

GateMate[™] FPGA Programmer Datasheet

Generic Programmer Board for GateMate

Datasheet August 2023

Copyright 2019 - 2023 Cologne Chip AG

All Rights Reserved

The information presented can not be considered as assured characteristics. Data can change without notice. Parts of the information presented may be protected by patent or other rights. Cologne Chip products are not designed, intended, or authorized for use in any application intended to support or sustain life, or for any other application in which the failure of the Cologne Chip product could create a situation where personal injury or death may occur.

Contents

At	out t	his Document	5					
1	Introduction							
2	Bloc	k Diagram	11					
3	Star	tup	13					
	3.1	Connection to the User Application	13					
	3.2	Connection to the Host Controller	14					
4	Loa	ding the FPGA Configuration	17					
	4.1	Loading the FPGA Configuration via the JTAG Interface	17					
	4.2	Loading the FPGA Configuration via the SPI Interface	17					
5	Acc	ess to the Flash Memory	19					
	5.1	Access to the Flash Memory via the JTAG Interface	19					
	5.2	Access to the Flash Memory via the SPI Interface	19					
6	Elec	trical Characteristics	21					

Contents of Sub-Document DS1002 – Programmer Board Version 1.3 Schematics 🗹

At	bout this Document		
1	Mechanical Dimensions	7	
2	PCB components	9	
3	Programmer Schematics	11	
4	Bill of Materials	15	

Contents of Sub-Document DS1002 – Programmer Board Version 1.4 Schematics 🗹

Ak	About this Document		
1	Mechanical Dimensions	7	
2	PCB components	9	
3	Programmer Schematics	11	
4	Bill of Materials	15	

About this Document

This datasheet is the main document in an ensemble of GateMateTM FPGA Programmer documents, which include the following sub-documents:

- DS1002 GateMate[™] FPGA Programmer Version 1.3 Schematics 🕑
- DS1002 GateMate[™] FPGA Programmer Version 1.4 Schematics ☑

All documents of the programmer are always updated together. Please make sure that you use these documents with the same date.

For more information please refer to the following documents:

- Technology Brief of GateMate[™] FPGA I
- ・ DS1001 GateMateTM FPGA CCGM1A1 Datasheet 🕑
- UG1002 GateMate[™] FPGA Toolchain Installation User Guide 🗹

Cologne Chip provides a comprehensive technical support. Please visit our website for more information or contact our support team.

Contents

Revision History

This datasheet is constantly updated. The latest version of the document can be found following the link below:

DS1002 – GateMate[™] FPGA Programmer Datasheet ⊂

Date	Remarks
June 2023	• In the course of the release of the PCB version 1.4, the previous datasheet was split into several documents. The main document is valid for all versions. For each version, the schematics, BOM and other board-specific information are available in a separate sub-document.
	 Some minor changes have been made to board version 1.4, see details in Table 1.1 on page 9.
March 2022	Initial release.

Introduction

Figure 1.1: Top view of the GateMateTM FPGA Programmer 1.4 (including module cover)

The GateMateTM FPGA Programmer allows an easy and flexible access to the GateMateTM FPGA. The configuration can be loaded from any host computer via USB interface into the FPGA. Furthermore, the flash memory, which is typically available at the user application can be accessed as well.

The main features of the programmer are

- FTDI FT232HQ USB bridge
- USB 2.0 to JTAG and SPI bridge provided by FTDI's Multi-Protocol Synchronous Serial Engine (MPSSE)
- Mini-USB B connector
- USB-powered
- Configuration voltage VDD_CFG required from user application
- 4 status LEDs
- Form factor 35×55 mm

This document describes how to set up the GateMateTM FPGA Programmer and explains the different use cases.

Please note!

This datasheet covers the following versions of the GateMate[™] FPGA Programmer:

- Version 1.3
- Version 1.4 with minor changes

Differences between these two boards are listed in Table 1.1 on page 9.

CCGM1A1

 Table 1.1: Differences between programmer versions 1.3 and 1.4

Ver.	Changes
1.3	C19 is 6.3V type.
1.4	C19 is 10V type.
1.3	C22 is 6.3V type.
1.4	C22 is 10V type.
1.3	U3 is dual NAND gate SN74AUP2G00DCUR (8 pins).
1.4	U3 is quad NAND gate SN74AUC00RGYR (15 pins).
1.4	Inverter U5 (SN74AUP1G04DRYR, 6 pins) added.
1.3	U4 is octal bi-directional transceiver SN74AXC8T245PWR (24 pins).
1.4	U4 is octal FET switch SN74CB3T3245PWR (20 pins).
1.4	Pull-up resistors R13 and R14 removed at U4 input pins.
1.4	Removed port FF_RESET from module Programmer (FTDI 232H).
1.3	DONE signal from the FPGA is directly feed to host controller via connector CFG_ADAPTER, level shifter U4 and USB interface U1.
1.4	DONE signal from the FPGA is latched in flip-flop U3 between CFG_ADAPTER connector and level shifter U4.
1.3	FAILED signal from the FPGA is feed to host controller via connector CFG_ADAPTER, level shifter U4, flip-flop U3 and USB interface U1.
1.4	FAILED signal from the FPGA is latched between connector CFG_ADAPTER and level shifter U4.
1.3	Latched FAILED signal in flip-flop U3 is reset from signal FF_RESET which is a separat reset signal from the host controller.

