0	IO_EB _A0	F
G	IO_WC _A0	IO_WC _B0	IO_WC _A1	IO_WC _B1	GND	VDD	GND	VDD	GND	VDD	GND	VDD	GND	VDD_ EA	IO_EA _B8	IO_EA _A8	IO_EA _B7	IO_EA _A7	G
н	IO_WB _A7	IO_WB _B7	IO_WB _A8	IO_WB _B8	VDD_ WB	GND	VDD	GND	VDD	GND	VDD	GND	VDD	GND	IO_EA _B6	IO_EA _A6	VDD_ EA	GND	н
J	GND	VDD_ WB	IO_WB _A6	IO_WB _B6	GND	VDD	GND	VDD	GND	VDD	GND	VDD	GND	VDD_ EA	IO_EA _B5	IO_EA _A5	IO_EA _B4	IO_EA _A4	J
κ	IO_WB _A5	IO_WB _B5	IO_WB _A4	IO_WB _B4	VDD_ WB	GND	VDD	GND	VDD	GND	VDD	GND	VDD	GND	IO_EA _B3	IO_EA _A3	IO_EA _B2	IO_EA _A2	κ
L	IO_WB _A3	IO_WB _B3	IO_WB _A2	IO_WB _B2	GND	VDD	GND	VDD	GND	VDD	GND	VDD	GND	VDD_ EA	IO_EA _B1	IO_EA _A1	VDD_ EA	GND	L
М	GND	VDD_ WB	IO_WB _A1	IO_WB _B1	VDD_ WB	GND	VDD	GND	VDD	GND	VDD	GND	VDD	IO_EA _B0	IO_EA _A0	GND	IO_SB _A3	IO_SB _B3	Μ
Ν	IO_WB _A0	IO_WB _B0	IO_WA _A8	IO_WA _B8	VDD_ WA	VDD	GND	VDD	GND	VDD	VDD_ SB	GND	VDD_ SB	IO_SB _A8	IO_SB _B8	N.C.	GND	VDD_ SB	Ν
Ρ	IO_WA _A7	IO_WA _B7	VDD_ WA	GND	VDD_ WA	VDD_ SA	GND	VDD_ SA	GND	VDD_ SA	IO_SB _A4	IO_SB _A7	IO_SB _B7	IO_SB _A6	IO_SB _B6	VDD_ PLL	IO_SB _A2	IO_SB _B2	Ρ
R	IO_WA _A6	IO_WA _B6	IO_WA _A5	IO_WA _B5	IO_WA _A0	IO_SA _A1	IO_SA _A2	IO_SA _A4	IO_SA _A6	IO_SA _A7	IO_SB _B4	GND	IO_SB _A5	IO_SB _B5	VDD_ SB	GND	IO_SB _A1	IO_SB _B1	R
т	VDD_ WA	IO_WA _A4	IO_WA _B4	GND	10_WA _B0	IO_SA _B1	IO_SA _B2	IO_SA _B4	IO_SA _B6	IO_SA _B7	GND	SER_ CLK	SER_ CLK_N	VDD _CLK	RST_N	VDD_ SER_PLL	GND	VDD_ SB	т
U	IO_WA _A3	IO_WA _B3	VDD_ WA	IO_WA _A1	IO_SA _A0	VDD_ SA	IO_SA _A3	IO_SA _A5	VDD_ SA	IO_SA _A8	SER_ RX_P	VDD_ SER	SER_ TX_P	GND	GND	TEST MODE	IO_SB _A0	IO_SB _B0	U
v	GND	IO_WA _A2	IO_WA _B2	IO_WA _B1	IO_SA _B0	GND	IO_SA _B3	IO_SA _B5	GND	IO_SA _B8	SER_ RX_N	SER_ Rterm	SER_ TX_N	GND	POR_ ADJ	GND	VDD_ SER	GND	V
	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	

FLP2021, Dresden, Germany, 02 Sep 2021 •

Cologne Chip AG © 2021

Packaged Sample from MPW-Run

•

Manufactured by GLOBALFOUNDRIES in Dresden

Cole

Size versions

	Rel. size	Cologne	Programma	ble Elements	Block	RAM	PLLs	SERDES	I/	Os	Package		
		CPEs	8-Inp- LUT tree	FF/Latches	20Kb	40Kb			single- ended	differential	balls	size (mm)	
CCGM1A1	1	20,480	20,480	40,960	64	32	4	1	162	81	324BGA	15x15	
CCGM1A2	2	40,960	40,960	81,920	128	64	8	2	162	81	324BGA	15x15	
CCGM1A4	4	81,920	81,920	163,840	256	128	16	4	162	81	324BGA	15x15	
CCGM1A9	9	184,320	184,320	368,640	576	288	36	9	tbd	tbd	676BGA	27x27	
CCGM1A16	16	327,680	327,680	655,360	1,024	512	64	16	tbd	tbd	676BGA	27x27	
CCGM1A25	25	512,000	512,000	1,024,000	1,600	800	100	25	tbd	tbd	1156BGA	35x35	

Special Features for reduced cost of ownership

Power

- 3 application modes for the same device only by changing core voltage low power, economy, speed
- > low inventory because of same device for many projects
- Only 2 supply voltages needed, can be applied in any order
- No excessive start-up currents
- > low cost voltage regulators usable

Package

- Small high ball count packages starting at 15x15mm with 324 balls BGA
- Only 2 signal layers needed on PCB
- > low cost conventional PCB

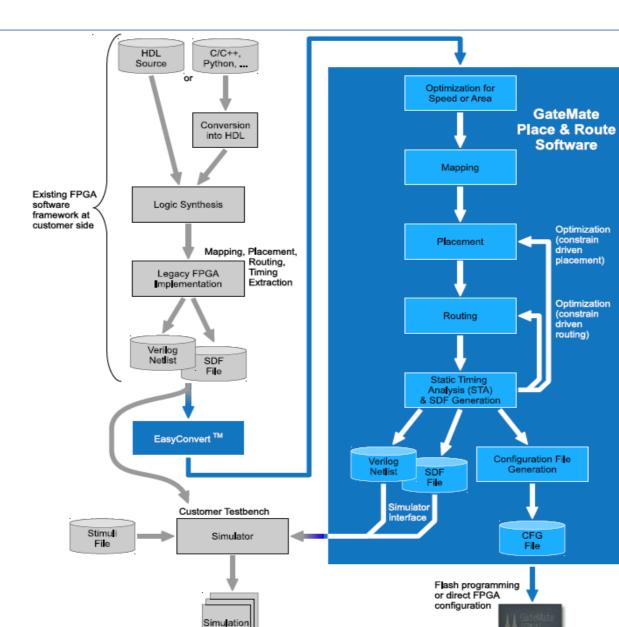
Supply

- Manufactured in Germany by Globalfoundries
- > No unreasonable price rises or tax increase because of trade wars

Special Features for better performance Cologne

2x/4y Carry/Propagation lines

- High speed lines without routing Switchboxes.
- could be used also for clock and enable signals
- Is used for adders and multipliers


Very fast configuration from external low cost Flash memory

- 100 MHz quad mode SPI supported
- Low cost general purpose serial Flash device applicable, no need for special PROMs
- Only those configuration latches really used must be configured
- A1 device can be fully configured in only 55ms

RAM size and orientation

 Superset of known FPGA architectures with 20/40 Bit data width and WE for every bit

Cologne Chip AG © 2021

Results

Design flow

Thank you for your attention!

Dr.-Ing. Michael Gude

info@colognechip.com