1.4 Latched FAILED and DONE signals in flip-flops U3 are reset from signal T_RST which is the common reset signal from the host controller.

see schematics in GateMateTM FPGA Programmer Version 1.3 Schematics GateMateTM FPGA Programmer Version 1.4 Schematics

CCGM1A1

Block Diagram

Figure 2.1 shows the block diagram of the GateMate[™] FPGA Programmer and its embedding between the host controller and the user application.

Typically, the host controller is any computer that comes with an USB interface. The programmer software runs on both Microsoft Windows and Linux.

Four LEDs display the current state of the programmer device as described in Table 2.1.

LED	color	Description
D1	green	USB power available from host controller
D3	green	Configuration Done signaling
D4	red	Configuration Failed signaling
D5	green	Power from FPGA application (configuration GPIO bank) available

Figure 2.1: Block diagram of the GateMateTM FPGA Programmer

3.1 Connection to the User Application

To connect the GateMateTM FPGA Programmer to the user application, the connector CFG_Adapter must be used. Figure 3.1 shows the signals of this connector. Depending on the user's requirements, it can act as JTAG or SPI bus. The detailed BGA connection is described in Table 3.1 for both interfaces.

Figure 3.1: Connecting the GateMateTM FPGA Programmer with the GateMate FPGA

The GateMate[™] FPGA Programmer is USB bus powered. The connector CFG_Adapter requires power supply from the FPGA configuration GPIO bank (signal VDD_CFG) for operation. The pull-up resistors shown in Figure 3.1 are populated on the programmer's printed circuit board (PCB). No further hardware setup is required.

GateMate ^{TI} CFG_ADAP ⁻	^M FPGA Programmer TER	GateM JTAG	late FPGA interface	GateMate FPGA SPI interface	
pin	signal name	ball	signal name	ball	signal name
1	VDD_CFG	U3 ¹	VDD_WA	U3 ¹	VDD_WA
3	T_FAILED	V2	CFG_FAILED_N	V2	CFG_FAILED_N
5	T_DONE	٧3	CFG_DONE	٧3	CFG_DONE
7	T_MISO / TDO	U2	JTAG_TD0	P1	SPI_D1
9	T_RST	T15	RST_N	T15	RST_N
11	T_CS / TMS	Т3	JTAG_TMS	N3	SPI_CS_N
13	T_MOSI/TDI	T2	JTAG_TDI	P2	SPI_D0
15	T_SCK / TCK	R3	JTAG_TCK	N4	SPI_CLK
2,4,6, ,16	GND	V18 ¹	GND	V18 ¹	GND

Table 3.1: GateMateTM FPGA Programmer configuration adapter

¹ and others

3.2 Connection to the Host Controller

The GateMate[™] FPGA Programmer requires a computer with Linux or Windows operating system as follows:

- Supported Linux environments:
 - Debian-based Linux (Debian, Ubuntu, ...) with apt package manager
 - Arch-based Linux (Arch, Manjaro, ...) with pacman package manager
 - Red Hat-based Linux (Fedora, ...) with dnf or yum package manager

• Windows environments:

- Windows 7 or later, 64 bit
- Zadig USB driver installer

https://zadig.akeo.ie/

When first plugged into the computer's USB port, drivers should load by default.

In Windows environments, however, it is necessary to change the default USB driver using Zadig ^C. Download the software and connect the GateMateTM FPGA Programmer to any USB port. In the Zadig Window, select **Options** > **List All Devices** to refresh the device list. From the drop-down list, select **GateMateTM FPGA Programmer 1.4**. Now select **libusb-win32 (any version)** from the driver list and replace the drivers (see Figure 3.2).

Replacing drivers might take a moment. Your GateMate[™] FPGA Programmer should then be listed as **libusb-win32** device in the Device Manager as shown in Figure 3.3.

Zadig	- 🗆 🗙
Device Options Help	
GateMate FPGA Programmer 1.4A	✓ ☐ Edit
Driver FTDIBUS (v2. 12. 36. 4) → WinUSB (v6. 1. 7600. 16385) USB ID 0403 6014 WCID ² ×	More Information <u>WinUSB (libusb)</u> <u>libusb-win32</u> <u>libusbK</u> <u>WinUSB (Microsoft)</u>
	Zadig 2.8.782

Figure 3.2: Zadig Window with selected GateMateTM FPGA Programmer

In Linux environments, no driver installation is required. The device should enumerate as FT232H using the lsusb command.

Figure 3.3: GateMateTM FPGA Programmer in Device Manager

The tool setup for the Cologne Chip GateMate[™] series is described in the user guide UG1002 – GateMate[™] FPGA Toolchain Installation User Guide C

CCGM1A1

Loading the FPGA Configuration

GateMate FPGA configuration can be loaded either via the JTAG or SPI interfaces. Both options are described in this chapter.

It is assumed that the user application has, among other things, a GateMate FPGA and a flash memory from which the configuration is loaded during normal operation. In this chapter it is described, how configuration bit files can be handled alternatively with the GateMateTM FPGA Programmer during the application development.

4.1 Loading the FPGA Configuration via the JTAG Interface

In this mode, the programmer is configured to send the configuration bitstream directly to the FPGA via JTAG as shown in Figure 4.1. The FPGA configuration mode pins $CFG_MD[3:0]$ must be set to $0 \times C$ (JTAG).

An active CFG_DONE and inactive CFG_FAILED signal indicates successfull configuration. The CFG_FAILED signal may send a pulse during configuration in case of any error. Note that the CFG_DONE and CFG_FAILED pins can be configured as user GPIO. In this case no configuration status can be read back.

4.2 Loading the FPGA Configuration via the SPI Interface

In this mode, the programmer is configured to send the configuration bitstream directly to the FPGA via SPI as shown in Figure 4.2. The FPGA configuration mode pins $CFG_MD[3:0]$ must be set to 0×4 (SPI slave mode).

An active CFG_DONE and inactive CFG_FAILED signal indicates successfull configuration. The CFG_FAILED signal may send a pulse during configuration in case of any error. Note

Figure 4.1: Loading the FPGA configuration via the JTAG interface

that the CFG_DONE and CFG_FAILED pins can be configured as user GPIO. In this case no configuration status can be read back.

Figure 4.2: Loading the FPGA configuration via the SPI interface

Access to the Flash Memory

The GateMateTM FPGA Programmer offers an easy way to access the user application's flash memory. Again, two ways are possible as described in this chapter.

5.1 Access to the Flash Memory via the JTAG Interface

The GateMate[™] FPGA configuration controller has a built-in JTAG-SPI-bridge to access an external SPI flash memory using the JTAG interface.

Handling of the JTAG-SPI-bridge is described in the GateMate[™] FPGA datasheet ∠.

In this mode, the programmer is configured to send the configuration bitstream or any other data to the external SPI flash memory via JTAG as shown in Figure 5.1. The FPGA configuration mode pins CFG_MD[3:0] must be set to 0x C (JTAG). Further prerequisite is that the FPGA configuration bank is not configured as user GPIO.

In this configuration, both CFG_DONE and CFG_FAILED signals don't output any status information.

5.2 Access to the Flash Memory via the SPI Interface

The following configuration requires a direct connection of the SPI signals to the external flash memory. Both external flash memory and GateMateTM FPGA may share the same signals.

In this mode, the programmer is configured to send the configuration bitstream or any other data directly to the external SPI flash memory as shown in Figure 5.2. Prerequisite is that the FPGA acts passively on the SPI bus. If both FPGA and external flash memory share

Figure 5.1: Access to the flash memory via the JTAG interface

the same bus signals, it is required to keep the FPGA in active reset while programming the external flash memory.

After successfull programming, the reset signal may be released to start the FPGA configuration e.g. in SPI master mode.

Figure 5.2: Access to the flash memory via the SPI interface

Electrical Characteristics

Table 6.1: Absolute maximum characteristics of the GateMateTM FPGA Programmer

Symbol	Min	Тур	Max	Unit	Description
	-40		125	°C	Junction temperature
V _{BUS}	-0.3		5.8	V	USB Voltage
VDD _{CFG}	-0.5		4.2	V	Target Supply Voltage
Vi	-0.5		4.2	V	Input Signals on CFG_ADAPTER
Vo	-0.5		4.2	V	Output Signals on CFG_ADAPTER
T _{stg}	-55		150	°C	Storage temperature

Table 6.2: Operating characteristics of the GateMateTM FPGA Programmer

Symbol	Min	Тур	Max	Unit	Description
	-40		85	°C	Operating temperature
V _{BUS}	4.75	5.0	5.25	V	USB Voltage
VDD _{CFG}	1.4		2.75	V	Target Supply Voltage
Vi	0		2.75	V	Input Signals
Vo	0		2.75	V	Output Signals Active
	0		VDD_{CFG}	V	Output Signals Tri-State

GateMate[™] FPGA Programmer Datasheet Generic Programmer Board for GateMate DS1002 August 2023

